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Abstract— Spectrum management is used to improve perfor-
mance in multiuser communication system, e.g., cognitive radio
or femtocell networks, where multiuser interference can lead
to throughput degradation. We study the nonconvex NP-hard
problem of maximizing a weighted sum rate in a multiuser
Gaussian interference channel by power control subject to affine
power constraints. By exploiting the fact that this problem can
be restated as an optimization problem with constraints that
are spectral radii of specially crafted nonnegative matrices,
we derive necessary and sufficient optimality conditions and
propose a global optimization algorithm based on the outer
approximation method. Central to our techniques is the use of
nonnegative matrix theory, e.g., nonnegative matrix inequalities
and the Perron-Frobenius theorem. We also study an inner
approximation method and a relaxation method that give insights
to special cases. Our techniques and algorithm can be extended to
a multiple carrier system model, e.g., OFDM system or receivers
with interference suppression capability.

Index Terms— Optimization, nonnegative matrix theory, dy-
namic spectrum access, power control, cognitive wireless net-
works.

I. I NTRODUCTION

When multiple users transmit simultaneously over the same
frequency band of the wireless medium, the data rates are
affected by multiuser interference. For example, interference
is a major source of performance impairment in the Code
Division Multiple Access (CDMA) cellular network (see [1],
[2]) and the cognitive wireless networks (see [3]–[6]). Howto
optimize performance in the presence of interference is thus
an important issue. Power control is often used to improve
the spectral utilization and the system performance, e.g.,
maximizing the total data rates of all users [2], [3], [7]–[9].
We refer to power control techniques that adapt the spectrum
allocation to maximize performance in a multiuser system
as Dynamic Spectrum Management (DSM). There are many
DSM algorithms proposed to maximize the total throughput
of all users in the literature [1]–[4], [10], [11].1

Cognitive radio has recently emerged as a new technology
that can substantially increase spectrum utilization efficiency
by allowing unlicensed (secondary) users to share a com-
mon spectrum with licensed (primary) users so long as the
interference caused is maintained below a certain prescribed
level known asinterference temperature [4], [12], [13]. In
other words, regulatory constraints can be translated into
power constraints to influence the performance of all users.A

1Related work in the wireline setting can be found in a DigitalSubscriber
Line (DSL) system, where users (twisted-pairs) in a cable binder share a
common spectrum and interfere with one another [10], [11].

practical approach to obtain achievable rates is to assume and
treat multiuser interference as additive Gaussian noise. This
assumption is relevant to cognitive wireless networks, where
low-complexity coordination is desired for a decentralized
implementation, e.g., when joint decoding of primary and
secondary users is not possible.

Maximizing the weighted sum rate in a multiuser Gaussian
channel where interference is treated as noise is a nonconvex
problem [1], [4], [10], [11]. It is shown to be NP-hard in [10].
The algorithms for this problem in the literature are mostly
based on game theory, e.g., [4], [13], or the Lagrange dual
decomposition [11], [14], [15]. Due to the duality gap, dual
algorithms cannot guarantee finding a global optimal solution.
Moreover, finding a feasible primal solution for a given
feasible dual solution, or vice versa, is difficult. Prohibitive
as it seems, several recent advances have been made by
exploiting the problem structure. The authors in [10] show
that the duality gap is zero when the number of frequency
tones is asymptotically large. Computational algorithms based
on the difference of convex functions are proposed in [9]. Fast
distributed algorithms can be found in [1], [16]–[18] that solve
the problem suboptimally but with performance guarantees
(and optimally under special cases). The authors in [19] use
nonnegative matrix theory to analyze the problem and give a
branch-and-bound algorithm.

This paper is organized as follows. We introduce the system
model in Section II. In Section III, we state the weighted
sum rate maximization problem and present an equivalent
reformulation problem. In Section IV, a further preprocessing
step converts the optimization variable from power to Signal-
to-Interference Ratio (SIR) in logarithmic scale.2 We then char-
acterize the global optimality conditions, and propose a global
optimization algorithm in a single-carrier model. In Section
V, approximation and relaxation techniques and their special
cases are presented. In Section VI, numerical simulations show
that the global optimization algorithm is computationallyfast
for small-to-medium problem size. In Section VII, we illustrate
how our techniques can be extended to a multiple carrier
model and to include multiuser interference suppression. We
conclude the paper in Section VIII. All proofs are found in
the appendix.

The following notation is used. Boldface uppercase letters
denote matrices, boldface lowercase letters denote columnvec-
tors, italics denote scalars, andu � v denotes componentwise

2Measurements of power andSIR variable in wireless networks are typi-
cally expressed in decibels (dB), i.e., base-10 logarithmic scale.
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inequality between vectorsu andv. We also let(By)l denote
the lth element ofBy. Let x Æ y denote the Schur product
of the vectorsx andy, i.e., x Æ y = [x1y1; : : : ; xLyL℄> . We
write B � F if Bij � Fij for all i; j. The Perron-Frobenius
eigenvalue of a nonnegative matrixF is denoted as�(F), and
the Perron right and left eigenvector ofF associated with�(F)
are denoted byx(F) � 0 andy(F) � 0 (or, simplyx andy,
when the context is clear) respectively. Recall that the Perron-
Frobenius eigenvalue ofF is the eigenvalue with the largest
absolute value. Assume thatF is a nonnegative irreducible
matrix. Then�(F) is simple and positive, andx(F);y(F) > 0
[20]. We will assume the normalization:x(F) Æ y(F) is a
probability vector. The super-script(�)> denotes transpose.
We denoteel as thelth unit coordinate vector andI as the
identity matrix. For any vector~ = (~1; : : : ; ~L)> 2 RL lete~ = (e~1 ; : : : ; e~L)>. Let P : X ! Y be a mapping from
the spaceX to the spaceY . For a subsetZ � X , we denote
by P (Z) the image of the setZ.

