
Math 210, Final Exam, Spring 2009

Problem 1 Solution

1. Let f(x, y, z) = (x2 + y)z + x cos(y2 − z).

(a) Find the gradient
−→
∇f at the point P = (0, 1, 1).

(b) Find the directional derivative D
v
f(0, 1, 1) where −→v is the unit vector from P towards

Q = (2, 3, 0).

Solution:

(a) The gradient of f is:

−→
∇f = 〈fx, fy, fz〉

=
〈

2xz + cos(y2 − z), z − 2xy sin(y2 − z), x2 + y + x sin(y2 − z)
〉

At the point P = (0, 1, 1) we have:

−→
∇f(0, 1, 1) =

〈

2(0)(1) + cos(12 − 1), 1− 2(0)(1) sin(11 − 1), 02 + 1 + (0) sin(11 − 1)
〉

= 〈1, 1, 1〉

(b) The unit vector −→v that points from P = (0, 1, 1) towards Q = (2, 3, 0) is:

−→v =

−→
PQ

∣

∣

∣

∣

∣

∣

−→
PQ

∣

∣

∣

∣

∣

∣

=
〈2, 2,−1〉

||〈2, 2,−1〉||

=
〈2, 2,−1〉

3

=

〈

2

3
,
2

3
,−

1

3

〉

Thus, the directional derivative D
v
f(0, 1, 1) is:

D
v
f(0, 1, 1) =

−→
∇f(0, 1, 1) • −→v

= 〈1, 1, 1〉 •

〈

2

3
,
2

3
,−

1

3

〉

=
2

3
+

2

3
−

1

3

= 1
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Math 210, Final Exam, Spring 2009

Problem 2 Solution

2. Consider the vector fields
−→
F = 〈yexy + y2, xexy + 2xy〉 and

−→
G = 〈xexy, yexy〉.

(a) Which of the two vector fields is conservative and which is not? (justify)

(b) Find a potential function φ for the conservative among the vector fields.

Solution:

(a) In order for the vector field
−→
H = 〈f(x, y), g(x, y)〉 to be conservative, it must be the

case that:
∂f

∂y
=

∂g

∂x

•
−→
F : Using f(x, y) = yexy + y2 and g(x, y) = xexy + 2xy we have:

∂f

∂y
= exy + xyexy + 2y,

∂g

∂x
= exy + xyexy + 2y

verifying that
−→
F is conservative.

•
−→
G: Using f(x, y) = xexy and g(x, y) = yexy we have:

∂f

∂y
= x2exy,

∂g

∂x
= y2exy

verifying that
−→
G is not conservative.

(b) If
−→
F =

−→
∇φ, then it must be the case that:

∂φ

∂x
= f(x, y) (1)

∂φ

∂y
= g(x, y) (2)

Using f(x, y) = yexy + y2 and integrating both sides of Equation (1) with respect to x

we get:

∂ϕ

∂x
= f(x, y)

∂ϕ

∂x
= yexy + y2

∫

∂ϕ

∂x
dx =

∫

(

yexy + y2
)

dx

ϕ(x, y) = exy + xy2 + h(y) (3)
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We obtain the function h(y) using Equation (2). Using g(x, y) = xexy + 2xy we get
the equation:

∂ϕ

∂y
= g(x, y)

∂ϕ

∂y
= xexy + 2xy

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying
we get:

∂

∂y

(

exy + xy2 + h(y)
)

= xexy + 2xy

xexy + 2xy + h′(y) = xexy + 2xy

h′(y) = 0

which gives us h(y) = C. Letting C = 0, we find that a potential function for
−→
F is:

φ(x, y) = exy + xy2
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Math 210, Final Exam, Spring 2009

Problem 3 Solution

3. Use Green’s theorem to compute
∮

C

xy2 dx+ (x− y) dy

where C traces the triangle with vertices (0, 0), (1, 0), (0, 2) traversed in this order.

Solution: Green’s Theorem states that
∮

C

−→
F • d−→s =

∫∫

D

(

∂g

∂x
−

∂f

∂y

)

dA

where D is the region enclosed by C. The integrand of the double integral is:

∂g

∂x
−

∂f

∂y
=

∂

∂x
(x− y)−

∂

∂y
xy2

= 1− 2xy

Thus, the value of the integral is:

∮

C

−→
F • d−→s =

∫∫

D

(

∂g

∂x
−

∂f

∂y

)

dA

=

∫∫

D

(1− 2xy) dA

=

∫

1

0

∫

−2x+2

0

(1− 2xy) dy dx

=

∫

1

0

[

y − xy2
]

−2x+2

0

dx

=

∫

1

0

[

(−2x+ 2)− x(−2x+ 2)2
]

dx

=

∫

1

0

(

−2x+ 2− 4x3 + 8x2 − 4x
)

dx

=

∫

1

0

(

−4x3 + 8x2 − 6x+ 2
)

dx

=

[

−x4 +
8

3
x3 − 3x2 + 2x

]1

0

= −1 +
8

3
− 3 + 2

=
2

3
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Math 210, Final Exam, Spring 2009

Problem 4 Solution

4. Let −→u = 〈1, 2, 3〉 and −→v = 〈2,−1, 0〉.

(a) What can be said about the angle between −→
u and −→

v : acute/obtuse/right?

