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Abstract— Spectrum management is used to improve perfor-
mance in multiuser communication system, e.g., cognitiveadio
or femtocell networks, where multiuser interference can lad
to throughput degradation. We study the nonconvex NP-hard
problem of maximizing a weighted sum rate in a multiuser
Gaussian interference channel by power control subject toffine
power constraints. By exploiting the fact that this problem can
be restated as an optimization problem with constraints tha
are spectral radii of specially crafted nonnegative matries,
we derive necessary and sufficient optimality conditions agh
propose a global optimization algorithm based on the outer
approximation method. Central to our techniques is the use D
nonnegative matrix theory, e.g., nonnegative matrix ineqalities
and the Perron-Frobenius theorem. We also study an inner
approximation method and a relaxation method that give insghts
to special cases. Our techniques and algorithm can be exteed to
a multiple carrier system model, e.g., OFDM system or receers
with interference suppression capability.

Index Terms— Optimization, nonnegative matrix theory, dy-
namic spectrum access, power control, cognitive wirelessett
works.

I. INTRODUCTION

practical approach to obtain achievable rates is to assuhe a
treat multiuser interference as additive Gaussian noibés T

assumption is relevant to cognitive wireless networks, rehe

low-complexity coordination is desired for a decentralize

implementation, e.g., when joint decoding of primary and
secondary users is not possible.

Maximizing the weighted sum rate in a multiuser Gaussian
channel where interference is treated as noise is a nonconve
problem [1], [4], [10], [11]. It is shown to be NP-hard in [10]
The algorithms for this problem in the literature are mostly
based on game theory, e.g., [4], [13], or the Lagrange dual
decomposition [11], [14], [15]. Due to the duality gap, dual
algorithms cannot guarantee finding a global optimal sofuti
Moreover, finding a feasible primal solution for a given
feasible dual solution, or vice versa, is difficult. Prokiie
as it seems, several recent advances have been made by
exploiting the problem structure. The authors in [10] show
that the duality gap is zero when the number of frequency
tones is asymptotically large. Computational algorithrasdul
on the difference of convex functions are proposed in [9tFa
distributed algorithms can be found in [1], [16]-[18] that\e

When multiple users transmit simultaneously over the samig problem suboptimally but with performance guarantees

frequency band of the wireless medium, the data rates @d optimally under special cases). The authors in [19] use
affected by multiuser interference. For example, interi€e nonnegative matrix theory to analyze the problem and give a
is a major source of performance impairment in the Codganch-and-bound algorithm.
Division Multiple Access (CDMA) cellular network (see [1], Thjs paper is organized as follows. We introduce the system
[2]) and the cognitive wireless networks (see [3]-{6]). HW el in Section I1. In Section 11, we state the weighted
optimize performance in the presence of interference is thi,yy rate maximization problem and present an equivalent
an important issue. Power control is often used to improygormuylation problem. In Section 1V, a further preprodegs
the spectral utilization and the system performance, €.gie; converts the optimization variable from power to Signa
maximizing the total data rates of all users [2], [3], [7F9 o-Interference RaticS(R) in logarithmic scalé.We then char-
We refer to power control techniques that adapt the spectryiyerize the global optimality conditions, and proposedbal
allocation _to maximize performance in a multiuser SySteBbtimization algorithm in a single-carrier model. In Seati
as Dynamic Spectrum Management (DSM). There are mapy approximation and relaxation techniques and their speci
DSM algorithms proposed to maximize the total throughpihses are presented. In Section VI, numerical simulations s
of all users in the literature [1]-[4], [10], [11]. that the global optimization algorithm is computationztgt
Cognitive radio has recently emerged as a new technology small-to-medium problem size. In Section VII, we illteste
that can substantially increase spectrum utilization iefiicy oy our techniques can be extended to a multiple carrier
by allowing unlicensed (secondary) users to share a COfjpdel and to include multiuser interference suppression. W
mon spectrum with licensed (primary) users so long as thgnclude the paper in Section VIII. All proofs are found in
interference caused is maintained below a certain prestri appendix.
level known asinterference temperature [4], [12], [13]. In* T4 tollowing notation is used. Boldface uppercase letters
other words, regulatory constraints can be translated if{a,ote matrices, boldface lowercase letters denote colemn
power constraints to influence the performance of all u*rs'tors, italics denote scalars, and> v denotes componentwise
1Related work in the wireline setting can be found in a DigBalbscriber