II. SYSTEM MODEL

Consider a multiuser communication system withL users
(logical transmitter/receiver pairs) sharing a common fre-
quency. Each user employs a single-user decoder, i.e., treating
interference as additive Gaussian noise, and has perfect chan-
nel state information at the receiver. We assume that fading
occurs sufficiently slowly in the channel, i.e., flat-fading, so
that the channel can be considered essentially fixed during
transmission. Our system withL users can be modeled by
a Gaussian interference channel having the baseband signal
model: yl = hllxl +Xj 6=l hljxj + zl; (1)

where yl 2 C 1�1 is the received signal of thelth user,hlj 2 C 1�1 is the channel coefficient between the transmitter
of the jth user and the receiver of thelth user,x 2 CN�1 is
the transmitted (information carrying) signal vector, andzl’s
are the i.i.d. additive complex Gaussian noise coefficient with
variancenl=2 on each of its real and imaginary components.
The first term on the right-hand side of (1) represents the de-
sired signal, whereas the second term represents the interfering
signals from other users. At each transmitter, the signal is
constrained by an average power constraint, i.e.,E [jxl j2℄ = pl,
which we assume to be upper bounded by�pl for all l.

The vector(p1; : : : ; pL)> is the transmit power vector and
is the optimization variable of interest in this paper. LetG =[Glj ℄Ll;j=1 > 0L�L represents the channel gain, whereGlj =jhlj j2 is the channel gain from thejth transmitter to thelth
receiver, andn = (n1; : : : ; nL)> > 0, wherenl is the noise
power at thelth receiver. Figure 1(a) shows the system model
with the problem parameters for the 2-user case.

Next, we define a nonnegative matrixF with entries:Flj = � 0; if l = jGljGll ; if l 6= j (2)

and v = � n1G11 ; n2G22 ; : : : ; nLGLL�> : (3)

Moreover, we assume thatF is irreducible, i.e., each link has
at least an interferer.

Assuming a linear matched-filter receiver, theSIR for thelth receiver (as a function of powers) is given by:l(p) := plPj 6=l Fljpj + vl ; l = 1; : : : ; L: (4)

Note that (4) as a mappingp 7! (p) for p =(p1; : : : ; pL)> � 0 can be compactly written aspl=((Fp)l +vl). Let us denote the vector(p) = (1(p); : : : ; L(p))>.
Now, (4) is the transformation from power toSIR. We next

give the transformation fromSIR to power, which is first
obtained in [21] (also given in [2], Chap. 2).

Lemma 1: Assume that(p) is defined by (4). Then�(diag((p))F) < 1. Hence, for = (p),p = P () := (I� diag()F)�1 diag()v: (5)
Vice versa, if is in the set� := f � 0; �(diag()F) < 1g; (6)
thenp given in (5) is nonnegative. Furthermore,(P (p)) = .
That is, : RL+ ! �, andP : �! RL+ are inverse mappings.

Let � denote the vector(�p1=v1; : : : ; �pL=vL)> . Then, we have � � as an implicit constraint.
In wireless networks, transmit power constraints model

resource budget constraints or may be imposed by radio
regulatory body. We assume that all users have individual
power constraints (see (8) in the next section). In addition,
unlike traditional wireless networks, a cognitive networkal-
lows secondary users to transmit provided that the performance
degradation caused to the primary user is null or tolerable [4].
We assume that additional affine constraints can be imposed
on the transmit power of all users as interference temperature
constraints. These constraints are chosen by the primary users
based on their quality of service requirements [4], [13].
We first consider the problem under individual power con-
straints, and then incorporate interference temperature affine
constraints in Section IV-B.

III. T HE SUM RATE MAXIMIZATION PROBLEM

Under the assumption of single-user decoding, we further
assume that each user employs Gaussian code. In practice,
Gaussian codes can be replaced by finite-order signal con-
stellations such as quadrature-amplitude modulation (QAM)
or other practical coding schemes. Assuming a fixed bit error
rate (BER) at the receiver, the achievable data raterl of thelth user can be computed by the Shannon capacity formula
[22]: log�1 + l(p)� �

nats/symbol; (7)

where� is theSNR gap to capacity, which is always greater
than 1. In this paper, we absorb(1=�) into Gll for all l, and
write the achievable data rate asrl = log(1 + l(p)).

Let w = (w1; : : : ; wL)> � 0 be a given probability vector,
wherewl is a weight assigned to thelth link to reflect priority
(a larger weight reflects a higher priority). Denote the set of
feasible powers: 
 = f p j 0 � p � �pg: (8)
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Fig. 1. (a) The system model for the 2-user case. (b) Illustrating anachievable
rate regionR for a 2-user Gaussian interference-limited channel. The positive weight
vectorw is superimposed on the rate region. Given a weight vectorw, the optimal rate
vectorr? = [r?1 ; r?2 ℄ is chosen on the boundary of the achievable rate region, where a
perpendicular line fromw (shown as the red dotted line) intersects withR.

The sum rate maximization problem in a multiuser Gaussian
channel can be stated as [1], [4], [10], [17]:

maximize
PLl=1 wlrl = PLl=1 wl log(1 + l(p))

subject to p 2 
: (9)

We denote the optimal solution of (9) byp? =(p?1; : : : ; p?L)>. For any feasiblep 2 
, we call r =[r1; : : : ; rL℄, evaluated atp, a feasible rate vector that lies in
the rate regionR, which is the set of all feasible rate vectors.
The data rate evaluated atp? is given byr?l = log(1+l(p?)).
For the two user case, i.e.,L = 2, Figure 1(b) gives the
geometrical illustration of the weighted sum rate maximization
problem in the rate region, i.e., findingr? 2 R for a givenw.

