Math 210, Final Exam, Practice Fall 2009
Problem 1 Solution

1. A triangle has vertices at the points
A=(1,1,1), B=(1,-3,4), and C = (2,—1,3)
(a) Find the cosine of the angle between the vectors @ and ﬁ .

(b) Find an equation of the plane containing the triangle.

Solution:

(a) By definition, the angle between two vectors AB and AC is:

cost = B.B
42| {[ac

The vectors are f@ = (0,—4,3) and ﬁ = (1,—2,2). Thus, the cosine of the angle

between them is:
AB e BC

cosf =

42 {5

(0,—4,3) e (1,-2,2)
[1€0, =4, 3)[| [[{1,2, =1)]
_ 0)(®) + (=4)(=2) + B)(2)

V02 + (—4)2 + 32 /12 + (—2)2 + 22
14
15

(b) A vector perpendicular to the plane is the cross product of 1@ and ﬁ which both lie
in the plane.

o = AB x AC
i j k
o=|0 -4 3
1 -2 2
| —a 3] o3| |0 -4
me —22‘ J12'“‘1—2




Using A = (1,1, 1) as a point on the plane, we have:

—2(x—-1)+3y—1)—4(—1)=0
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2. Find the critical points of the function f(z,y) = #* +3* + 2*y + 1 and classify each point
as corresponding to either a saddle point, a local minimum, or a local maximum.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fu(a,b) = fy(a,b) =0, or
(2) one (or both) of f, or f, does not exist at (a,b).

The partial derivatives of f(z,y) = 2* + y* + 2%y + 1 are f, = 2z + 2zy and f, = 2y + 2°.
These derivatives exist for all (z,y) in R% Thus, the critical points of f are the solutions to
the system of equations:

fr=2x+22y =0 (1)
fy=2y+2"=0 (2)
Factoring Equation (1) gives us:
20+ 22y =0
2¢(1+y)=0

r=0, ory=—1
If = 0 then Equation (2) gives us y = 0. If y = —1 then Equation (2) gives us:

2(-1) +22 =0
=2

x:j:\@

Thus, the critical points are | (0,0) |, | (v/2,—1) |, and | (=v/2, —1) |

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

Jez =242y, [y =2, foy=2
The discriminant function D(z,y) is then:
D(a:,y) = fxxfyy - fxzy
D(z,y) = (2+2y)(2) — (22)*
D(x,y) = 4 + 4y — 42

The values of D(z,y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.



(a,b) D(a,b) | fz(a,b) | Conclusion

(0,0) 4 2 Local Minimum
(v2,-1) -8 0 Saddle Point
(—v2,-1) | -8 0 Saddle Point

Recall that (a,b) is a saddle point if D(a,b) < 0 and that (a,b) corresponds to a local
minimum of f if D(a,b) > 0 and f,.(a,b) > 0.
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3. Find the directional derivative of the function f(x,y) = e”sin(zy) at the point (0, 7) in
the direction of V' = (1,0). In the direction of which unit vector is f increasing most rapidly
at the point (0,7)7

Solution: By definition, the directional derivative of f at (a,b) in the direction of u is:

Dyuf(a,b) = ?f (a,b) o
The gradient of f(z,y) = e”sin(zy) is
V- fx, fy
?f zy) + ye® cos(xy), ze® cos(zy))

At the point (0,7) we have:

?f(O, m) = (e"sin(0 - 7) + me° cos(0 - m),0 - €’ cos(0 - 7))

¥ £(0,7) = (x,0)

The vector vV = (1,0) is already a unit vector. Therefore, the directional derivative is:

D, f(0,m) = ?f()ﬂ'
= (m,0) e <1,0)

=[7]

The direction of steepest ascent is:
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4. Consider a space curve whose parameterization is given by:

T(t) = (cos(mt), t*,1)
Find the unit tangent vector and curvature when ¢ = 2.
Solution: The first two derivatives of T (¢) are:

