Visualizing PML

David Dumas University of Illinois at Chicago

The PML Visualization Project

dumas.io/PML

Joint work with François Guéritaud (Univ. Lille)

I will also demonstrate 3D graphics software developed by UIC undergraduate researchers Galen Ballew and Alexander Gilbert.

What is PML?

The space of Projective Measured Laminations

- A completion of the set C of simple closed curves on S
- Homeomorphic to \mathbf{S}^{N-1} , where $N = \dim(\mathfrak{T})$
- Piecewise linear structure, PL action of Mod(S)

The inclusions

 $\label{eq:mage} \begin{array}{ll} {\mathfrak C} \hookrightarrow {\sf ML} & ({\sf discrete\ image}) \\ {\mathfrak C} \hookrightarrow {\sf PML} & ({\sf dense\ image}) \end{array}$

are analogous to

 $\begin{array}{ll} \text{primitive}(\mathbf{Z}^{N}) \hookrightarrow \mathbf{R}^{N} & (\text{discrete image}) \\ \text{primitive}(\mathbf{Z}^{N}) \hookrightarrow \mathbf{S}^{N-1} & (\text{dense image}) \end{array}$

- • . • . • • . • • • • • . . • •

-
-
-
- · ·
 -
 -
 -

•

.

· · · · · · · ·

.

•

Not so fast

Can we visualize PML similarly?

Several issues:

- Need to choose an identification ML ~ R^N. (Train tracks? Dehn-Thurston? Something else?)
- The "small" values of N = 6g 6 + 2n are
 N=2 for S_{0,4} and S_{1,1}
 N=4 for S_{0,5} and S_{1,2}

Thurston's embedding

Fix $X \in \mathcal{T}(S)$, the base hyperbolic structure.

$$\mathsf{PML} o \mathcal{T}_X^*\mathfrak{T}(S) \ [\lambda] \mapsto d_X \log(\ell_\lambda)$$

Curve $\alpha \in \mathbb{C}$ maps to a vector representing the sensitivity of its geodesic length to deformations of the hyperbolic structure *X*.

Thurston's drawing of PML

From "Minimal stretch maps between hyperbolic surfaces", preprint, 1986.

 $\bullet \quad \bullet$

• • • • • • • •

Five-punctured sphere

S_{0,5}

pmls05-001

Earthquake basis

Rotating the pole

pmls05-010

Closer?

pmls05-020

Clifford flow

pmls05-030

- It is "easy" to imagine **Z**⁴.
- What about its stereographic projection?
- And can this inform our understanding of the $PML(S_{0,5})$ images?

z4-011

pmls05-071

David Dumas david@dumas.io