
Math 210, Final Exam, Practice Fall 2009

Problem 1 Solution

1. A triangle has vertices at the points

A = (1, 1, 1), B = (1,−3, 4), and C = (2,−1, 3)

(a) Find the cosine of the angle between the vectors
−→
AB and

−→
AC.

(b) Find an equation of the plane containing the triangle.

Solution:

(a) By definition, the angle between two vectors
−→
AB and

−→
AC is:

cos θ =

−→
AB •

−→
AC
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The vectors are
−→
AB = 〈0,−4, 3〉 and

−→
AC = 〈1,−2, 2〉. Thus, the cosine of the angle

between them is:

cos θ =
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AB •
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BC
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=
〈0,−4, 3〉 • 〈1,−2, 2〉

||〈0,−4, 3〉|| ||〈1, 2,−1〉||

=
(0)(1) + (−4)(−2) + (3)(2)

√

02 + (−4)2 + 32
√

12 + (−2)2 + 22

=
14

15

(b) A vector perpendicular to the plane is the cross product of
−→
AB and

−→
AC which both lie

in the plane.

−→
n =

−→
AB ×

−→
AC
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∣
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−4 3
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∣
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∣

∣
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∣

∣

∣

+ k̂
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∣

∣

∣

0 −4
1 −2

∣
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−→n = ı̂ [(−4)(2)− (3)(−2)]− ̂ [(0)(2)− (3)(1)] + k̂ [(0)(−2)− (−4)(1)]
−→
n = −2 ı̂ + 3 ̂+ 4 k̂
−→n = 〈−2, 3, 4〉
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Using A = (1, 1, 1) as a point on the plane, we have:

−2(x− 1) + 3(y − 1)− 4(z − 1) = 0
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Math 210, Final Exam, Practice Fall 2009

Problem 2 Solution

2. Find the critical points of the function f(x, y) = x2 + y2 + x2y+1 and classify each point
as corresponding to either a saddle point, a local minimum, or a local maximum.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = x2 + y2 + x2y + 1 are fx = 2x+ 2xy and fy = 2y + x2.
These derivatives exist for all (x, y) in R

2. Thus, the critical points of f are the solutions to
the system of equations:

fx = 2x+ 2xy = 0 (1)

fy = 2y + x2 = 0 (2)

Factoring Equation (1) gives us:

2x+ 2xy = 0

2x(1 + y) = 0

x = 0, or y = −1

If x = 0 then Equation (2) gives us y = 0. If y = −1 then Equation (2) gives us:

2(−1) + x2 = 0

x2 = 2

x = ±
√
2

Thus, the critical points are (0, 0) , (
√
2,−1) , and (−

√
2,−1) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = 2 + 2y, fyy = 2, fxy = 2x

The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (2 + 2y)(2)− (2x)2

D(x, y) = 4 + 4y − 4x2

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.
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(a, b) D(a, b) fxx(a, b) Conclusion

(0, 0) 4 2 Local Minimum

(
√
2,−1) −8 0 Saddle Point

(−
√
2,−1) −8 0 Saddle Point

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
minimum of f if D(a, b) > 0 and fxx(a, b) > 0.
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Problem 3 Solution

3. Find the directional derivative of the function f(x, y) = ex sin(xy) at the point (0, π) in
the direction of −→v = 〈1, 0〉. In the direction of which unit vector is f increasing most rapidly
at the point (0, π)?

