
Math 210, Final Exam, Spring 2010

Problem 1 Solution

1. The position vector
−→r (t) = t3 ı̂+ 18t ̂+ 3t−1 k̂, 1 ≤ t ≤ 2

describes the motion of a particle.

(a) Find the position at time t = 2.

(b) Find the velocity at time t = 2.

(c) Find the acceleration at time t = 2.

(d) Find the length of the path traveled by the particle during the time 1 ≤ t ≤ 2.

Solution:

(a) The position at time t = 2 is:

−→r (2) = 23 ı̂+ 18(2) ̂+ 3(2)−1 k̂ = 8 ı̂+ 36 ̂+
3

2
k̂

(b) The velocity is the derivative of position.
−→v (t) = −→r ′(t) = 3t2 ı̂+ 18 ̂− 3t−2 k̂

Therefore, the velocity at time t = 2 is:

−→
v (2) = 3(2)2 ı̂ + 18 ̂− 3(2)−2 k̂ = 12 ı̂+ 18 ̂−

3

4
k̂

(c) The acceleration is the derivative of velocity.
−→a (t) = −→v ′(t) = 6t ı̂+ 6t−3 k̂

Therefore, the acceleration at time t = 2 is:

−→a (2) = 6(2) ı̂+ 6(2)−3 k̂ = 12 ı̂+
3

4
k̂

(d) The length of the path traveled by the particle is:

L =

∫

2

1

∣

∣

∣

∣

−→r ′(t)
∣

∣

∣

∣ dt

=

∫

2

1

√

(3t2)2 + 182 + (−3t−2)2 dt

=

∫

2

1

√
9t4 + 324 + 9t−4 dt

It turns out that a simple antiderivative of the integrand does not exist. There was
a typo in the original problem. The ̂-component of −→r (t) should have been

√
18t not

18t.
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Math 210, Final Exam, Spring 2010

Problem 2 Solution

2. (a) For f(x, y) = e(x+1)y find the derivatives:

∂f

∂x
,

∂f

∂y
,

∂2f

∂x2
,

∂2f

∂x∂y
,

∂2f

∂y2

(b) Find the gradient of f at the point (2, 3).

Solution:

(a) The first partial derivatives of f(x, y) are

∂f

∂x
= ye(x+1)y

∂f

∂y
= (x+ 1)e(x+1)y

The second derivatives are:

∂2f

∂x∂x
=

∂

∂x

(

ye(x+1)y
)

= y2e(x+1)y

∂2f

∂y∂y
=

∂

∂y

(

(x+ 1)e(x+1)y
)

= (x+ 1)2e(x+1)y

∂2f

∂x∂y
=

∂

∂x

(

(x+ 1)e(x+1)y
)

= e(x+1)y + y(x+ 1)e(x+1)y

(b) The gradient of f at (2, 3) is:

−→
∇f(2, 3) = 〈fx(2, 3), fy(2, 3)〉

=
〈

3e(2+1)3, (2 + 1)e(2+1)3
〉

=
〈

3e9, 3e9
〉
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Math 210, Final Exam, Spring 2010

Problem 3 Solution

3. (a) Find a potential function for the vector field

−→
F (x, y, z) = (1− z) ı̂ + y ̂− x k̂

(b) Integrate
−→
F over the straight line from (1, 0, 1) to (0, 1, 2).

[You may calculate this directly or you may use a potential function.]

Solution:

(a) By inspection, a potential function for the vector field
−→
F is:

ϕ(x, y, z) = x− xz +
1

2
y2

To verify, we calculate the gradient of ϕ:

−→
∇ϕ = ϕx ı̂+ ϕy ̂ + ϕz k̂

= (1− z) ı̂ + y ̂− x k̂

=
−→
F

(b) Using the Fundamental Theorem of Line Integrals, the value of the line integral is:

∫

C

−→
F • d−→s = ϕ(0, 1, 2)− ϕ(1, 0, 1)

=

[

0− (0)(2) +
1

2
(1)2

]

−
[

1− (1)(1) +
1

2
(0)2

]

=
1

2
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Problem 4 Solution

4. (a) Find the critical points of the function f(x, y) = x3 − 3x− y2.