T'(t) = (—msin(xt), 2t,0)
T"(t) = (—n*cos(nt), 2,0)

The unit tangent vector at t = 2 is:

2o T'(2)
=17l

(—msin(27),2(2),0)
~ [[(=msin(27), 2(2), 0)]
_(0.4,0)
10,4, 0)[]
_{0,4,0)
4
~[(0,1,0)

The curvature at t = 2 is:
177(2) x T"(2)]]
Kk(2) =
RO
_ |[{(—7 sin(27), 4,0) x (—m2 cos(27), 2, 0)||
||(— sin(27), 4, 0)|*
_ ||<0a4>0> X <_7T2a2>0>||
140, 4,0)|°
_[1(0,0,4m3)]
43
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5. Evaluate // e~ @49 A where D = {(z,y) - 2 +y* <1, >0, y > 0}.
JJp

Solution: Y

From the figure we see that the region D is bounded above by y = v/1 — 22 and below by
y = 0. The projection of D onto the z-axis is the interval 0 < z < 1. Since the region is a
quarter-disk of radius 1, we will use polar coordinates to evaluate the integral. The region
D is described in polar coordinates as D = {(r,6) : 0 <r <1, 0 <6 < Z}. The value of
the integral is then:

Il
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6. Evaluate / T o ds where F — (y+z,z+x,x+y) and C is the line segment from
C
(1,1,0) to (2,0, —1).

Solution: We note that the vector field ? is conservative. Letting f =y + 2, g = 2z + «x,
and h = x + y we have:

o 9,
Jdy O
of _oh_,
0z Oz
o _oh_,
0z 0Oy

By inspection, a potential function for the vector field is:
o(z,y,2) =xy+xz+yz

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

/ Feds = (2,0,-1) — o(1,1,0)

= [(2)(0) + (2)(=1) + (0)(=1)] = [(1)(1) + (1)(0) + (1)(0)]
= -3
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7. Consider the paraboloid z = 4 — 2% — 3.
(a) Find an equation for the tangent plane to the paraboloid at the point (1,2, —1).

(b) Find the volume that is bounded by the paraboloid and the plane z = 0.

Solution:
(a) We use the following formula for the equation for the tangent plane:
2= f(a,b) + fola,b)(z — a) + fy(a, b)(y = b)

because the equation for the surface is given in explicit form. The partial derivatives
of f(z,y) =4 — 2% — y?* are:

fx:_2xa fy: _2y

Evaluating these derivatives at (1,2) we get:

fx(172) = -2, fy(172) =—4

Thus, the tangent plane equation is:

z=—-1-2(x—1)—4(y — 2)

(b) The region of integration is shown below.




The volume of the region can be obtained using either a double or a triple integral. In
either case, we must be able to visualize the projection of the region onto the zry-plane.
This region is the disk D = {(z,y) : 2? + y* < 4}, the boundary of which is the
intersection of the paraboloid z = 4 — 22 — % and the plane z = 0.

The double integral representing the volume is:

Volume = / / (top surface — bottom surface) dA
D

We will use polar coordinates to set up and evaluate the double integral. The top
surface is then z = 4 — r? and the bottom surface is z = 0. The region D described in
polar coordinates is D = {(r,0) : 0 <r <2, 0 <6 < 27}. Thus, the volume is:

27 2
Volume—/ / (4—7"2—0) rdrdf
0271' 02 )
:/ / (47“—7“‘3) dr df
o Jo
27 1 2
:/ [27"2 — —7“4] de
0 4 g
27
_ / 4d8
0

2w
= 40

0

=| 87

The triple integral representing the volume is:

Volume = /// 1dV
R

Using cylindrical coordinates we have:

o2 P2 pd—r2
Volume = / / / 1rdzdrdd
o Jo Jo

which evaluates to 8.