Solution: By definition, the directional derivative of f at (a, b) in the direction of û is:

Duf(a, b) =
−→
∇f(a, b) • û

The gradient of f(x, y) = ex sin(xy) is:

−→
∇f = 〈fx, fy〉
−→
∇f = 〈ex sin(xy) + yex cos(xy), xex cos(xy)〉

At the point (0, π) we have:

−→
∇f(0, π) =

〈

e0 sin(0 · π) + πe0 cos(0 · π), 0 · e0 cos(0 · π)
〉

−→
∇f(0, π) = 〈π, 0〉

The vector −→v = 〈1, 0〉 is already a unit vector. Therefore, the directional derivative is:

Dvf(0, π) =
−→
∇f(0, π) • −→v

= 〈π, 0〉 • 〈1, 0〉

= π

The direction of steepest ascent is:

û =
1

∣

∣

∣

∣

∣

∣

−→
∇f(0, π)

∣

∣

∣

∣

∣

∣

−→
∇f(0, π)

=
1

π
〈π, 0〉

= 〈1, 0〉
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Problem 4 Solution

4. Consider a space curve whose parameterization is given by:

−→r (t) =
〈

cos(πt), t2, 1
〉

Find the unit tangent vector and curvature when t = 2.

Solution: The first two derivatives of −→r (t) are:

−→r ′(t) = 〈−π sin(πt), 2t, 0〉
−→r ′′(t) =

〈

−π2 cos(πt), 2, 0
〉

The unit tangent vector at t = 2 is:

−→
T(2) =

−→r ′(2)
∣

∣

∣

∣

−→r ′(2)
∣

∣

∣

∣

=
〈−π sin(2π), 2(2), 0〉

||〈−π sin(2π), 2(2), 0〉||

=
〈0, 4, 0〉

||〈0, 4, 0〉||

=
〈0, 4, 0〉

4

= 〈0, 1, 0〉

The curvature at t = 2 is:

κ(2) =

∣

∣

∣

∣

−→r ′(2)×−→r ′′(2)
∣

∣

∣

∣

∣

∣

∣

∣

−→r ′(2)
∣

∣

∣

∣

3

=
||〈−π sin(2π), 4, 0〉 × 〈−π2 cos(2π), 2, 0〉||

||〈−π sin(2π), 4, 0〉||3

=
||〈0, 4, 0〉 × 〈−π2, 2, 0〉||

||〈0, 4, 0〉||3

=
||〈0, 0, 4π2〉||

43

=
4π2

64

=
π2

16
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Problem 5 Solution

5. Evaluate

∫∫

D

e−(x2
+y2) dA where D = {(x, y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}.

Solution:

x

y

D

0

1

0 1

From the figure we see that the region D is bounded above by y =
√
1− x2 and below by

y = 0. The projection of D onto the x-axis is the interval 0 ≤ x ≤ 1. Since the region is a
quarter-disk of radius 1, we will use polar coordinates to evaluate the integral. The region
D is described in polar coordinates as D = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

2
}. The value of

the integral is then:

∫∫

D

e−(x2
+y2) dA =

∫ π/2

0

∫

1

0

e−r2r dr dθ

=

∫ π/2

0

[

−
1

2
e−r2

]1

0

dθ

=

∫ π/2

0

[

−
1

2
e−1

2

+
1

2
e−0

2

]

dθ

=

∫ π/2

0

(

1

2
−

1

2
e−1

)

dθ

=

(

1

2
−

1

2
e−1

)

[

θ
]π/2

0

=
π

2

(

1

2
−

1

2
e−1

)

=
π

4

(

1− e−1
)
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Problem 6 Solution

6. Evaluate

∫

C

−→
F • d−→s where

−→
F = 〈y + z, z + x, x+ y〉 and C is the line segment from

(1, 1, 0) to (2, 0,−1).

Solution: We note that the vector field
−→
F is conservative. Letting f = y + z, g = z + x,

and h = x+ y we have:

∂f

∂y
=

∂g

∂x
= 1

∂f

∂z
=

∂h

∂x
= 1

∂g

∂z
=

∂h

∂y
= 1

By inspection, a potential function for the vector field is:

ϕ(x, y, z) = xy + xz + yz

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

∫

C

−→
F • d−→s = ϕ(2, 0,−1)− ϕ(1, 1, 0)

= [(2)(0) + (2)(−1) + (0)(−1)]− [(1)(1) + (1)(0) + (1)(0)]

= −3
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Problem 7 Solution

7. Consider the paraboloid z = 4− x2 − y2.

(a) Find an equation for the tangent plane to the paraboloid at the point (1, 2,−1).