We now state an alternative formulation of (9) given in [19].
Theorem 1: The optimization problem in (9) is equivalent

to
maximize

Pl wl log(1 + l)
subject to �(diag()(F+ (1=�pl)ve>l )) � 1 8 l;
variables: l; 8 l: (10)

Now, ? is an optimal solution to (10) if and only ifP (?)
is an optimal solution to (9). In particular,? satisfies� �diag(?) �F+ (1=�pl)ve>l �� = 1 (11)
for some integerl = 1; : : : ; L.

Note that (11) implies that the optimal solution of (9) is such
thatp?i = �pi for somei. The transformation fromSIR to power
in (5) plays a central role in obtaining the constraint set of
(10), which facilitates our algorithm design with nonnegative
matrix theory in Section IV-A. It is also key to proving the
optimality conditions in Section IV. Note that the formulation
given in (10) shows that an optimal solution to (9),p?, is in
general not unique.

IV. GLOBAL OPTIMIZATION

In this section, we show that (10) is equivalent to an
optimization problem that maximizes a convex function on
a closed unbounded domain. For = (1; : : : ; L)> > 0, let~ = log; (12)
i.e.,  = e~ . Then, (10) is equivalent to:

maximize f(~) =Pl wl log(1 + e~l)
subject to log �(diag(e~)(F + (1=�pl)ve>l )) � 0 8 l;
variables: ~ = (~1; : : : ; ~n)> 2 RL :

(13)
Remark 1: Now, for a nonnegative irreducible matrixB 2RL�L+ , log �(exB) is a convex function [23]. Therefore, the

constraint set in (13) is convex. Also, sincelog(1 + e ~l)
is strictly convex in l 2 R for all l, (13) is a convex

maximization problem. The unboundedness of the convex set
in (13) is due to the identity0 = e�1.

We next denote the convex set in (13) byD(fFg) = f~ 2 RL ; log �(diag(e~)(F+(1=�pl)ve>l )) � 08 lg;
(14)

and define the first order derivative function of the objective
function in (13) byf 0(~) = �w1 e~11 + e~1 ; : : : ; wL e~L1 + e~L�> : (15)

Theorem 2: The optimal value in (13) is achieved only on
the boundary ofD(fFg). A point ~? is an optimal solution
of (13) if and only if the following conditions hold:f 0(�)>(~��) � 0 8 � 2 ff(�) = f(~?)g and~ 2 D(fFg):

(16)
Now, sinceD(fFg) is unbounded, we need to consider

a small modification to (13) so that numerical methods that
compute the maximum value of convex functions on bounded
closed convex sets can be employed [24]. In particular, we
consider (13) with additional constraints:D(fFg;K) = f~ 2 D(fFg); ~ � �K1g (17)
for an arbitrarily largeK � 1. Note thatD(fFg;K) is com-
pact and convex. The following lemma gives the description
of the setD(fFg;K).

Lemma 2: Let p = P (e�K1) = (eKI � F)�1v. ThenD(fFg;K) � f~ j log(p) � ~ � log(�p)g.
For the purpose of algorithm design, we replace the setD(fFg) in Theorem 2 byD(fFg;K). Since K can be

made arbitrarily large, a solution inD(fFg;K) can be made
arbitrarily close to~? in Theorem 2. In the following, we
propose a global optimization algorithm to find the optimal
value of (13) on the closed bounded setD(fFg;K).
A. Outer Approximation Algorithm

We leverage nonnegative matrix theory and the outer ap-
proximation technique in [24], [25] to compute an extreme
point of D(fFlg;K) in (17) that yields~? in Theorem 2.
Our approach is as follows: The feasible region containing
the optimal extreme point is first embedded inside a compact
polyhedral convex set. Infeasible regions are then successively
removed from this initial polyhedral set. This method gener-
ates a nested sequence of polyhedrons approximatingD(fFg)
from the exterior. It is noteworthy that the computational
performance of this method depends on the choice of this
initial polyhedron, i.e., the method is effective if this initial
polyhedron is a tight fit [24], [25].

To make our problem amenable to outer approximation
and to enable a fast computational algorithm (by finding the
tightest initial polyhedron), we first approximate the convex
setD(fFg;K) by a bigger polyhedral convex sets as follows.� Choose a finite number of points�1; : : : ; �M on the

boundary ofD(fFg;K).� Let H1(�); : : : ;HN (�); � 2 RL be theN supporting
hyperplanes ofD(fFg). Note that we can have more
than one supporting hyperplane at�i, and at mostL
supporting hyperplanes. So each� 2 D(fFg;K) satisfies
the inequalityHj(�) � 0 for j = 1; : : : ; N .



4� Define the polytopeD(�1; : : : ; �M ;K) = f� 2 RL ; �K1 � � � log �;Hj(�) � 0; j = 1; : : : ; Ng;
(18)

and output this polytope that containsD(fFg;K).
Now, using the polytopeD(�1; : : : ; �M ;K), we havemax~2D(�1;:::;�M ;K) f(~) � max~2D(fFg;K) f(~): (19)

Furthermore, sincef(~) is strictly convex, the maximum on
the lefthand side in (19) is achieved only at an extreme point
of D(�1; : : : ; �M ;K). Though solving the lefthand side in
(19), being a multiextremal problem, is still computationally
challenging, it can lead to provably correct solutions under
well-defined conditions.

We now show how to efficiently compute the supporting hy-
perplanesHj ; j = 1; : : : ; N for N = L in D(�1; : : : ; �M ;K).
To do that, we give a characterization of supporting hyperlanes
of D(fFg) at a boundary point� 2 �D(fFg) based on the
Friedland-Karlin inequalties in [26]. An extension of these
inequalities are found in Theorem 6 in Appendix Section J.