(b) Find an equation for the plane through (1, 1, 1) containing −→u and −→v .

Solution:

(a) The angle is determined by the dot product of −→u and −→v :

−→u • −→v = 〈1, 2, 3〉 • 〈2,−1, 0〉 = (1)(2) + (2)(−1) + (3)(0) = 0

Since the dot product is zero, the vectors are perpendicular. Thus, the angle between
the two vectors is a right angle.

(b) A vector perpendicular to the plane is the cross product of −→u and −→v which both lie
in the plane.

−→
n = −→

u ×−→
v

−→n =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

1 2 3
2 −1 0

∣

∣

∣

∣

∣

∣

−→
n = ı̂

∣

∣

∣

∣

2 3
−1 0

∣

∣

∣

∣

− ̂

∣

∣

∣

∣

1 3
2 0

∣

∣

∣

∣

+ k̂

∣

∣

∣

∣

1 2
2 −1

∣

∣

∣

∣

−→n = ı̂ [(2)(0)− (3)(−1)]− ̂ [(1)(0)− (3)(2)] + k̂ [(1)(−1)− (2)(2)]
−→
n = 3 ı̂+ 6 ̂− 5 k̂
−→n = 〈3, 6,−5〉

Using (1, 1, 1) as a point on the plane, we have:

3(x− 1) + 6(y − 1)− 5(z − 1) = 0
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Math 210, Final Exam, Spring 2009

Problem 5 Solution

5. Find the equation of the tangent plane to the level surface exz + (x+ y)3 − yz = 3 at the
point (0, 2, 3).

Solution: We use the following formula for the equation for the tangent plane:

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0

because the equation for the surface is given in implicit form. Note that −→n =
−→
∇f(a, b, c) =

〈fx(a, b, c), fy(a, b, c), fz(a, b, c)〉 is a vector normal to the surface f(x, y, z) = C and, thus,
to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of f(x, y, z) = exz + (x+ y)3 − yz are:

fx = zexz + 3(x+ y)2

fy = 3(x+ y)2 − z

fz = xexz − y

Evaluating these derivatives at (0, 2, 3) we get:

fx(0, 2, 3) = 3e(0)(3) + 3(0 + 2)2 = 15

fy(0, 2, 3) = 3(0 + 2)2 − 3 = 9

fz(0, 2, 3) = (0)e(0)(3) − 2 = −2

Thus, the tangent plane equation is:

15(x− 0) + 9(y − 2)− 2(z − 3) = 0

1



Math 210, Final Exam, Spring 2009

Problem 6 Solution

6. Use the method of Lagrange multipliers to find points where f(x, y) = x+ 6y − 7 attains
its maximum and minimum on the ellipse x2 + 3y2 = 13.

Solution: We find the minimum and maximum using the method of Lagrange Multipli-

ers. First, we recognize that x2 + 3y2 = 13 is compact which guarantees the existence of
absolute extrema of f . Then, let g(x, y) = x2 + 3y2 = 13. We look for solutions to the
following system of equations:

fx = λgx, fy = λgy, g(x, y) = 13

which, when applied to our functions f and g, give us:

1 = λ (2x) (1)

6 = λ (6y) (2)

x2 + 3y2 = 13 (3)

We begin by noting that Equation (1) gives us:

1 = λ(2x)

x =
1

2λ

and Equation (2) gives us:

6 = λ(6y)

y =
1

λ

Plugging the above expressions for x and y into Equation (3) and solving for λ we get:

x2 + 3y2 = 13
(

1

2λ

)2

+ 3

(

1

λ

)2

= 13

1

4λ2
+

3

λ2
= 13

1

4λ2
+

12

4λ2
= 13

1 + 12 = 13(4λ2)

52λ2 = 13

λ2 =
1

4

λ = ±
1

2

1



When λ = 1

2
we get x = 1 and y = 2. When λ = −1

2
we get x = −1 and y = −2. Thus, the

points of interest are (1, 2) and (−1,−2).

We now evaluate f(x, y) = x+ 6y − 7 at each point of interest.

f(1, 2) = 6

f(−1,−2) = −20

From the values above we observe that f attains an absolute maximum of 6 and an absolute
minimum of −20.
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Math 210, Final Exam, Spring 2009

Problem 7 Solution

7. Find all critical values of f(x, y) = x3 + 2xy − 2y2 − 10x and classify them into local
maxima, local minima, and saddle points.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = x3 + 2xy − 2y2 − 10x are fx = 3x2 + 2y − 10 and
fy = 2x − 4y. These derivatives exist for all (x, y) in R

2. Thus, the critical points of f are
the solutions to the system of equations:

fx = 3x2 + 2y − 10 = 0 (1)

fy = 2x− 4y = 0 (2)

Solving Equation (2) for x we get:
x = 2y (3)

Substituting this into Equation (1) and solving for y we get:

3x2 + 2y − 10 = 0

3(2y)2 + 2y − 10 = 0

12y2 + 2y − 10 = 0

6y2 + y − 5 = 0

(6y − 5)(y + 1) = 0

⇐⇒ y =
5

6
or y = −1

We find the corresponding x-values using Equation (3): x = 2y.