Line (DSL) system, where users (twisted-pairs) in a cableddri share a
common spectrum and interfere with one another [10], [11].

2Measurements of power ar&IR variable in wireless networks are typi-
cally expressed in decibels (dB), i.e., bagetogarithmic scale.



inequality between vectons andv. We also let{By); denote Moreover, we assume th#t is irreducible, i.e., each link has
the Ith element ofBy. Let x o y denote the SchurProductat least an interferer.

of the vectorsx andy, i.e.,xoy = [z1y1,...,2yr] . We Assuming a linear matched-filter receiver, thiR for the
write B > F if B;; > Fj; for all 4, j. The Perron-Frobenius ith receiver (as a function of powers) is given by:
eigenvalue of a nonnegative matiixis denoted ag(F), and (p) := L7 1=1,...,L. (4)
the Perron right and left eigenvectorBfassociated withy(F) > Fiipj + v

are denoted bk (F) > 0 andy(F) > 0 (or, simplyx andy,  Note that (4) as a mapping — ~(p) for p =
when the context is clear) respectively. Recall that thedPer (p1---,p)’ > 0 can be compactly written as/((Fp); +
Frobenius eigenvalue & is the eigenvalue with the largest:)- Let us denote the vectoy(p) = (vi(p), ..., 7.(p)) "
absolute value. Assume thalt is a nonnegative irreducible Now, (4) is the transformation from power 8R. We next
matrix. Thenp(F) is simple and positive, and(F),y(F) > 0 give the transformation frontIR to power, which is first
[20]. We will assume the normalizatiorx(F) o y(F) is a obtained in [21] (also given in [2], Chap. 2).

probability vector. The super-scrift)’ denotes transpose. Lemma 1: Assume thaty(p) is defined by (4). Then
We denotee; as thelth unit coordinate vector anfl as the p(diag(v(p))F) < 1. Hence, fory = v(p).

identity matrix. For any vectofy = (71,...,79.)" € R let p = P(v) := (I — diag(y)F) ! diag(y)v. (5)
¥ = (e",...,e’)T. Let P: X — Y be a mapping from Vice versa, ify is in the set
the spaceX to the spacd’. For a subseZ C X, we denote I:={~y >0, p(diag(v)F) < 1}, (6)
by P(Z) the image of the sek. thenp given in (5) is nonnegative. Furthermotd,P(p)) = ~.
Thatis,y : RY —» T, andP : T — RL are inverse mappings.
1. SYSTEM MODEL Let 4 denote the vectop; /vs, ..., pr/vs) . Then, we have

_ _ o ~v < 7 as an implicit constraint.

Consider a multiuser communication system withusers |, ireless networks, transmit power constraints model
(logical transmitter/receiver pays) sharing a common- freesource budget constraints or may be imposed by radio
quency. Each user employs a single-user decoder, i.tingeareqyatory body. We assume that all users have individual
mterferen(_:e as ad_dltlve Gau55|an_ noise, and has perfant Cr_bower constraints (see (8) in the next section). In addition
nel state information at the receiver. We assume that fadipgjike traditional wireless networks, a cognitive netwak
occurs sufficiently slowly in the channel, i.e., flat-fadi® |oys secondary users to transmit provided that the perfooma
that th(_e qhannel can be cop&dered essentially fixed du”&‘@gradation caused to the primary user is null or toleratile [
transmission. Our system with users can be modeled byye assume that additional affine constraints can be imposed
a Gaussian interference channel having the baseband sighalne transmit power of all users as interference temperatu
model: constraints. These constraints are chosen by the primarg us

yi = hux +Zhljxj + 2, (1) based on their quality of service requirements [4], [13].
J#l We first consider the problem under individual power con-

wherey, € C'*! is the received signal of théth user, stralnts,_ an(_j then _mcorporate interference temperatffireea
constraints in Section IV-B.