Theorem 3: Let �p = (�p1; : : : �pL)> > 0 be given. Consider
the convex set (14). Let� be a boundary point of�D(fFg).
Then� = log(p), where0 � p = (p1; : : : ; pL)> � �p. The
setB := fl 2 hLi; pl = �plg is nonempty. For each matrixBl = (F+ (1=�pl)ve>l )), let � = (�1; : : : ; �L)> 2 RL satisfy
the condition�(e�Bl) = 1. DefineHl(�) asHl(�) = LXj=1 xj(Bl)yj(Bl)((�)j � �j): (20)

ThenHl � 0, for l 2 B, are the supporting hyperplanes ofD(fFg) at �.
We now show how to choose the boundary points�1; : : : ; �M 2 �D(fFg) and to compute the supporting

hyperplanes ofD(fFg) at each�i. Let p = P (e�K1) =(p1; : : : ; pL)> be defined as in Lemma 2. ChooseMi � 2
equidistant points in each interval[pi; �pi℄, and definepji;i = jipi + (Mi � ji)�piMi for ji = 1; : : : ;Mi; i = 1; : : : ; L:

(21)
Let P = � pj1;:::;jL = (pj1;1; : : : ; pjL;L)>;min(�p1 � pj1;1; : : : ; �pL � pjL;L) = 0: �
That is,pj1;:::;jL 2 P if and onlypj1;:::;jL � �p. Thenf�1; : : : ; �Mg = log(P):
The supporting hyperplanes ofD(fFg) at each�i are given
by Theorem 3. Thus, we have established theL unique hy-
perplanesHl(�) � 0 for l = 1; : : : ; L in D(�1; : : : ; �M ;K):Hl(�) =Xj (x(F + (1=�pl)ve>l ) Æ y(F+ (1=�pl)ve>l ))j(�)j+ log �(F+ (1=�pl)ve>l ) � 0; l = 1; : : : ; L:

(22)
Based onD(�1; : : : ; �L;K) in (22), we propose the follow-

ing algorithm that computes the optimal solution of (13).

Algorithm 1 (Sum Rate Outer Approximation Algorithm):� Input. D(�1; : : : ; �L;K) with Hl(�);8 l given in (22).� Output. Optimal solution p? of (9).

1) Compute the vertices of the enclosing linear polyhedron

D(0), described by the set of constraints:Xj (x(F+ (1=�pl)ve>l ) Æ y(F + (1=�pl)ve>l ))j~j+log �(F+ (1=�pl)ve>l ) � 0;
(23)

and ~l � �K for all l. Let V (0) be the set of vertices
of D(0). Setk = 1 and go to Step 2.

2) Iterationk: Solve the problem:
maximize

Pl wl log(1 + e~l)
subject to ~l 2 D(k�1) (24)

by selecting max�Pl wl log(1 + e~l) : v 2 V (k�1)	.
Let ~k be the optimizer to (24).

3) Computepk = �I� diag(exp(~k))F��1 diag(exp(~k))v:
(25)

4) If pk � �p, stop:~k is the solution to (13) andpk is the
solution to (9). Otherwise, letJk = fl : log �(diag(exp(~k))(F+ (1=�pl)ve>l ))= max1�j�L log �(diag(exp(~k))(F + (1=�pj)ve>j ))g
and choose anyjk 2 Jk.

5) Compute the left eigenvectoryjk and right (Perron)
eigenvectorxjk of diag(exp(~k))(F + (1=�pjk )ve>jk ).
SetGkjk (~) = log �(diag(exp(~k))(F+ (1=�pjk)ve>jk ))+[exp(~k)ÆxjkÆyjk ℄>(~�~k)�(diag(exp(~k))(F+(1=�pjk )ve>jk )) :

(26)
6) Set D(k) = D(k�1) \ f~ : Gkjk (~) � 0g, V (k) =fextreme points ofD(k)g.
7) Setk  k + 1. Go to Step 2.

The following result establishes the convergence ofpk in
Algorithm 1 to the global optimal solution of (9).

Theorem 4: Every limit point of the sequencepk = �I� diag(exp(~k))F��1 diag(exp(~k))v solves (9).

We add the following remarks concerning the implementa-
tion and optimality of Algorithm 1.

Remark 2: At Step 5, the gradient oflog �(diag(exp(~))(F + (1=�pjk)ve>jk )) (given by[exp(~) Æ xjk Æ yjk ℄=�(diag(exp(~))(F + (1=�pjk )ve>jk )))
at ~k is used to construct the inequality cut given by (26)
that separates~k (infeasible with respect to (13)) from the
feasible constraint set of (13).

Remark 3: A finite number of iterations can be obtained by
replacing the stopping rule at Step 4 with stop ifmaxl pkl ��pl � � or stop if log �(diag(exp(~k))(F+(1=�pjk )ve>jk )) � �,
where� is a positive error tolerance number.

Remark 4: At Step 6, an online vertex enumeration pro-
cedure (for example, see [24]) can be used to speed up the
computation of the new vertex setV (k).

Remark 5: Note that every limit point of the sequencexjk
for any jk 2 Jk converges to the limit point of the sequencepk in Algorithm 1.
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Fig. 2. A summary of the transformation and mapping between the powerp, theSIR  and theSIR in the natural base logarithm~.

B. Spectrum-sharing constraints

Cognitive radio power constraints or interference tempera-
ture can be readily incorporated in our optimization framework
and algorithm by defining an appropriate
 = f p j 0 � p � �pg \ f p j Ap � �pAg; (27)
whereA 2 Rm�n+ . We also assume that
 in (27) is such
that the setsf p j Ap � �pAg and f p j 0 � p � �pg are
not strictly contained in each other. This implies thatp?l = �pl
for somel. The setf p j Ap � �pAg is general enough to
model constraints on the received power of a subset of links
or constraints that limit the interference level.