(b) Find the volume that is bounded by the paraboloid and the plane z = 0.

Solution:

(a) We use the following formula for the equation for the tangent plane:

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

because the equation for the surface is given in explicit form. The partial derivatives
of f(x, y) = 4− x2 − y2 are:

fx = −2x, fy = −2y

Evaluating these derivatives at (1, 2) we get:

fx(1, 2) = −2, fy(1, 2) = −4

Thus, the tangent plane equation is:

z = −1− 2(x− 1)− 4(y − 2)

(b) The region of integration is shown below.
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The volume of the region can be obtained using either a double or a triple integral. In
either case, we must be able to visualize the projection of the region onto the xy-plane.
This region is the disk D = {(x, y) : x2 + y2 ≤ 4}, the boundary of which is the
intersection of the paraboloid z = 4− x2 − y2 and the plane z = 0.

The double integral representing the volume is:

Volume =

∫∫
D

(top surface− bottom surface) dA

We will use polar coordinates to set up and evaluate the double integral. The top
surface is then z = 4− r2 and the bottom surface is z = 0. The region D described in
polar coordinates is D = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}. Thus, the volume is:

Volume =

∫ 2π

0

∫ 2

0

(
4− r2 − 0

)
r dr dθ

=

∫ 2π

0

∫ 2

0

(
4r − r3

)
dr dθ

=

∫ 2π

0

[
2r2 − 1

4
r4
]2
0

dθ

=

∫ 2π

0

4 dθ

= 4θ
∣∣∣2π
0

= 8π

The triple integral representing the volume is:

Volume =

∫∫∫
R

1 dV

Using cylindrical coordinates we have:

Volume =

∫ 2π

0

∫ 2

0

∫ 4−r2

0

1 r dz dr dθ

which evaluates to 8π.
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Problem 8 Solution

8. Let B be a constant and consider the vector field defined by:

−→
F =

〈

B xy + 1, x2 + 2y
〉

(a) For what value of B can we write
−→
F =

−→
∇ϕ for some scalar function ϕ? Find such a

function ϕ in this case.

(b) Using the value of B you found in part (a), evaluate the line integral of
−→
F along any

curve from (1, 0) to (−1, 0).

Solution:

(a) In order for the vector field
−→
F = 〈f(x, y), g(x, y)〉 to be conservative, it must be the

case that:
∂f

∂y
=

∂g

∂x

Using f(x, y) = B xy + 1 and g(x, y) = x2 + 2y we get:

∂f

∂y
=

∂g

∂x

Bx = 2x

B = 2

If
−→
F =

−→
∇ϕ, then it must be the case that:

∂ϕ

∂x
= f(x, y) (1)

∂ϕ

∂y
= g(x, y) (2)

Using f(x, y) = 2xy + 1 and integrating both sides of Equation (1) with respect to x

we get:

∂ϕ

∂x
= f(x, y)

∂ϕ

∂x
= 2xy + 1

∫

∂ϕ

∂x
dx =

∫

(2xy + 1) dx

ϕ(x, y) = x2y + x+ h(y) (3)

1



We obtain the function h(y) using Equation (2). Using g(x, y) = x2 + 2y we get the
equation:

∂ϕ

∂y
= g(x, y)

∂ϕ

∂y
= x2 + 2y

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying
we get:

∂

∂y

(

x2y + x+ h(y)
)

= x2 + 2y

x2 + h′(y) = x2 + 2y

h′(y) = 2y

Now integrate both sides with respect to y to get:

∫

h′(y) dy =

∫

2y dy

h(y) = y2 + C

Letting C = 0, we find that a potential function for
−→
F is:

ϕ(x, y) = x2y + x+ y2

(b) Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

∫

C

−→
F • d−→s = ϕ(−1, 0)− ϕ(1, 0)

=
[

(−1)2(0) + (−1) + 02
]

−
[

(1)2(0) + 1 + 02
]

= −2

2
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Problem 9 Solution

9. Consider f(x, y) = x sin(x+ 2y).

(a) Compute the partial derivatives fx, fy, fxx, fxy, and fyy.