h;; € C'*! is the channel coefficient between the transmitter
of the jth user and the receiver of ttith user,x € CV*! is

the transmitted (information carrying) signal vector, and

are the i.i.d. additive complex Gaussian noise coefficieth w
variancen; /2 on each of its real and imaginary components. Under the assumption of single-user decoding, we further
The first term on the right-hand side of (1) represents the dgssume that each user employs Gaussian code. In practice,
sired signal, whereas the second term represents theenterf Gaussian codes can be replaced by finite-order signal con-
signals from other users. At each transmitter, the signal deellations such as quadrature-amplitude modulation (QAM
constrained by an average power constraint, B |*] = p1,  or other practical coding schemes. Assuming a fixed bit error

IIl. THE SUM RATE MAXIMIZATION PROBLEM

which we assume to be upper boundedzpyor all /. rate (BER) at the receiver, the achievable data ratef the
The vector(p:,...,pr) is the transmit power vector andith user can be computed by the Shannon capacity formula
is the optimization variable of interest in this paper. Let= [22]:
[G,j],szl > 0rx 1 represents the channel gain, whétg = v (p)
;2 is the channel gain from thgth transmitter to theth lo <1 t T ) nats/symbal )
receiver, anda = (n1,...,nz)" > 0, wheren, is the noise
power at theth receiver. Figure 1(a) shows the system modelherel is the SNR gap to capacity, which is always greater
with the problem parameters for the 2-user case. than 1. In this paper, we abso(b/T) into Gy, for all I, and
Next, we define a nonnegative matikwith entries: write the achievable data rate as= log(1 + 7,(p)).
Ry = { GUJ !f l= 7 @ Letw = (w:,...,wz)" >0 be a given probability vector,
G if L # ] wherew; is a weight assigned to théh link to reflect priority
and . (a larger weight reflects a higher priority). Denote the det o

v ( n Ny ny, ) . 3 feasible powers:

Gii G’ Grr Q={pl0<p<p} (8)



Rate Region maximization problem. The unboundedness of the convex set
in (13) is due to the identity = e~ °.

We next denote the convex set in (13) by

D({F}) = {7 € R log p(diag(e”)(F+(1/m)ve; ) <0V},

symbal, | w>

ptimal rate vector™

nats/s:

& (14)
& eight vectqrw and define the first order derivative function of the objestiv
1 (nats/dymbd,  wy function in (13) by N
b (3 < e 15
@ (o R e R

i Theorem 2: The optimal value in (13) is achieved only on
Fig. 1. (a) The system model for the 2-user case. (b) lllustratingaehievable

~ & . ;
rate reglonR for a 2-user Gaussian interference-limited channel. Thetige weight the boundary OfD({F}) A pomt is an Optlmal solution

vectorw is superimposed on the rate region. Given a weight vestothe optimal rate  Of (13) if and only if the following conditions hold:
vectorr™ = [r], rj] is chosen on the boundary of the achievable rate region,erder