First, we consider the individual power constraints. At Step
3, a feasible point to (9),̂pk, is easily obtained by using a
projection on to the box constraint[0; �p℄:p̂kl = minfpkl ; �plg 8 l: (28)
Using Theorem 4, every limit point of the sequencep̂k solves
(9). Further, it can be shown that the rate vector generated byp̂k always lies on the boundary of the rate region.

We next turn to the spectrum-sharing constraints given in
(27) by considering the projection ofpk onto
 [27]:

minimize kp̂k � pkk2
subject to p̂k 2 
: (29)

Theorem 4 can be adapted to show that every limit point of
the sequencêpk given by (29) solves (9) with
 in (27).
We summarize the relationship between the setsD(fFg),D(fFg;K), established by the transformation (4), (5), (12)
and (29) used in Algorithm 1 in Figure 2.

V. A PPROXIMATION AND RELAXATION TECHNIQUES

Although Algorithm 1 can find the optimal solution, it
remains plausible only for small-to-medium problem size
(before the vertex set of the outer approximating polytope
reaches a prohibitive size). We now turn to other techniques
that yield further insights to solving (9).

A. Inner Approximation

We first state the following result in [26, Theorem 3.1] that
can be used to construct an inner approximation ofD(fFg).

Lemma 3: For any nonnegative matrixF and positive vec-
tor , �(diag()F) � maxl l�(F): (30)

Equality is achieved in (30) if and only ifl are equal for alll.
Applying Lemma 3 to each constraint in (13), a smaller

convex subset ofD(fFg) (replacing the constraints in (13)
by restricted box constraints) can be easily obtained. Thus, a

restricted problem of (13) and its solution (correspondingly,
that of (9)) is given in the following.

Lemma 4: The optimization problem
maximize

Pl wl log(1 + e~l)
subject to ~ � minl � log �(F+ (1=�pl)ve>l )1: (31)

has a solution that is an extreme point ofD(fFg) and is given
by ~ = � log �(F+(1=�pi)ve>i )1, wherei = minl� log �(F+(1=�pl)ve>l ). Then,x(F+(1=�pl)ve>i ) (unique up to a constant)
solves (31).

Remark 6: Interestingly, the inner approximation in (31)
yields the same solution as maximizing the minimumSIR
subject to the individual power constraints (cf. Theorem 2 in
[17]).

We briefly discuss how to enhance Algorithm 1 using
the above result. Inner approximation techniques such as the
Polyhedral Annexation method (cf. Chapter 6, [24]) can be
applied using the constraint set in Lemma 31 as the initial inner
approximation. In brief, the Polyhedral Annexation method
generates a sequence of expanding polyhedrons contained inD(fFg) that approximatesD(fFg) from the interior. This
methodology isdual to and complements the outer approx-
imation technique described in Section IV-A. We refer the
readers to [24] on standard global optimization algorithms,
e.g., branch-and-bound techniques, to combine and accelerate
the inner and outer approximation techniques. Interestingly,
the inner approximation given by (31) optimally solves (13)
when the optimal solution of (13) is such that theSIR’s are
all equal (cf. conditions under which the equality in Lemma
3 and Theorem 6 holds).

B. Relaxation

We now turn to a relaxation technique that can solve special
cases of (9). We define the matrix~F as~F = F+ diag(�)�1: (32)

Lemma 5: Let 0 � p � �p. Then,p � diag((p))~Fp; (33)
and �(diag((p))~F) � 1: (34)

Next, using (34) and the logarithmic change of variable
technique, we consider the following optimization problem:

maximize f(~)
subject to log �(diag(e~)~F � 0;~ � log �: (35)

The following result shows that (35) is a relaxed problem of
(13).

Lemma 6: The optimal value of (35) is not less than the
optimal value of (9). Furthermore, the optimal solution of (35),~0, satisfieslog �(diag(e~0)~F) = 0.

Lemma 7: If p? = �p or p? is such thatp?l = 0 for somel
andp?j = �pj for j 6= l, then�(diag((p?))~F) = 1: (36)

Remark 7: Since (35) is a relaxed problem as compared to
(9), both Lemmas 6 and 7 imply that if the optimal solution of
(35), 0, satisfiesP (0) � �p, thenP (0) is also the optimal
solution of (9).
We obtain the following special case result by combining
Lemma 7 and a result in [7].
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Corollary 1 (2-user Sum Rate): When L = 2 and w =( 12 ; 12 )> , p? is one of the following three vectors:( �P1; 0)> ,(0; �P2)> or ( �P1; �P2)> . Furthermore,p? = ( �P1; 0)> only if�p1�p2F12F21 � 0:5v1v2 � v1�p2 � 0, andp? = (0; �P2)> only
if �p1�p2F12F21 � 0:5v1v2 � v2�p12 � 0.

Remark 8: From the above special case, the relaxed prob-
lem (35) is tight whenp? is one of the on-off vectors:( �P1; 0)> , (0; �P2)> and the corresponding necessary condi-
tions in Corollary 1 are met.

VI. N UMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
the performance of Algorithm 1 in Section IV-A and how
the approximation technique in Section V can be applied in
solving (9) for two users, i.e.,L = 2. Consider the channel
gain matrix given byG = � 0:73 0:040:03 0:89 � : (37)

Let the maximum power constraint vector be�p =[1:8 100:5℄>mW and the noise power of each user be0:1mW.
The weight vector is given byw = x(F+(1=�pi)ve>i )Æy(F+(1=�pi)ve>i ), wherei = argmaxl �(F + (1=�pl)ve>l ). We set� = 1� 10�8 andK = 100 in Algorithm 1. Now, the optimal
solution is achieved at the equalSIR allocation for the two
users (equivalent to maximizing the minimumSIR problem),
wherep? = x(F+(1=�pi)ve>i ) = [1:8000 1:442℄>. Thus, the
optimal sum rate is2:2336 nats/symbol.