Math 210, Final Exam, Practice Fall 2009
Problem 8 Solution

8. Let B be a constant and consider the vector field defined by:

F = (Bay+1,2% + 2)

(a) For what value of B can we write ﬁ = ?gp for some scalar function ¢? Find such a
function ¢ in this case.

(b) Using the value of B you found in part (a), evaluate the line integral of ﬁ along any
curve from (1,0) to (—1,0).
Solution:

(a) In order for the vector field ? = (f(z,vy),9(z,y)) to be conservative, it must be the

case that:
af 9y
dy  Ox
Using f(z,y) = Bazy + 1 and g(x,y) = 2° + 2y we get:
af 9y
oy Ox
Bx =2z
B=2

If ﬁ = ?gp, then it must be the case that:

I
I
- 9(z,y) (2)
Using f(z,y) = 2zy + 1 and integrating both sides of Equation (1) with respect to x
we get:
Iy
0
a—i = 22y + 1
dp
92 dr = | 2zy+1) dx
p(z,y) = 2%y + + h(y) (3)



We obtain the function h(y) using Equation (2). Using g(z,y) = 2? + 2y we get the

equation:
dp
3y g9(,y)
e 2
b 2
Dy r- + 2y

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying
we get:

0
By (Py+x+h(y)) =2+ 2y
a? + W (y) = 2" + 2y

W(y) =2y

Now integrate both sides with respect to y to get:

/h'(y) dy=/2ydy

hy) =y*+C

Letting C' = 0, we find that a potential function for ? is:

o(z,y) =2’y +z+y°

(b) Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

/?.d—> o 10) o(1,0)

= [(=1)%(0) + (=1) + 0*] = [(1)*(0) + 1 + 07]
—| -2
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9. Consider f(x,y) = xsin(z + 2y).
(a) Compute the partial derivatives fu, fy, fuz, fuy, and fy,.

(b) If x = s> + t and y = 2s + 2, compute the partials f, and f;.

Solution:

(a) The first and second partial derivatives are:

fz = sin(x + 2y) + x cos(z + 2y)

fy = 2x cos(z + 2y)
foz = cos(x + 2y) + cos(z + 2y) — xsin(x + 2y)
fay = 2cos(x + 2y) — 2z sin(z + 2y)
fyy = —4zsin(x + 2y)

(b) Using the Chain Rule, the partial derivatives fs and f; are:

fo= ot g, 2
= [sm(x + 2y) + xcos(x + 2y)] (25) + [2x cos(z + 2y)] (2)
= [sin(s® + ¢ 4+ 2(2s + %)) + (s* + t) cos(s” + t + 2(25 + 1%))] (25)+
[2(5 + t) cos(s +t 4225 +12)] (2)

fe= f:c +fy

[sm(x + 2y) —I— xcos(z + 2y)] (1) + [2z cos(z + 2y)] (2t)
= [sin(s® +t 4+ 2(2s + %)) + (s* + t) cos(s® + t +2(2s + 17))] +
[2(s® +t) cos(s® +t + 2(2s + t%))] (2t)
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10. Find the points on the ellipse 2% + 2y + y? = 9 where the distance from the origin is
maximal and minimal. (Hint: Let f(z,y) = 2* + y* be the function you want to extremize
where (x,y) is a point on the ellipse.)

Solution: We find the minimum and maximum using the method of Lagrange Multipli-
ers. First, we recognize that 2? + zy + y? = 9 is compact which guarantees the existence of
absolute extrema of f. Then, let g(x,y) = 2% + zy + y*> = 9. We look for solutions to the
following system of equations:

fo=Aga,  fy=2Agy, glz,y)=9
which, when applied to our functions f and g, give us:
20 =X (2x +y) (1)
2y = Az + 2y) (2)
2>+ ay+y* =9 (3)
We begin by diving Equation (1) by Equation (2) to give us:
2r A2z +y)
2 Az +2y)
r  2rx+y
; x4+ 2
z(x +2y) = y(2r + v)
2 + 22y = 22y + o>

2% =

T =*y
If = y then Equation (3) gives us:
W)+ Wy +y* =9
vy +yt=9
3y° =9
y' =3
y==+V3
Since 2 = y we have (v/3,v/3) and (—v/3, —v/3) as points of interest.
If + = —y then Equation (3) gives us:
(=) + (—y)y +y* =9
=y 12 =0
y' =9
y =43



Since z = —y we have (3, —3) and (—3, 3) as points of interest.