perpendicular line fromw (shown as the red dotted line) intersects wikh fl(ﬁ) (’Y /6) < 0V ﬁ € {f( ) ( )} and’y € D({F})
The sum rate maximization problem in a multiuser Gaussian ) ) (16)_
channel can be stated as [1], [4] [10], [17]: Now, smcg_D({.F}) is unbounded, we nged to consider
maximize Y., wyr = Zz L wp log(1 + 7(p)) ) a small mod|f|cat!on to (13) so that numenc_al methods that
subject to p € 9. compute the maximum value of convex functions on bounded
We denote the optimal solution of (9) bp* = closed convex sets can be employed [24]. In particular, we
(pt,...,p%)". For any feasiblep € €, we call r = consider (13) with additional constraints:
[r1,...,71], evaluated ap, a feasible rate vector that lies in D({F}.K)={y€ D({F}), ¥>-K1} (17)

the rate regiorR, which is the set of all feasible rate vectorsfor an arbitrarily large/X’ > 1. Note thatD({F}, K) is com-
The data rate evaluatedpt is given byr} = log(1+~,(p*)). pact and convex. The following lemma gives the description
For the two user case, i.el, = 2, Figure 1(b) gives the of the setD({F}, K).
geometrical illustration of the weighted sum rate maxirtiaa Lemma 2: Let p = P(e ¥1) = (eXT — F)~'v. Then
problem in the rate region, i.e., finding € R for a givenw. D({F},K) C {¥ \_log’y(E) <4 <logvy(p)}-
We now state an alternative formulation of (9) given in [19]. For the purpose of algorithm design, we replace the set
Theorem 1: The optimization problem in (9) is equivalentD({F}) in Theorem 2 byD({F}, K). Since K can be
to o made arbitrarily large, a solution i ({F}, K) can be made
maximize 3, w; log(1 + ) arbitrarily close to4* in Theorem 2. In the following, we
subject to p(diag(y)(F + (1/p)ve)) <1 VI, (10) propose a global optimization algorithm to find the optimal

variables: v, VI. F},K
Now, v* is an optimal solution to (10) if and only iP(~v*) value of (13) on the closed bounded det{F}, k).

is an optimal solution to (9). In particulat* satisfies
p (diag(v*) (F + (1/p)ve])) =1 (11) A. Outer Approximation Algorithm
for some integet =1, ..., L. ] )

Note that (11) implies that the optimal solution of (9) iskuc W_e Ie\{erage no_nneg_atlve matrix theory and the outer ap-
thatp} = p; for somei. The transformation frorBIR to power prQX|mat|on techmqu_e in [24], [25_] to gom_pute an exireme
in (5) plays a central role in obtaining the constraint set goint of D({F’LK) in (17) that ylelds.'y* In Theorem 2
(10), which facilitates our algorithm design with nonnagat OUr a@pproach is as follows: The feasible region containing
matrix theory in Section IV-A. It is also key to proving thethe optimal extreme point is f|rst em_bedded inside a compact
optimality conditions in Section IV. Note that the formutat POlyhedral convex set. Infeasible regions are then suvegs
given in (10) shows that an optimal solution to (@;, is in removed from this initial polyhedral set. This method gener

general not unique ates a nested sequence of polyhedrons approxima{d'})
from the exterior. It is noteworthy that the computational
IV. GLOBAL OPTIMIZATION performance of this method depends on the choice of this

initial polyhedron, i.e., the method is effective if thisitial
olyhedron is a tight fit [24], [25].
To make our problem amenable to outer approximation

In this section, we show that (10) is equivalent to a
optimization problem that maximizes a convex function o

i T
a closed unbounded do~ma|n. For= (71, 7) " >0, let and to enable a fast computational algorithm (by finding the
: - T = log% ) (12) tightest initial polyhedron), we first approximate the convex
e,y = e7. Then, (10) is equivalent to: setD({F}, K) by a bigger polyhedral convex sets as follows
maximize f() =, w;log(1+ ) ' y a bigger poly :
subject to log p(diag(e?)(F + (1/pz)Ve, ) <0 VI, « Choose a finite number of point,,...,¢,, on the
variables: 7 = (51,...,9n)" € R- boundary of D({F}, K).
(13) o Let Hi(§),...,Hn(£),€ € R be the N supporting
Remark 1: Now, for a nonnegative irreducible matrig € hyperplanes ofD({F}). Note that we can have more
]R{iXL, log p(e*B) is a convex function [23]. Therefore, the than one supporting hyperplane &f, and at mostL
constraint set in (13) is convex. Also, sindeg(1 + e7) supporting hyperplanes. So eatle D({F}, K) satisfies

is strictly convex iny; € R for all I, (13) is a convex the inequalityH;(§) <0forj=1,...,N.