(b) If x = s2 + t and y = 2s+ t2, compute the partials fs and ft.

Solution:

(a) The first and second partial derivatives are:

fx = sin(x+ 2y) + x cos(x+ 2y)

fy = 2x cos(x+ 2y)

fxx = cos(x+ 2y) + cos(x+ 2y)− x sin(x+ 2y)

fxy = 2 cos(x+ 2y)− 2x sin(x+ 2y)

fyy = −4x sin(x+ 2y)

(b) Using the Chain Rule, the partial derivatives fs and ft are:

fs = fx
∂x

∂s
+ fy

∂y

∂s

= [sin(x+ 2y) + x cos(x+ 2y)] (2s) + [2x cos(x+ 2y)] (2)

=
[

sin(s2 + t+ 2(2s+ t2)) + (s2 + t) cos(s2 + t+ 2(2s+ t2))
]

(2s)+
[

2(s2 + t) cos(s2 + t + 2(2s+ t2))
]

(2)

ft = fx
∂x

∂t
+ fy

∂y

∂t

= [sin(x+ 2y) + x cos(x+ 2y)] (1) + [2x cos(x+ 2y)] (2t)

=
[

sin(s2 + t+ 2(2s+ t2)) + (s2 + t) cos(s2 + t+ 2(2s+ t2))
]

+
[

2(s2 + t) cos(s2 + t + 2(2s+ t2))
]

(2t)

1
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Problem 10 Solution

10. Find the points on the ellipse x2 + xy + y2 = 9 where the distance from the origin is
maximal and minimal. (Hint: Let f(x, y) = x2 + y2 be the function you want to extremize
where (x, y) is a point on the ellipse.)

Solution: We find the minimum and maximum using the method of Lagrange Multipli-

ers. First, we recognize that x2 + xy + y2 = 9 is compact which guarantees the existence of
absolute extrema of f . Then, let g(x, y) = x2 + xy + y2 = 9. We look for solutions to the
following system of equations:

fx = λgx, fy = λgy, g(x, y) = 9

which, when applied to our functions f and g, give us:

2x = λ (2x+ y) (1)

2y = λ (x+ 2y) (2)

x2 + xy + y2 = 9 (3)

We begin by diving Equation (1) by Equation (2) to give us:

2x

2y
=

λ(2x+ y)

λ(x+ 2y)
x

y
=

2x+ y

x+ 2y

x(x+ 2y) = y(2x+ y)

x2 + 2xy = 2xy + y2

x2 = y2

x = ±y

If x = y then Equation (3) gives us:

(y)2 + (y)y + y2 = 9

y2 + y2 + y2 = 9

3y2 = 9

y2 = 3

y = ±
√
3

Since x = y we have (
√
3,
√
3) and (−

√
3,−

√
3) as points of interest.

If x = −y then Equation (3) gives us:

(−y)2 + (−y)y + y2 = 9

y2 − y2 + y2 = 9

y2 = 9

y = ±3

1



Since x = −y we have (3,−3) and (−3, 3) as points of interest.