We now evaluate f(z,y) = 2 + y? at each point of interest.

FV3,V3) = (V3)* + (V3)* =6
F(=V3,=V3) = (=V3)* + (-=V3)* =
f(3,-3) +(=3)* =18
f(=3,3) 2432 =18

(=
32
(=

3)"+

From the values above we observe that f attains an absolute maximum of 18 and an absolute
minimum of 6.
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11. Sketch the region of integration for the integral below and evaluate the integral.
Lo
/ / e " dxdy
JO . Y

Solution: Y

From the figure we see that the region D is bounded above by y = z and below by y = 0.
The projection of D onto the z-axis is the interval 0 < 2 < 1. Using the order of integration
dy dx we have:

1 ]!
=|—=e
2 0
1 1
- ] - [
11,
=27 32°
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12. Evaluate / f(x,y,z)ds where f(z,y,z) = z/2?+y? and C is the helix E)(t) =
(4cost,4sint,3t) for 0 <t < 2.

Solution: We use the following formula to evaluate the integral:

b
/&wyaﬁszmmmmm»Wﬁmﬁ
C a

Using the fact that x = 4 cost, y = 4sint, and z = 3¢, the function f(z,y, z) can be rewritten
as:

f2@),y(t), 2() = 2(H)v/x(£)? + y(£)?
= (3t)\/(4cost) + (4sint)?
= 315\/16 cos?t + 16sin? ¢
=3t-4
= 12¢

The derivative ¢’(¢) and its magnitude are:

<'(t)
|

}—>/ t)

(—4sint, 4 cost, 3)
V/(—4sint)2 + (4 cost)? + 32
D

Therefore, the value of the line integral is:

| 1wis= [ p.m, o) [210) d@
=/2W12t-5dt
:/2W6Otdt

o

= | 12072
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13. Consider the vectors V = (1,2,a) and W = (1,1,1).
(a) Find the value of a such that V is perpendicular to W.

(b) Find the two values of a such that the area of the parallelogram determined by v and

W is equal to V6.

Solution:

(a) By definition, two vectors V and W are perpendicular if and only if the dot product
of the vectors is equal to zero.

Vew=0
(1,2,a)e(1,1,1) =0
1424a=0

a= -3

(b) By definition, the area of a parallelogram spanned by the vectors V and W is:
A=V x W||
The cross product of V = (1,2,a) and W= (1,1,1) is:

ijk
VX W= 1 2 a
11 1

a

The area of the parallelogram is then:

A=V x W

=v(2—-a)?+(a—1)2+(-1)2
=v(@—2)2+(@a-1)2+1
In order for the area to be v/6 it must be the case that:
Vie—=22+@a-12+1=v6
(a—2P%+(a—1)*+1=6
a>—4a+4+a*-2a+1+1=6
20> — 6a+6 =6
26 — 6a = 0
2a(a—3)=0

a=0 or a=3
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14. Consider a particle whose position vector is given by
T(t) = (sin(mt), t*,t + 1)
(a) Find the velocity T() and the acceleration T (t).

(b) Set up the integral you would compute to find the distance traveled by the particle
fromt =0 tot=4. Do not attempt to compute the integral.