« Define the polytope D) described by the set of constraints:
D¢y, Gy K) = {£ € RY, ~K1< £ <log¥, S (x(F+ (1/p)ve) ) oy(F + (1/pi)ve )75+

J
(18) log p(F + (1/p)ve] ) <0,
and output this polytope that contaify {F}, K). (23)
Now, using the polytopd (¢, ..., ¢y, K), we have and¥, > —K for all 1. Let V(%) be the set of vertices

~ max fF) > max  f(7). (19) of D), Setk = 1 and go to Step 2.

YED(Cy o Cn K) 0 FED({FLK) _ 2) Iterationk: Solve the problem:
Furthermore, sincg (7) is strictly convex, the maximum on maximize 3, w; log(1 + ™)
the lefthand side in (19) is achieved only at an extreme point i ! k—1 (24)

(19) y P subjectto 4, € D*~1)

of D({;,...,¢y, K). Though solving the lefthand side in

3

; ! ) . : by selecting max wilog(l+e) v e VE-DL
(19), being a multiextremal problem, is still computatipa y g {Zl ¢ Log( ) }

Let #* be the optimizer to (24).

challenging, it can lead to provably correct solutions unde 3) Compute
well-defined conditions. A ) r -1 k

We now show how to efficiently compute the supporting hy- p = (I — diag(exp(¥ ))F) diag(exp(7"))v.
perplanedi;,j =1,...,Nfor N = Lin D((y, ..., ¢y, K). (25)
To do that, we give a characterization of supporting hypea ~ 4) If p* < p, stop:5"* is the solution to (13) ang* is the
of D({F}) at a boundary point € dD({F}) based on the solution to (9). Otherwise, let
Friedland-Karlin inequalties in [26]. An extension of tees JF = {i : log p(diag(exp(¥*))(F + (1/p)ve]))
inequalities are found in Theorem 6 in Appendix Section J. = max log p(diag(exp(¥*))(F + (1/p;)ve;] )}

=J

Theorem 3: Letp = (py,...ps,)" > 0 be given. Consider
the convex set (14). Leg be a boundary point a®D({F}).
Then(¢ = log(p), where0 < p = (p1,...,pr)" < p. The

setB := {l € (L), ;m = pi} is nonempty. For each matrix

and choose any* € J*.
5) Compute the left eigenvectqgr;» and right (Perron)
eigenvectorx; of diag(exp(7*))(F + (1/p;+)ve .).

_ T _ T L ; et . - _
]f]l ~ (Fdf (1/19127‘;;1 ) iet[? - (nﬁf ..,m) " € RY satisfy G% (%) = log p(diag(exp (7)) (F + (1/p;)ve 1)+
the conditionp(e 12:7 . DefineH,(¢) as fexp(7*)0 x w0y 11T (5-5*)
p(diag(exp(5")) (F+(1/p,x)ve )

H,(¢) = Z z;j(B1)y; (Bi)((€); — ) (20) 4 (26)

ThenH,; < 0, for l]e]B, are the supporting hyperplanes of 6) Set D" = _D(k Vn{y s G < 0p v =
D({F}) at¢. {extreme points oD},

We now show how to choose the boundary points 7) Setk < k+1. Go to Step 2.
Ciy---,Cy € OD({F}) and to compute the supporting
hyperplanes ofD({F}) at each¢;. Let p = P(e %1) =
(p1,...,pr)" be defined as in Lemma 2. Choosé > 2
equidistant points in each intervgl , p;], and define