We now evaluate f(x, y) = x2 + y2 at each point of interest.

f(
√
3,
√
3) = (

√
3)2 + (

√
3)2 = 6

f(−
√
3,−

√
3) = (−

√
3)2 + (−

√
3)2 = 6

f(3,−3) = 32 + (−3)2 = 18

f(−3, 3) = (−3)2 + 32 = 18

From the values above we observe that f attains an absolute maximum of 18 and an absolute
minimum of 6.
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Problem 11 Solution

11. Sketch the region of integration for the integral below and evaluate the integral.

∫

1

0

∫

1

y

e−x
2

dx dy

Solution:

x

y

D

y = x

0

1

0 1

From the figure we see that the region D is bounded above by y = x and below by y = 0.
The projection of D onto the x-axis is the interval 0 ≤ x ≤ 1. Using the order of integration
dy dx we have:

∫

1

0

∫

1

y

e−x
2

dx dy =

∫

1

0

∫

x

0

e−x
2

dy dx

=

∫

1

0

e−x
2

[

y
]

x

0

dx

=

∫

1

0

xe−x
2

dx

=

[

−
1

2
e−x

2

]1

0

=

[

−
1

2
e−1

2

]

−

[

−
1

2
e−0

2

]

=
1

2
−

1

2
e−1

1
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Problem 12 Solution

12. Evaluate

∫

C

f(x, y, z) ds where f(x, y, z) = z
√

x2 + y2 and C is the helix −→
c (t) =

(4 cos t, 4 sin t, 3t) for 0 ≤ t ≤ 2π.

Solution: We use the following formula to evaluate the integral:

∫

C

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t))
∣

∣

−→c ′(t)
∣

∣ dt

Using the fact that x = 4 cos t, y = 4 sin t, and z = 3t, the function f(x, y, z) can be rewritten
as:

f(x(t), y(t), z(t)) = z(t)
√

x(t)2 + y(t)2

= (3t)
√

(4 cos t) + (4 sin t)2

= 3t
√

16 cos2 t+ 16 sin2 t

= 3t · 4

= 12t

The derivative −→c ′(t) and its magnitude are:

−→c ′(t) = 〈−4 sin t, 4 cos t, 3〉
∣

∣

−→
c ′(t)

∣

∣ =
√

(−4 sin t)2 + (4 cos t)2 + 32

= 5

Therefore, the value of the line integral is:

∫

C

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t))
∣

∣

−→
c ′(t)

∣

∣ dt

=

∫

2π

0

12t · 5 dt

=

∫

2π

0

60t dt

=
[

30t2
]2π

0

= 120π2

1
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Problem 13 Solution

13. Consider the vectors −→v = 〈1, 2, a〉 and −→
w = 〈1, 1, 1〉.

(a) Find the value of a such that −→v is perpendicular to −→w .

(b) Find the two values of a such that the area of the parallelogram determined by −→v and
−→
w is equal to

√
6.

Solution:

(a) By definition, two vectors −→v and −→w are perpendicular if and only if the dot product
of the vectors is equal to zero.

−→v • −→w = 0

〈1, 2, a〉 • 〈1, 1, 1〉 = 0

1 + 2 + a = 0

a = −3

(b) By definition, the area of a parallelogram spanned by the vectors −→v and −→w is:

A =
∣

∣

∣

∣

−→v ×−→w
∣

∣

∣

∣

The cross product of −→v = 〈1, 2, a〉 and −→w = 〈1, 1, 1〉 is:

−→v ×−→w =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

1 2 a

1 1 1

∣

∣

∣

∣

∣

∣

= 〈2− a, a− 1,−1〉

The area of the parallelogram is then:

A =
∣

∣

∣

∣

−→
v ×−→

w
∣

∣

∣

∣

= ||〈2− a, a− 1,−1〉||

=
√

(2− a)2 + (a− 1)2 + (−1)2

=
√

(a− 2)2 + (a− 1)2 + 1

In order for the area to be
√
6 it must be the case that:
√

(a− 2)2 + (a− 1)2 + 1 =
√
6

(a− 2)2 + (a− 1)2 + 1 = 6

a2 − 4a+ 4 + a2 − 2a + 1 + 1 = 6

2a2 − 6a+ 6 = 6

2a2 − 6a = 0

2a(a− 3) = 0

a = 0 or a = 3

1
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Problem 14 Solution

14. Consider a particle whose position vector is given by

−→r (t) =
〈

sin(πt), t2, t+ 1
〉

(a) Find the velocity −→r ′(t) and the acceleration −→r ′′(t).