Solution:

(a) The velocity and acceleration vectors are:

V(t) = T'(t) = (mcos(wt), 2t, 1)
A(t) = V'(t) = (—n?sin(rt), 2,0)

(b) The distance traveled by the particle is:
4
L= / 17/(1)]| dt
0
4
= / V(7 cos(mt))2 4 (2t)% + 12 dt
0

4
= / /2 cos?(mt) + 412 + 1 dt
0
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15. Find the volume of the region enclosed by the cylinder 2% + y? = 4 and the planes z = 0
and y + 2z = 4.

Solution: The region R is plotted below.

The volume can be computed using either a double or a triple integral. The double integral
formula for computing the volume of a region R bounded above by the surface z = f(x,y)
and below by the surface z = g(x,y) with projection D onto the xy-plane is:

V= [[ ) - gte.9)) s

In this case, the top surface is 2 =4 —y = 4 — rsinf in polar coordinates and the bottom
surface is z = 0. The projection of R onto the xy-plane is a disk of radius 2, described in
polar coordinates as D = {(r,0) : 0 <r <2, 0 <6 < 27}. Thus, the volume formula is:

2 2
V:/ / (4 —rsinf —0) rdrdd (1)
o Jo

The triple integral formula for computing the volume of R is:

f(zy)
- / / / TARY
D g(z,y)

Using cylindrical coordinates we have:

2 2 4—rsinf
V:/ / / 1rdzdrdf (2)
0 0 0
1



Evaluating Equation (1) we get:

2 2
V:/ / (4 —rsinf —0) rdrdb

0 0
27 1 2

:/ [27“2 — —r3sin 49] do
0 3 0
2

:/ (8—§Sin9> df
0 3

27
= {86 + § coS 91
3 0

— {(8)(2%) + gcos 27r] - [(8)(0) + gcos 0}

=| 167

Note that Equation (2) will evaluate to the same answer.
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16. Use Green’s Theorem to compute j{ xy dz+vy° dy where C is the boundary of the triangle

c
with vertices at (0,0), (2,0), (2, 1), oriented counterclockwise.

Solution: Green’s Theorem states that

frea=[] (G-5)

where D is the region enclosed by C'. The integrand of the double integral is:

dg of 9 5 0
or Oy ~ o’ 0y$y

Thus, the value of the integral is:

fFen = f] (5 5)
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17. Consider the plane P containing the points A = (1,0,0), B = (2,1,1), and C' = (1,0, 2).
(a) Find a unit vector perpendicular to P.

(b) Find the intersection of P with the line perpendicular to P that contains the point
D=(1,1,1).

Solution:

(a) A vector perpendicular to the plane is the cross product of f@ =(1,1,1) and B? =
(—1,—1,1) which both lie in the plane.

— AB x BC

i j k
o= 1 i 1

-1 -1 1

S T I A I RS N IO I B |

"= 1’” 1 1'“‘ 1 —1’
o =i[(1)(1) = ()(=D)] =3 [(1)(1) = ()(=D)] + k[(1)(=1) = (1)(=1)]
o =2i—2j+0k
o =(2,-2,0)

To make T a unit vector we multiply by the reciprocal of its magnitude to get:

=

{5

(b) To find the intersection of the plane P and the line perpendicular to P through D =
(1,1,1), we must form an equation for the plane and a set of parametric equations
for the line. Using A as a point on the plane and the vector o= (2,—2,0) which is
perpendicular to plane, we have:

2 —-1)—2(y—0)—0(z—0)=0
as an equation for the plane and:

r=1+2 y=1-2t, z=1-0¢t

1



as a set of parametric equations for the line. Cleaning up the plane equation and
substituting the parametric equations of the line for z, y, and z we get:

2 —-1)—2(y—0)—0(z—0)=0
20 —2—-2y =0

20 — 2y =2

r—y=1

(I1+2t)—(1—-2t)=1
1+2t-142t=1

4t =1
t_1
4

Substituting this value of ¢ into the parametric equations for the line gives us:

1
x:1+2t:1+2<1>:

1
—1-2t=1-2(>)=
y (3)

z=1

N = N W

31
Thus, the point of intersection is (5 3 1) .
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18. Use a triple integral to compute the volume of the region below the sphere 22 +y?+2? = 4
and above the disk 22 + y? < 1 in the zy-plane.