The following result establishes the convergencepbfin
Algorithm 1 to the global optimal solution of (9).

jip, + (Mi — ji)p: ; ) Theorem 4: Every limit point of the sequence

Piii = - for'h:]'7"'7Mi7Z:]-:"-;L. k : ~k -1 ~k

i @y P~ (I — diag(exp(y ))F) diag(exp(7"))v solves (9).
et T We add the following remarks concerning the implementa-

P = { p(f'h--wfh = (pj1717---=sz,7L)) ; } tion and optimality of Algorithm 1.
min(pr — pj,,1,---.PL — Pjr.L) = 0. . |
Thatis,pj,,....j, € P if and onlypjh__mL% 5. Then Remark 2. At~ Step 5, thTe gradient  of
{Gir--- G} = logy(P). log p(diag(exp(9))(F  + (1/pj+)vel.))  (given by

The supporting hyperplanes @f({F}) at each¢; are given [exp(¥) o x;x o y;x]/p(diag(exp(7))(F + (1/p;x)ves)))
by Theorem 3. Thus, we have established thenique hy- at 4* is used to construct the inequality cut given by (26)
perplanest,; (&) <0 forl=1,...,Lin D({,,...,¢y, K): that separate§” (infeasible with respect to (13)) from the

Hy (&) =) (x(F + (1/p)ve] ) o y(F + (1/p)ve; ));(£); feasible constraint set of (13).

Remark 3: A finite number of iterations can be obtained by
(22) replacing the stopping rule at Step 4 with stoprifix; pf —
Based onD((,, ..., ¢, , K) in (22), we propose the follow- P! < € OF stop iflog p(diag(exp(F*))(F+ (1/pjx)ve i) <«

ing algorithm that computes the optimal solution of (13). Wheree is a positive error tolerance number.

J
+logp(F + (1/p)ve] ) <0,0=1,...,L.

Remark 4: At Step 6, an online vertex enumeration pro-
Algorithm 1 (Sum Rate Outer Approximation Algorithm): cedure (for example, see [24]) can be used to speed up the
« Input. D(Cy,...,¢p, K) with Hy(€),V1 given in (22). computation of the new vertex stk

« Output. ~ Optimal  solution  p*  of  (9).  Remark 5: Note that every limit point of the sequengex

for any j* € J* converges to the limit point of the sequence
1) Compute the vertices of the enclosing linear polyhedrqst in Algorithm 1.




restricted problem of (13) and its solution (correspontjing
that of (9)) is given in the following.