(b) Use the second derivative test to classify each critical point as a local maximum, local
minimum, or saddle.

Solution:

(a) By definition, an interior point (a, b) in the domain of f is a critical point of f if
either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = x3−3x−y2 are fx = 3x2−3 and fy = −2y. These
derivatives exist for all (x, y) in R

2. Thus, the critical points of f are the solutions to
the system of equations:

fx = 3x2 − 3 = 0 (1)

fy = −2y = 0 (2)

The two solutions to Equation (1) are x = ±1. The only solution to Equation (2) is

y = 0. Thus, the critical points are (1, 0) and (−1, 0) .

(b) We now use the Second Derivative Test to classify the critical points. The second
derivatives of f are:

fxx = 6x, fyy = −2, fxy = 0

The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (6x)(−2)− (0)2

D(x, y) = −12x

The values ofD(x, y) at the critical points and the conclusions of the Second Derivative
Test are shown in the table below.

(a, b) D(a, b) fxx(a, b) Conclusion

(1, 0) −12 6 Saddle Point

(−1, 0) 12 −6 Local Maximum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
maximum of f if D(a, b) > 0 and fxx(a, b) < 0.
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Problem 5 Solution

5. Find the maximum and minimum of the function f(x, y) = (x − 1)2 + y2 subject to the
constraint:

g(x, y) =
(x

3

)2

+
(y

2

)2

= 1

Solution: We find the minimum and maximum using the method of Lagrange Multipli-

ers. First, we recognize that (x
3
)2 + (y

2
)2 = 1 is compact which guarantees the existence of

absolute extrema of f . We look for solutions to the following system of equations:

fx = λgx, fy = λgy, g(x, y) = 1

which, when applied to our functions f and g, give us:

2(x− 1) = λ

(

2x

9

)

(1)

2y = λ
(y

2

)

(2)
(x

3

)2

+
(y

2

)2

= 1 (3)

From Equation (2) we observe that:

2y = λ
(y

2

)

4y = λy

4y − λy = 0

y(4− λ) = 0

y = 0, or λ = 4

If y = 0 then Equation (3) gives us:

(x

3

)2

+

(

0

2

)2

= 1

x2

9
= 1

x2 = 9

x = ±3
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If λ = 4 then Equation (1) gives us:

2(x− 1) = λ

(

2x

9

)

2(x− 1) = 4

(

2x

9

)

x− 1 =
4x

9
5x

9
= 1

x =
9

5

which, when plugged into Equation (3), gives us:

(x

3

)2

+
(y

2

)2

= 1
(

9/5

3

)2

+
y2

4
= 1

9

25
+

y2

4
= 1

y2

4
=

16

25

y2 =
64

25

y = ±
8

5

Thus, the points of interest are (3, 0), (−3, 0), (9
5
, 8

5
), and (9

5
,−8

5
).

We now evaluate f(x, y) = (x− 1)2 + y2 at each point of interest.

f(3, 0) = (3− 1)2 + 02 = 4

f(−3, 0) = (−3 − 1)2 + 02 = 16

f(9
5
, 8

5
) = (9

5
− 1)2 + (8

5
)2 = 16

5

f(9
5
,−8

5
) = (9

5
− 1)2 + (−8

5
)2 = 16

5

From the values above we observe that f attains an absolute maximum of 16 and an absolute
minimum of 16

5
.
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Problem 6 Solution

6. Compute the integral
∫∫

R

xy dx dy

over the quarter circle R = {(x, y) : 0 ≤ x, 0 ≤ y, x2 + y2 ≤ 1}. [You may use polar or
Cartesian coordinates.]