At the first iteration, the vertices ofV (0) are(�100:0; �100:0), (�100:0; 103:6279), (39:4757; �100:0),(0:9959; 5:1941). The vertex ofV (0) having the maximum
objective function value is~1 = (39:4757 � 100:0)
and p1 = [1:909 � 1019 0℄> . At Step 4, evaluating
each constraint function at~1 = (39:4757 � 100:0),
we have log(diag(~1)(F + (1=�p1)ve>1 )) = 36:9 andlog(diag(~1)(F + (1=�p2)ve>2 )) = �33:4. We thus choosej1 = 1, and a new constraint is obtained at Step 5 as~1 � 2:5757:

Therefore, we haveD1 = D0 \ f~ : ~1 � 2:5757g
at Step 6. The vertices ofD1 are (�100:0; �100:0),(�100:0; 103:6279), (2:5757; �100:0), (2:5757; 0:8754),(0:9959; 5:1941). We then proceed to Step 2 to find the
optimal vertex ofD1.

After twenty nine more iterations, we arrive at the power
vectorp29 = [1:8000 1:442℄> , andmaxl p29l � �pl = 5:5485�10�9, whereupon Algorithm 1 terminates. Figure 3 illustrates
the evolution of the approximating polyhedron, where Figure
3(a) and (b) show the initial enclosing polyhedronD(0) and
the polyhedronD(14) at the fourteen iteration, respectively. We
observe that, by the fourteen iteration,D(14) provides a rela-
tively good approximation to the feasible regionD(fFg;K).
Figure 4 (a) and (b) illustrates the convergence of the rate
vectors generated by[log(1+1(pk)) log(1+2(pk))℄> and[log(1 + 1(p̂k)) log(1 + 2(p̂k))℄> respectively. As shown
on Figure 4 (b), the rate vector converges close to the optimal
rate vector by the tenth iteration. Figure 4 also illustrates the
optimal rate vector.

Note that the inner approximation technique, i.e., solving
(31) in Lemma 4 yields the optimal solution (solved by

Problem Maximal number of Number of CPU time
size generated vertices iterations (minutes)

2 15 12 0.062
4 139 760 4.1
6 14022 1238 83
8 283681 1968 468

TABLE I

A COMPARISON OF THE TYPICAL CONVERGENCE AND COMPLEXITY

STATISTICS OFALGORITHM 1 WITH THE PROBLEM SIZE. THE CPUTIME

IS COMPUTED BASED ON AN IMPLEMENTATION ON A64-BIT

SUN/SOLARIS10 (SUNOS5:10) COMPUTER.

one optimization problem in contrast to a modest number of
optimization problems in Algorithm 1).

Next, we repeat our previous experiment but the parameters�p = [100:8 100:5℄> and�p = [300:8 300:5℄> are used instead.
Figure 5 (a) and (b) illustrates the convergence for these
two different maximum power constraints respectively. Unlike
the previous experiment, the optimal solution in these two
scenarios are such that one user is transmitting at maximum
power and the other user does not transmit. As illustrated,
the rate vector computed by Algorithm 1 already approaches
close to the optimal rate vector by the seventh iteration, and
Algorithm 1 terminates at the twenty-eigth iteration for both
scenarios (with� = 1� 10�8).

Lastly, we vary the problem size, i.e., the number of users,
and evaluate the number of iterations, the maximal number of
vertices upon exit and the CPU time required to run Algorithm
1 by setting� = 1 � 10�4. Algorithm 1 is implemented in
Matlab and runs on a64-bit Sun/Solaris10 (SunOS5:10)
computer. Table I compares the average statistics on different
problem size. As illustrated, Algorithm 1 is effective for a
network of small-to-medium size. For a large number of users,
the complexity of enumerating the vertices at Step 2 can grow
prohibitively large as the number of iterations increases.

VII. E XTENSION TO MULTIPLE CARRIERS AND

INTERFERENCESUPPRESSIONRECEIVERS

A. Multiple Carrier Model

In this section, we extend our previous results in Section
III to a multiuser multiple carrier model, where a common
spectrum is divided intoK frequency tones denoted byhKi.
For illustration purpose, we assume the standard synchronous
orthogonal frequency-division modulation, where orthogonal-
ity among subchannels of the intended signal and the sub-
channels of the interference signal in different frequency
tones is maintained.3 Thus, transmissions can be modeled
independently on each tone. The achievable rate at tonek
can be modeled as [22]:log 1 + Gll;kpl;kPj 6=lGlj;kpj;k + nl;k! : (38)

The total data rate for each user is then obtained by adding
its transmitted bits over all theK tones. The total power budget
of the lth user is constrained (across allK tones) byKXk=1 pl;k � �pl: (39)

3This is also known as discrete multitone modulation in the DSL context.
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(a) (b)

Fig. 3. Illustration of the convergence of Algorithm 1 in the~ region with (a) the initial polyhedron given byD(0) and (b) the polyhedronD(14) at the
fourteen iteration.
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Fig. 4. Illustration of the convergence of Algorithm 1 in (a)the rate vector generated bypk (b) the rate vector generated bŷpk. Only the rate vectors
obtained up to the eleventh iteration are shown.
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rate vectors obtained up to the seventh iteration are indicated.
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It is easy to see that our previous model in Section II
is a special case of this multiple carrier model assuming
standard synchronous discrete multi-tone (DMT) modulation
whenK = 1.