(12) ’y( D({F}) € RE Lemma 4: The optimization problem
¥ €

peneR @O, RL
approximation maximize 3}, w;log(1 + ™) .
subjectto 4 < mlin —logp(F + (1/p;)ve; )1.
has a solution that is an extreme point/of{F}) and is given
byy = — logp(F—l—(l/pi)veiT)l, wherei = min; — log p(F+
(l/ﬁl)velT ). Then,x(F-l—(l/pl)ve:) (unique up to a constant)
Fig. 2. A summary of the transformation and m_ap[iing betwéenpower  solves (31).
p, the SIR « and theSIR in the natural base logarithry. Remark 6: Interestingly, the inner approximation in (31)
B. Spectrum-sharing constraints yields the same solution as maximizing the minim@&iR
Cognitive radio power constraints or interference temperaubject to the individual power constraints (cf. Theorerm2 i
ture can be readily incorporated in our optimization frarogw [17]).
and algorithm by defining an appropriate We briefly discuss how to enhance Algorithm 1 using
Q={p|0<p<p}In{p|Ap<pa}, (27) the above result. Inner approximation techniques sucheas th
where A € RT'*". We also assume th&? in (27) is such Polyhedral Annexation method (cf. Chapter 6, [24]) can be
that the setsl p | Ap < pa} and{ p | 0 < p < p} are applied using the constraint setin Lemma 31 as the initizin
not strictly contained in each other. This implies that=p; approximation. In brief, the Polyhedral Annexation method
for somel. The set{ p | Ap < pa} is general enough to generates a sequence of expanding polyhedrons contained in
model constraints on the received power of a subset of link§{F}) that approximatesD({F}) from the interior. This
or constraints that limit the interference level. methodology isdual to and complements the outer approx-
First, we consider the individual power constraints. AtgSteimation technique described in Section IV-A. We refer the
3, a feasible point to (9)p*, is easily obtained by using areaders to [24] on standard global optimization algorithms
projection on to the box constraifl, pl: e.g., branch-and-bound techniques, to combine and aateler
¥ = min{pf,p} VI (28) the inner and outer approximation techniques. Interelsting
Using Theorem 4, every limit point of the sequerfdesolves the inner approximation given by (31) optimally solves (13)
(9). Further, it can be shown that the rate vector generatedwhen the optimal solution of (13) is such that tBiR’s are
p* always lies on the boundary of the rate region. all equal (cf. conditions under which the equality in Lemma
We next turn to the spectrum-sharing constraints given hand Theorem 6 holds).
(27) by considering the projection @ onto Q2 [27]:
minimize ||p* — p*||»
subject to p* € Q. , , ,
Theorem 4 can be adapted to show that every limit point of W& now turn to a relaxation technique that can solve special
the sequence® given by (29) solves (9) wit2 in (27). Cases of (9). We define the matix as

z (31)

4 € D({F},K) € RL

(29) B. Relaxation

We summarize the relationship between the sB§F}), F =F +diagy) . (32)
D({F},K), established by the transformation (4), (5), (12) Lemma 5: Let0 < p < p. Then, _
and (29) used in Algorithm 1 in Figure 2. ] p > diag(y(p))Fp. (33)
an
V. APPROXIMATION AND RELAXATION TECHNIQUES p(diag(y(p))F) < 1. (34)

Next, using (34) and the logarithmic change of variable

Although Algorithm 1 can find the optimal solution, itigchnique, we consider the following optimization problem
remains plausible only for small-to-medium problem size maximize f(7)

(before the ver_te_x_ set_of the outer approximating poly_tope subject to log p(diag(e™)F < 0, (35)

reaches a prohibitive size). We now turn to other techniques 5 < log~.

that yield further insights to solving (9). The following result shows that (35) is a relaxed problem of
(13).

A. Inner Approximation Lemma 6: The optimal value of (35) is not less than the

We first state the following result in [26, Theorem 3.1] tha?pt'maI value of (9). Furthermore, the optimal solution 85,

. o ', satisfieslog p(diag(e? )F) = 0.
can be used to construct an inner approximatioM¢fF}). 7 ) Y L .
Lemma 3: For any nonnegative matrik and positive vec- Lerrma ,7 I p* =P Orp"1s such thap; = 0 for somel
tor ~, andpj = p; for j # 1, then )
H *
p(diagy)F) < max 3p(F). (30) _ pldiag(y(p"))F) = 1 (36)
! Remark 7: Since (35) is a relaxed problem as compared to
Equality is achieved in (30) if and only i, are equal for all (9), both Lemmas 6 and 7 imply that if the optimal solution of
l. (35),~', satisfiesP(y') < p, thenP(%') is also the optimal
Applying Lemma 3 to each constraint in (13), a smallegolution of (9).
convex subset of)({F}) (replacing the constraints in (13)We obtain the following special case result by combining

by restricted box constraints) can be easily obtained. TausLemma 7 and a result in [7].