Solution: The region of integration is shown below.

The equation for the sphere in cylindrical coordinates is 72 + 22 =4 =— 2z =+/4—12
since the region is above the zy-plane. Furthermore, the disk in the xy-plane is described
by 0 <r <1, 0 <6 <27 in cylindrical coordinates. Thus, the volume of the region is:

V:///ldv
R
2r 1 pVA—r2
:/ // 1rdzdrdf
0 0o Jo
27 1
/ /r\/4—r2drd9
0 0
27
[l
27
|
]
2

1
(4- rz)ﬂ a0
0

Wl = Wl

(4—12)%% ¢ % (4- 02)3/2} do

21

(8 _ 3\/5) df

Wl =

e

3

/N

8—3\/5)
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19. Consider the cone z = /22 + y? for 0 < z < 4.
(a) Write a parameterization ®(u,v) for the cone, clearly indicating the domain of ®.

(b) Find the surface area of the cone.

Solution:

(a) We begin by finding a parameterization of the paraboloid. Let z = wcos(v) and
y = usin(v), where we define u to be nonnegative. Then,

SN
2z =/ (ucos(v))? + (usin(v))?

z = \/u?cos?(v) + u? sin?(v)
z = Vu?
z=u

Thus, we have T (u,v) = (ucos(v), usin(v), u). To find the domain R, we must deter-
mine the curve of intersection of the paraboloid and the plane z = 4. We do this by
plugging z = 4 into the equation for the paraboloid to get:

NS

2+y?=4
224+ y* =16

which describes a circle of radius 4. Thus, the domain R is the set of all points (z,y)
satisfying 22 +y? < 4. Using the fact that = u cos(v) and y = usin(v), this inequality
becomes:

%+ y2 <16
(ucos(v))? + (usin(v))?® < 16
u® < 16
0<u<4
noting that, by definition, © must be nonnegative. The range of v-values is 0 < v < 27.
Therefore, a parameterization of S is:

T (u,v) = (ucos(v), usin(v), u)

R:{(u,v))ogugél, O§U§27T}



(b) The formula for surface area we will use is:

S://Sdsz//ﬂ’?“x?’

where the function T (u,v) = (z(u,v),y(u,v), z(u,v)) with domain R is a parame-

. . -
terization of the surface S and the vectors t, = %—u and t, = %—f are the tangent

vectors.

dA

— —
The tangent vectors t , and t , are then:

— oT .

t,= 5’—3) = (cos(v), sin(v), 1)

— 0T ,

t,= By = (—usin(v), u cos(v), 0)

The cross product of these vectors is:

The magnitude of the cross product is:

= \/(—u cos(v))? + (—usin(v))? + u2
= \/u2 cos?(v) + u? sin?(v) + u?
Vara

— u\/i

We can now compute the surface area.

S://‘?ux?v
R
4 27
:// uV2dv du
o Jo

_ /04 [wov2)] zﬂ du
- /4 21V 2u du

0

]
=| 167v2

— —
‘tux t,

dA
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20. Calculate /y dr + (x + z)dy + ydz along the curve given by E)(f) = (t,12,t3) for
c
0<t<1.

Solution: We note that the vector field ﬁ is conservative. Letting f =y, ¢ = x + 2, and
h =y we have:

of _ 99 _
Jdy O
of _oh _,
0z Oz
99 _oh _
0z 0Oy

By inspection, a potential function for the vector field is:

o(z,y,2) =zy +yz

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

/ Feds = o(1,1,1) — (0,0,0)

C
= [(1)(1) + (1)(1)] = [(0)(0) + (0)(0)]
=[2]

Note that the points (1 ) and (0,0,0) were obtained by plugging the endpoints of the

1,1
interval 0 < ¢ <1 into E)(t)
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