• If y = 5

6
, then x = 5

3
.

• If y = −1, then x = −2.

Thus, the critical points are (5
3
, 5

6
) and (−2,−1) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = 6x, fyy = −4, fxy = 2

1



The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (6x)(−4)− (2)2

D(x, y) = −24x− 4

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.

(a, b) D(a, b) fxx(a, b) Conclusion

(5
3
, 5

6
) −44 10 Saddle Point

(−2,−1) 44 −12 Local Maximum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
maximum of f if D(a, b) > 0 and fxx(a, b) < 0.
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Math 210, Final Exam, Spring 2009

Problem 8 Solution

8. Let C be the curve parameterized by −→c (t) = 〈3t, 2 cos(t), 2 sin(t)〉 for 0 ≤ t ≤ 2π.

(a) Find −→
c ′(t) and −→

c ′′(t).

(b) Find the length of the curve.

Solution:

(a) The first two derivatives of −→c (t) are:

−→c ′(t) = 〈3,−2 sin(t), 2 cos(t)〉
−→
c ′′(t) = 〈0,−2 cos(t),−2 sin(t)〉

(b) The length of the curve is:

L =

∫

2π

0

∣

∣

∣

∣

−→r ′(t)
∣

∣

∣

∣ dt

=

∫

2π

0

√

32 + (−2 sin(t))2 + (2 cos(t))2 dt

=

∫

2π

0

√

9 + 4 sin2(t) + 4 cos2(t) dt

=

∫

2π

0

√
9 + 4 dt

=

∫

2π

0

√
13 dt

= 2π
√
13

1
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Problem 9 Solution

9. Let H be the upper semi-ball x2 + y2 + z2 ≤ 4, z ≥ 0. Compute∫∫∫
H

z dV

Solution: The region of integration is shown below.

The inequality describing the ball in cylindrical coordinates is r2+z2 ≤ 4 =⇒ z ≥
√
4− r2

since the region is above the xy-plane. The projection of H onto the xy-plane is the disk
0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π. Thus, the value of the integral is:

V =

∫∫∫
H

z dV

=

∫ 2π

0

∫ 2

0

∫ √4−r2
0

z r dz dr dθ

=

∫ 2π

0

∫ 2

0

r

[
1

2
z2
]√4−r2
0

dr dθ

=

∫ 2π

0

∫ 2

0

1

2
r
(
4− r2

)
dr dθ

=
1

2

∫ 2π

0

∫ 2

0

(
4r − r3

)
dr dθ

=
1

2

∫ 2π

0

[
2r2 − 1

4
r4
]2
0

dθ

=
1

2

∫ 2π

0

(
2(2)2 − 1

4
(2)4

)
dθ

= 2

∫ 2π

0

dθ

= 4π

1
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Problem 10 Solution

10. Change the order of integration and evaluate the iterated integral:

∫

1

0

∫

1

y1/3

(

xy + sin
(

x4
))

dx dy.

Solution:

x

y

D

y = x3

0

1

0 1

From the figure we see that the region D is bounded above by y = x3 and below by y = 0.
The projection of D onto the x-axis is the interval 0 ≤ x ≤ 1. Using the order of integration
dy dx we have:

1



∫

1

0

∫

1

y1/3

(

xy + sin
(

x4
))

dx dy =

∫

1

0

∫

x
3

0

(

xy + sin
(

x4
))

dy dx

=

∫

1

0

[

1

2
xy2 + y sin

(

x4
)

]

x
3

0

dx

=

∫

1

0

[

1

2
x
(

x3
)2

+ x3 sin
(

x4
)

]

dx

=

∫

1

0

[

1

2
x7 + x3 sin

(

x4
)

]

dx

=

[

1

16
x8 −

1

4
cos

(

x4
)

]1

0

=

[

1

16
(1)8 −

1

4
cos

(

14
)

]

−

[

1

16
(0)8 −

1

4
cos

(

04
)

]

=
1

16
−

1

4
cos(1) +

1

4

=
5

16
−

1

4
cos(1)

2


	m210_fe_S2009_Problem1
	m210_fe_S2009_Problem2
	m210_fe_S2009_Problem3
	m210_fe_S2009_Problem4
	m210_fe_S2009_Problem5
	m210_fe_S2009_Problem6
	m210_fe_S2009_Problem7
	m210_fe_S2009_Problem8
	m210_fe_S2009_Problem9
	m210_fe_S2009_Problem10

