Visualizing PML

David Dumas
 University of Illinois at Chicago

The PML Visualization Project

dumas.io/PML

Joint work with François Guéritaud (Univ. Lille)

I will also demonstrate 3D graphics software developed by UIC undergraduate researchers Galen Ballew and Alexander Gilbert.

What is PML?

The space of Projective Measured Laminations

- A completion of the set \mathcal{C} of simple closed curves on S

■ Homeomorphic to \mathbf{S}^{N-1}, where $N=\operatorname{dim}(\mathcal{T})$

- Piecewise linear structure, PL action of $\operatorname{Mod}(S)$

$$
\{0,0\}
$$

Linear analogy

The inclusions

$$
\begin{array}{ll}
\mathcal{C} \hookrightarrow \mathrm{ML} & \text { (discrete image) } \\
\mathcal{C} \hookrightarrow \mathrm{PML} & \text { (dense image) }
\end{array}
$$

are analogous to

$$
\begin{array}{rlrl}
\operatorname{primitive}\left(\mathbf{Z}^{N}\right) & \hookrightarrow \mathbf{R}^{N} & & \text { (discrete image) } \\
\text { primitive }\left(\mathbf{Z}^{N}\right) \hookrightarrow \mathbf{S}^{N-1} & & \text { (dense image) }
\end{array}
$$

Linear visualization

Not so fast

Can we visualize PML similarly?
Several issues:

- Need to choose an identification ML $\simeq \mathbf{R}^{N}$.
(Train tracks? Dehn-Thurston? Something else?)
- The "small" values of $N=6 g-6+2 n$ are

$$
\begin{aligned}
& N=2 \text { for } S_{0,4} \text { and } S_{1,1} \\
& N=4 \text { for } S_{0,5} \text { and } S_{1,2}
\end{aligned}
$$

Stereographic projection

Stereographic projection

Stereographic projection

Stereographic projection

Stereographic projection

\bullet
$\ldots \ldots . . \bullet \cdot \bullet$ ••••...

Stereographic projection

Thurston's embedding

Fix $X \in \mathcal{T}(S)$, the base hyperbolic structure.

$$
\begin{aligned}
\mathrm{PML} & \rightarrow T_{X}^{*} \mathcal{T}(S) \\
{[\lambda] } & \mapsto d_{X} \log \left(\ell_{\lambda}\right)
\end{aligned}
$$

Curve $\alpha \in \mathcal{C}$ maps to a vector representing the sensitivity of its geodesic length to deformations of the hyperbolic structure X.

Thurston's drawing of PML

From "Minimal stretch maps between hyperbolic surfaces", preprint, 1986.

Punctured torus

Punctured torus

Punctured torus

Punctured torus

Five-punctured sphere

$S_{0,5}$

pmls05-001

Earthquake basis

\mathbf{R}^{2}
\oplus

\mathbf{R}^{2}

Rotating the pole

pmls05-010

Closer?

pmls05-020

Clifford flow

pmls05-030

Back to the linear analogy

It is "easy" to imagine \mathbf{Z}^{4}.
What about its stereographic projection?
And can this inform our understanding of the $\operatorname{PML}\left(S_{0,5}\right)$ images?

Rings

Rings

Rings

pmls05-071

Contact

David Dumas david@dumas.io