(b) Set up the integral you would compute to find the distance traveled by the particle
from t = 0 to t = 4. Do not attempt to compute the integral.

Solution:

(a) The velocity and acceleration vectors are:

−→v (t) = −→r ′(t) = 〈π cos(πt), 2t, 1〉
−→a (t) = −→v ′(t) =

〈

−π2 sin(πt), 2, 0
〉

(b) The distance traveled by the particle is:

L =

∫

4

0

∣

∣

∣

∣

−→r ′(t)
∣

∣

∣

∣ dt

=

∫

4

0

√

(π cos(πt))2 + (2t)2 + 12 dt

=

∫

4

0

√

π2 cos2(πt) + 4t2 + 1 dt

1
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Problem 15 Solution

15. Find the volume of the region enclosed by the cylinder x2 + y2 = 4 and the planes z = 0
and y + z = 4.

Solution: The region R is plotted below.

The volume can be computed using either a double or a triple integral. The double integral
formula for computing the volume of a region R bounded above by the surface z = f(x, y)
and below by the surface z = g(x, y) with projection D onto the xy-plane is:

V =

∫∫
D

(f(x, y)− g(x, y)) dA

In this case, the top surface is z = 4 − y = 4 − r sin θ in polar coordinates and the bottom
surface is z = 0. The projection of R onto the xy-plane is a disk of radius 2, described in
polar coordinates as D = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}. Thus, the volume formula is:

V =

∫ 2π

0

∫ 2

0

(4− r sin θ − 0) r dr dθ (1)

The triple integral formula for computing the volume of R is:

V =

∫∫
D

(∫ f(x,y)

g(x,y)

1 dz

)
dA

Using cylindrical coordinates we have:

V =

∫ 2π

0

∫ 2

0

∫ 4−r sin θ

0

1 r dz dr dθ (2)

1



Evaluating Equation (1) we get:

V =

∫ 2π

0

∫ 2

0

(4− r sin θ − 0) r dr dθ

=

∫ 2π

0

[
2r2 − 1

3
r3 sin θ

]2
0

dθ

=

∫ 2π

0

(
8− 8

3
sin θ

)
dθ

=

[
8θ +

8

3
cos θ

]2π
0

=

[
(8)(2π) +

8

3
cos 2π

]
−
[
(8)(0) +

8

3
cos 0

]
= 16π

Note that Equation (2) will evaluate to the same answer.

2
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Problem 16 Solution

16. Use Green’s Theorem to compute

∮

C

xy dx+y5 dy where C is the boundary of the triangle

with vertices at (0, 0), (2, 0), (2, 1), oriented counterclockwise.

Solution: Green’s Theorem states that
∮

C

−→
F • d−→s =

∫∫

D

(

∂g

∂x
−

∂f

∂y

)

dA

where D is the region enclosed by C. The integrand of the double integral is:

∂g

∂x
−

∂f

∂y
=

∂

∂x
y5 −

∂

∂y
xy

= 0− x

= −x

Thus, the value of the integral is:

∮

C

−→
F • d−→s =

∫∫

D

(

∂g

∂x
−

∂f

∂y

)

dA

=

∫∫

D

(−x) dA

= −

∫

2

0

∫ x/2

0

x dy dx

= −

∫

2

0

[

xy
]x/2

0

dx

= −

∫

2

0

1

2
x2 dx

= −

[

1

6
x3

]2

0

= −
1

6
(2)3

= −
4

3

1



Math 210, Final Exam, Practice Fall 2009

Problem 17 Solution

17. Consider the plane P containing the points A = (1, 0, 0), B = (2, 1, 1), and C = (1, 0, 2).

(a) Find a unit vector perpendicular to P .