Solution:

x

y

D

x =
√

1− y2

0

1

0 1

From the figure we see that the region D is bounded on the left by x = 0 and on the right
by x =

√

1− y2. The projection of D onto the y-axis is the interval 0 ≤ y ≤ 1. Using the
order of integration dx dy we have:

1



∫∫

R

xy dx dy =

∫

1

0

∫

√
1−y2

0

xy dx dy

=

∫

1

0

[

1

2
x2y

]

√
1−y2

0

dy

=

∫

1

0

1

2

(

√

1− y2
)2

y dy

=
1

2

∫

1

0

(

1− y2
)

y dy

=
1

2

∫

1

0

(

y − y3
)

dy

=
1

2

[

1

2
y2 −

1

4
y4
]1

0

=
1

2

[

1

2
(1)2 −

1

4
(1)4

]

=
1

8
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Problem 7 Solution

7. Compute the integral ∫∫∫
R

1 dx dy dz

over the tetrahedron

R = {(x, y, z) : 0 ≤ x, 0 ≤ y, 0 ≤ z, x/3 + y/5 + z/7 ≤ 1}.

Solution: The region of integration is shown below.

1



The volume of the tetrahedron is

V =

∫∫∫
R

1 dx dy dz

=

∫ 3

0

∫ 5−5x/3

0

∫ 7−7x/3−7y/5

0

1 dz dy dx

=

∫ 3

0

∫ 5−5x/3

0

(
7− 7

3
x− 7

5
y

)
dy dx

=

∫ 3

0

[
7y − 7

3
xy − 7

10
y2
]5−5x/3

0

dx

=

∫ 3

0

[
7

(
5− 5

3
x

)
− 7

3
x

(
5− 5

3
x

)
− 7

10

(
5− 5

3
x

)2
]
dx

=

∫ 3

0

(
35− 35

3
x− 35

3
x+

35

9
x2 − 35

2
+

35

3
x+

35

18
x2

)
dx

=

∫ 3

0

(
35

2
− 35

3
x+

35

18
x2

)
dx

=

[
35

2
x− 35

6
x2 +

35

54
x3

]3
0

=
35

2
(3)− 35

6
(3)2 +

35

54
(3)3

=
35

2

2
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Problem 8 Solution

8. Find an equation for the tangent plane to the surface defined by xy2 + 2z2 = 12 at the
point (1, 2, 2).

Solution: We use the following formula for the equation for the tangent plane:

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0

because the equation for the surface is given in implicit form. Note that −→n =
−→
∇f(a, b, c) =

〈fx(a, b, c), fy(a, b, c), fz(a, b, c)〉 is a vector normal to the surface f(x, y, z) = C and, thus,
to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of f(x, y, z) = xy2 + 2z2 are:

fx = y2

fy = 2xy

fz = 4z

Evaluating these derivatives at (1, 2, 2) we get:

fx(1, 2, 2) = 22 = 4

fy(1, 2, 2) = 2(1)(2) = 4

fz(1, 2, 2) = 4(2) = 8

Thus, the tangent plane equation is:

4(x− 1) + 4(y − 2) + 8(z − 2) = 0

1
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Problem 9 Solution

9. Compute the integral
∮

C

(3x2 + y) dx+ (x2 + y3) dy

over the counterclockwise boundary of the rectangle

R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}

using Green’s theorem or otherwise.

Solution: Green’s Theorem states that
∮

C

−→
F • d−→s =

∫∫

R

(

∂g

∂x
−

∂f

∂y

)

dA

where R is the region enclosed by C. The integrand of the double integral is:

∂g

∂x
−

∂f

∂y
=

∂

∂x

(

x2 + y3
)

−
∂

∂y

(

3x2 + y
)

= 2x− 1

Thus, the value of the integral is:

∮

C

−→
F • d−→s =

∫∫

R

(

∂g

∂x
−

∂f

∂y

)

dA

=

∫∫

R

(2x− 1) dA

=

∫

3

0

∫

2

0

(2x− 1) dy dx

=

∫

3

0

[

2xy − y
]2

0

dx

=

∫

3

0

(

4x− 2
)

dx

=
[

2x2 − 2x
]3

0

= 2(3)2 − 2(3)

= 12

1
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