For brevity of notations, we definep 2 R(K�L)+ as a vector
that stacks theK �L power allocation lined-up according to
tones of all users. For example, ifL = 2 andK = 2, thenp = (p1;1; p1;2; p2;1; p2;2)> . Similarly, we define 2 R(K�L)+
as theSIR allocation, and the matrixF having entries:Fij;k = ( 0; if i = j; i; j 2 f1; : : : ; Lg; k 2 f1; : : : ;KgGij;kGii;k ; if i 6= j; i; j 2 f1; : : : ; Lg; k 2 f1; : : : ;Kg

(40)
andv = � n1;1G11;1 ; n1;2G11;2 ; : : : ; n1;KG11;K ; n2;1G22;1 ; : : : ; nL;KGLL;K�> :

(41)
Note that asynchronous transmission can result in thelth

user at tonek having interference from the power allocation at
neighboring tones of tonek. Hence, in general,F is not a block
diagonal matrix. However, assuming synchronous transmission
of all users,F is block diagonal.

As in the previous, thelth user is given a positive weight
parameterwl to reflect its long-term priority. The problem of
maximizing the weighted sum rate in a Gaussian channel withK frequency tones is given by:maxPKk=1 pl;k��pl 8 l LXl=1 wl KXk=1 log(1 + l;k(p)); (42)

wherel;k = Gll;kpl;k=(Pj 6=lGlj;kpj;k + nl;k). In order to
be consistent with our previous results, we shall consider the
following equivalent problem:maxPKk=1 pl;k��pl 8 l LXl=1 KXk=1 ~wl;k log(1 + l;k(p)): (43)

where ~wl;k = (wl=K) for all l 2 f1; : : : ; Lg; k 2 f1; : : : ;Kg,
and ~w 2 R(K�L)+ is a probability vector.

As in Section III, it is instrumental to consider an alternative
formulation of (43).

Theorem 5: The optimization problem (43) is equivalent to
the following optimization problem:
maximize

PlPk ~wlk log(1 + kl )
subject to �(diag()(F+ (1=�pl)PKk=1 ve>((l�1)�K+k))) � 18 l;
variables: kl ; 8 l; 8 k:

(44)
Now, ? is an optimal solution of (44) if and only ifP (?)

is an optimal solutionp? of the problem (43). In particular,
any optimal solution? satisfies� diag(?) F+ (1=�pl) KXk=1 ve>((l�1)�K+k)!! = 1 (45)

for some integerl 2 [1; L℄.
Using Theorem 5, it is straightforward to extend Algorithm

1 in Section IV-A to design optimal spectrum management
schemes for multiple carrier channels.

We add the following brief discussion to get more intuition
on the above theorem. Our techniques are general enough
to deal with asynchronous transmission, where the power
allocations in neighboring tones interfere with one another.

This results in intercarrier interference (ICI) and tone coupling
in (38); as mentioned earlier, ICI effects are captured byF in
(40), where the optimal solution to (43) is then characterized
by the spectral radius of an appropriately constructed interfer-
ence matrix. This means, the appropriate choice of supporting
hyperplanes permits decoupling of both users and frequency
tones in theSIR domain.

B. Receivers with Interference Suppression

Instead of treating multiuser interference as noise, more
sophisticated receiver techniques can improve the data rate
performance. For example, multiuser detection techniques
that decode and cancel the signals of other users or using
receive beamformers at the user increases the reliability of
decoding the desired signal. The receiver techniques can also
be integrated with the different cognitive spectrum sensing
techniques [4], [5] that adapt the effective channel.

We briefly discuss how some of these different receiver
techniques can be incorporated into our problem formula-
tion and leave the details for a future work. In general,
the various interference suppression techniques change the
spectra (Perron-Frobenius eigenvalues and eigenvectors)of the
nonnegative matrices considered in this paper. For example,
when multiuser detection is considered, i.e., user decoding is
first ordered based on the receivedSNR, the resultant matrixF in (2) is then upper triangular. When transmit or receive
beamformers are considered, the effective channel gain and
cross interference, i.e., the entries ofF, become functions
of beamformers. Let the setF be the set of all possible
nonnegative matrices for a particular receive strategy with
interference suppression. One possible way to optimize overF is to choose the matrixF 2 F such that it solvesmaxF2F minl �(diag()(F+ (1=�pl)ve>l )): (46)

Algorithm 1 can then be used to optimize the power by using
the optimal matrixF that solves (46).

VIII. C ONCLUSION

We studied the nonconvex NP-hard problem of weighted
sum rate maximization in a multiuser Gaussian channel that
models a cognitive wireless network with affine power con-
straints, e.g., an interference temperature constraint. Using
tools from nonnegative matrix theory, in particular the Perron-
Frobenius Theorem and the Friedland-Karlin inequalities,
we obtained necessary and sufficient conditions to optimal
power allocation and proposed a computationally fast global
optimization algorithm. In particular, we designed an outer
approximation technique that exploits the spectra of specially
crafted nonnegative matrices to accelerate computation. We
also studied an inner approximation method and a relaxed
problem that provided insights to special cases. Our techniques
and algorithm can be extended to the multiple carrier model,
e.g., an OFDM cognitive wireless system, and systems with
receivers having interference suppression capability.
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APPENDIX

A. Proof of Theorem 2

Sincew > 0, the objective function in (13) is a strictly
convex function in~ 2 RL . Hence, the optimal value of
(13) is achieved exactly on an extreme point of the closed
unbounded set specified in (13). It may happen that some
coordinate of the extreme point (optimal solution) are�1.
Since (13) is a strictly convex maximization problem, the
optimality conditions given by (16) can be obtained (cf. [28]).

B. Proof of Lemma 2

From the definition of K, we have �(e�K(F +(1=�pl)ve>l )) < 1 for l = 1; : : : ; L. Thus,�K1 2 D(fFg).
Let  = e�K1. Assume that~ 2 D(fFg;K). Then ~ ��K1. Hence, = e~ � . Since�(diag()F) < 1, we havep = P () � P () = p, whereP is defined by (5). The
inequalityP () � �p can be proved likewise.