(b) Find the intersection of P with the line perpendicular to P that contains the point
D = (1, 1, 1).

Solution:

(a) A vector perpendicular to the plane is the cross product of
−→
AB = 〈1, 1, 1〉 and

−−→
BC =

〈−1,−1, 1〉 which both lie in the plane.

−→
n =

−→
AB ×

−−→
BC

−→n =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

1 1 1
−1 −1 1

∣

∣

∣

∣

∣

∣

−→
n = ı̂

∣

∣

∣

∣

1 1
−1 1

∣

∣

∣

∣

− ̂

∣

∣

∣

∣

1 1
−1 1

∣

∣

∣

∣

+ k̂

∣

∣

∣

∣

1 1
−1 −1

∣

∣

∣

∣

−→n = ı̂ [(1)(1)− (1)(−1)]− ̂ [(1)(1)− (1)(−1)] + k̂ [(1)(−1)− (1)(−1)]
−→
n = 2 ı̂− 2 ̂+ 0 k̂
−→n = 〈2,−2, 0〉

To make −→n a unit vector we multiply by the reciprocal of its magnitude to get:

n̂ =
1

∣

∣

∣

∣

−→n
∣

∣

∣

∣

−→n

=
1
√
8
〈2,−2, 0〉

=

〈

1
√
2
,−

1
√
2
, 0

〉

(b) To find the intersection of the plane P and the line perpendicular to P through D =
(1, 1, 1), we must form an equation for the plane and a set of parametric equations
for the line. Using A as a point on the plane and the vector −→n = 〈2,−2, 0〉 which is
perpendicular to plane, we have:

2(x− 1)− 2(y − 0)− 0(z − 0) = 0

as an equation for the plane and:

x = 1 + 2t, y = 1− 2t, z = 1− 0t

1



as a set of parametric equations for the line. Cleaning up the plane equation and
substituting the parametric equations of the line for x, y, and z we get:

2(x− 1)− 2(y − 0)− 0(z − 0) = 0

2x− 2− 2y = 0

2x− 2y = 2

x− y = 1

(1 + 2t)− (1− 2t) = 1

1 + 2t− 1 + 2t = 1

4t = 1

t =
1

4

Substituting this value of t into the parametric equations for the line gives us:

x = 1 + 2t = 1 + 2

(

1

4

)

=
3

2

y = 1− 2t = 1− 2

(

1

4

)

=
1

2

z = 1

Thus, the point of intersection is

(

3

2
,
1

2
, 1

)

.

2
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Problem 18 Solution

18. Use a triple integral to compute the volume of the region below the sphere x2+y2+z2 = 4
and above the disk x2 + y2 ≤ 1 in the xy-plane.

Solution: The region of integration is shown below.

The equation for the sphere in cylindrical coordinates is r2 + z2 = 4 =⇒ z =
√
4− r2

since the region is above the xy-plane. Furthermore, the disk in the xy-plane is described
by 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π in cylindrical coordinates. Thus, the volume of the region is:

V =

∫∫∫
R

1 dV

=

∫ 2π

0

∫ 1

0

∫ √4−r2
0

1 r dz dr dθ

=

∫ 2π

0

∫ 1

0

r
√
4− r2 dr dθ

=

∫ 2π

0

[
−1

3

(
4− r2

)3/2]1
0

dθ

=

∫ 2π

0

[
−1

3

(
4− 12

)3/2
+

1

3

(
4− 02

)3/2]
dθ

=

∫ 2π

0

1

3

(
8− 3

√
3
)
dθ

=
2π

3

(
8− 3

√
3
)

1
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Problem 19 Solution

19. Consider the cone z =
√

x2 + y2 for 0 ≤ z ≤ 4.

(a) Write a parameterization Φ(u, v) for the cone, clearly indicating the domain of Φ.