C. Proof of Theorem 3

Let p = P (e�). Since the setB is nonempty, we have�(e�Bl) = 1 if and only if pl = �pl. Hence,� lies exactly at
the intersection of the hypersurfaceslog �(e�Bl) = 0; l 2 B.
Theorem 7 in Appendix Section J implies that the supporting
hyperplanes ofD(fFg) at � areHl(�) � 0 for l 2 B.

D. Proof of Theorem 4

The proof of convergence of~k to the optimal solution of
(13) by cutting plane methodology can be found in [24]. Since

the mappk = �I� diag(exp(~k))F��1 diag(exp(~k))v is

bijective, the limit point ofpk solves (9). This proves the
theorem.

E. Proof of Lemma 4

Lemma 4 is easily proved as the objective function in
(31) is monotonically increasing and by using the equality
condition of Lemma 3. Since all users achieve equalSIR or
more precisely, the maximum of the minimumSIR, the optimal
power is given byx(F+(1=�pl)ve>i ), unique up to a constant
(cf. Theorem 2 in [17]).

F. Proof of Lemma 5

Since0 � pl � �pl, we have~Fllpl � vl for all l. By the defi-
nition of (p) in (4), we havepl = l(p)�vl +Pj 6=l Fljpj�,

which together with the definition of~F, we have (33). To
prove that the inequality (34) holds, we note that it is a
consequence of the Wielandt’s characterization of the spectral
radius of an irreducible matrix [20]. Indeed, ifp > 0, i.e.,
all the coordinates ofp are positive, then(p) > 0. Hence,diag((p)))~F is a positive matrix. Then, by the Wielandt’s
max-min characterization of the spectral radius, we have�(diag((p))~F) � maxl=1;:::;L (diag((p))~Fp)lpl � 1:
Observe next that ifpl = 0, then (p)l = 0. So if some
of pl = 0, then�(diag((p))~F) is the spectral radius of the
maximal positive submatrix ofdiag((p))~F. Apply to this
positive submatrix Wielandt’s characterization to deduce(34).

G. Proof of Lemma 6

In view of (34), we see that the optimal value in (35) is
achieved on a bigger set than that in (9). Sincef(~) andlog �(diag(e~)~F) increase with~, this proves the lemma.

H. Proof of Lemma 7

The definition of~F implies (36) forp? = �p. Assume now
thatp?l = 0 for somel. Thenl(p?) = 0 for somel. Then, thelth row of diag((p?))~F is zero. LetF(l) be the submatrix
of F obtained by deleting thelth row and column. Let(l)
be the vector obtained from by deleting thelth coordinate.
Hence, the characteristic polynomial ofdiag()F, det(xI �diag()F, is equal tox det(xI � diag((l))F(l)). Therefore,�(diag()F) = �(diag((l))F(l)). Continuing in this manner,
we deduce the lemma.

I. Proof of Corollary 1

The first part of Corollary 1 is a result of [7]. To prove
the second part, we note that, using the mapping in (5),
maximizingw1 log(1 + 1) + w2 log(1 + 2) or equivalently,1 + 2 + 12, subject to�(diag()~F) = 1 (from (36) in
Lemma 7) is equivalent to the following linear program:

maximize (�p1�p2F12F21 � 0:5v1v2)(1 + 2)� v1�p21�v2�p12
subject to  � �:

(47)
As a linear program with two variables over a simple box

constraint, (47) has an optimal solution that is an extreme
point. If F is a non-zero matrix, the solution is(�1; 0)>
only if �p1�p2F12F21 � 0:5v1v2 � v1�p2 � 0, and (0; �2)>
only if �p1�p2F12F21 � 0:5v1v2 � v2�p12 � 0. Using (5), the
corresponding optimal power vector is deduced as given by
Corollary 1.

J. Results based on Friedland-Karlin inequalities

We state some nonnegative matrix theory results from [26]
and [19] that are used in this paper. The following result
extends [26, Theorem 3.1]:

Theorem 6: Let A 2 RL�L+ be an irreducible matrix.
Assume thatx(A) = (x1(A); : : : ; xL(A))>, y(A) =(y1(A); : : : ; yL(A))> > 0 are the Perron right and left eigen-
vectors ofA respectively, normalized such thatx(A) Æ y(A)
is a probability vector. Suppose that is a nonnegative vector.
Then �(A)Yl (x(A)Æy(A))ll � �(diag()A): (48)

If  is a positive vector then equality holds if and only if
all l are equal. Furthermore, for any positive vectorz =(z1; : : : ; zL)>, the following inequality holds:�(A) � LYl=1� (Az)lzl �(x(A)Æy(A))l : (49)

If A is an irreducible matrix with positive diagonal elements,
then equality holds in (49) if and only ifz = tx(A) for some
positivet.

The following result gives an interpretation of the inequality
(48) in terms of the supporting hyperplane of the convex
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function log �(e�B), whereB 2 RL�L+ is irreducible and� 2 RL .
Theorem 7: Let B 2 RL�L+ be an irreducible matrix.

Let � = (�1; : : : ; �L)> 2 RL satisfy the condition�(e�B) = 1. DenoteA = e�B and assume thatx(A) =(x1(A); : : : ; xL(A))>;y(A) = (y1(A); : : : ; yL(A))> > 0
are the Perron right and left eigenvectors ofA respectively,
normalized such thatx(A) Æy(A) is a probability vector. LetH(�) = LXl=1 xl(A)yl(A)(�l � �l): (50)

Then H(�) � 0 is the unique supporting hyperplane to the
convex setlog �(e�B) � 0 at � = �.
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