(b) Find the surface area of the cone.

Solution:

(a) We begin by finding a parameterization of the paraboloid. Let x = u cos(v) and
y = u sin(v), where we define u to be nonnegative. Then,

z =
√

x2 + y2

z =
√

(u cos(v))2 + (u sin(v))2

z =
√

u2 cos2(v) + u2 sin2(v)

z =
√
u2

z = u

Thus, we have −→r (u, v) = 〈u cos(v), u sin(v), u〉. To find the domain R, we must deter-
mine the curve of intersection of the paraboloid and the plane z = 4. We do this by
plugging z = 4 into the equation for the paraboloid to get:

√

x2 + y2 = z
√

x2 + y2 = 4

x2 + y2 = 16

which describes a circle of radius 4. Thus, the domain R is the set of all points (x, y)
satisfying x2+y2 ≤ 4. Using the fact that x = u cos(v) and y = u sin(v), this inequality
becomes:

x2 + y2 ≤ 16

(u cos(v))2 + (u sin(v))2 ≤ 16

u2 ≤ 16

0 ≤ u ≤ 4

noting that, by definition, u must be nonnegative. The range of v-values is 0 ≤ v ≤ 2π.
Therefore, a parameterization of S is:

−→
r (u, v) = 〈u cos(v), u sin(v), u〉 ,

R =
{

(u, v)
∣

∣

∣
0 ≤ u ≤ 4, 0 ≤ v ≤ 2π

}

1



(b) The formula for surface area we will use is:

S =

∫∫

S

dS =

∫∫

R

∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
dA

where the function −→r (u, v) = 〈x(u, v), y(u, v), z(u, v)〉 with domain R is a parame-

terization of the surface S and the vectors
−→
t u = ∂−→r

∂u
and

−→
t v = ∂−→r

∂v
are the tangent

vectors.

The tangent vectors
−→
t u and

−→
t v are then:

−→
t u =

∂−→r

∂u
= 〈cos(v), sin(v), 1〉

−→
t v =

∂−→r

∂v
= 〈−u sin(v), u cos(v), 0〉

The cross product of these vectors is:

−→
t u ×

−→
t v =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

cos(v) sin(v) 1
−u sin(v) u cos(v) 0

∣

∣

∣

∣

∣

∣

= −u cos(v) ı̂− u sin(v) ̂+ u k̂

= 〈−u cos(v),−u sin(v), u〉

The magnitude of the cross product is:
∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
=

√

(−u cos(v))2 + (−u sin(v))2 + u2

=
√

u2 cos2(v) + u2 sin2(v) + u2

=
√
u2 + u2

= u
√
2

We can now compute the surface area.

S =

∫∫

R

∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
dA

=

∫

4

0

∫

2π

0

u
√
2 dv du

=

∫

4

0

[

uv
√
2
]2π

0

du

=

∫

4

0

2π
√
2u du

=
[

π
√
2u2

]

4

0

= 16π
√
2

2
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Problem 20 Solution

20. Calculate

∫

C

y dx + (x + z) dy + y dz along the curve given by −→
c (t) = (t, t2, t3) for

0 ≤ t ≤ 1.

Solution: We note that the vector field
−→
F is conservative. Letting f = y, g = x + z, and

h = y we have:

∂f

∂y
=

∂g

∂x
= 1

∂f

∂z
=

∂h

∂x
= 0

∂g

∂z
=

∂h

∂y
= 1

By inspection, a potential function for the vector field is:

ϕ(x, y, z) = xy + yz

Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

∫

C

−→
F • d−→s = ϕ(1, 1, 1)− ϕ(0, 0, 0)

= [(1)(1) + (1)(1)]− [(0)(0) + (0)(0)]

= 2

Note that the points (1, 1, 1) and (0, 0, 0) were obtained by plugging the endpoints of the
interval 0 ≤ t ≤ 1 into −→c (t).

1
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