Corollary 1 (2-user Sum Rate): When L = 2 and w = “oe | generatod verices | ferations | (minutes)
(3 5,) . p* is one on the following three v?ctorﬁPl, 0) ., > 5 R 0062
(0, ;) or (P, P,) . Furthermorep* = (P, 0) only if 4 139 760 471
= = _ I * Py’ 6 14022 1238 83
pip2FiaFo1 — 0.5v102 — v1ps > 0, andp* = (0, ») only 3 583681 1968 768

if p1p2Fi2Fo — 0.5v1v2 — vap1y2 > 0.
Remark 8: From the above special case, the relaxed prob- TABLE |
lem (35) is t|ght Whenp* is one of the on-off vectors: A COMPARISON OF THE TYPICAL CONVERGENCE AND COMPLEXITY

(]517 O)T, (0, pZ)T and the corresponding necessary condiSTATISTICS OFALGORITHM 1 WITH THE PROBLEM SIZE THE CPUTIME
tions in Corollary 1 are met. IS COMPUTED BASED ON AN IMPLEMENTATION ON A64-BIT

SUN/SOLARIS 10 (SUNOS5.10) COMPUTER
VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illugtra
the performance of Algorithm 1 in Section IV-A and how
the approximation technique in Section V can be applied |
solving (9) for two users, i.e.. = 2. Consider the channel
gain matrix given by

tt)ne optimization problem in contrast to a modest number of
orPtlmlzanon problems in Algorithm 1).
Next, we repeat our previous experlment but the parameters
= [100.8 100. 5] andp = [300.8 300.5] are used instead.
Flgure 5 (a) and (b) illustrates the convergence for these
0.73 0.04 . : : . :
G = . (37) two different maximum power constraints respectively.ikil

0.03 0.89 . ) : S
Let the maximum power constraint vector bp = the previous experiment, the optimal solution in these two

[1.8 100. 5]TmW and the noise power of each usertbemw. scenarios are such that one user is transmit_ting at_ maximum
The weight vector is given by = x(F + (1/5;)ve] Joy(F+ POWer and the other user does not transmit. As illustrated,
(1/p;)ve; ), wherei = argmax; p(F + (1/p;)ve, ). We set the rate vector (;omputed by Algorithm 1 already app_roaches
e =1x 10" and K = 100 in Algorithm 1. Now, the optimal cIose_to the optlr_nal rate vector by the_sev&_anth |_terat|onl, an
solution is achieved at the equalR allocation for the two Algorithm 1 terminates at the twenty-eigth iteration forttho

i i — -8
users (equivalent to maximizing the minimi§iR problem), Scenarios (withe =1x10"%. =
wherep* = x(F + (1/p;)ve] ) = [1.8000 1_442]T_ Thus. the  Lastly, we vary the problem size, i.e., the number of users,
optimal sum rate g 23136 nlats/symbol ’ and evaluate the number of iterations, the maximal number of

At the first iteration. the vertices ofV(® are Verticesupon exitand the CPU time required to run Algorithm
(0.9959, 5.1941). The vertex ofV(®) having the maximum Matlab and runs on #4-bit Sun/Solaris10 (Sun0S5.10)

objective function value isy' = (39.4757 — 100.0) computer. _Table I compares the average s’Fatistics on elifter
and p' = [1.909 x 10'° O]T. At Step 4, evaluating problem size. As |Ilustr§1ted,_AIgor|thm 1 is effective for a
each constraint function a§' = (39.4757 — 100.0), network ofsmall-to-medmm size. Fora_large number of ysers
we have log(dmg(‘ JF + (1/p)ve])) = 369 and the gomplexny of enumerating the vertices at S_tepZCan grow
log(diag(3")(F + (1/p2)vel)) = —33.4. We thus choose prohibitively large as the number of iterations increases.

j' = 1, and a new constraint is obtained at Step 5 as

5 < 2.5757. VII. EXTENSION TOMULTIPLE CARRIERS AND

Therefore, we haveD! — DO N {5 : 4 < 2.5757) INTERFERENCESUPPRESSIONRECEIVERS

at Step 6. The vertices o' are (—100.0, —100.0), A Multiple Carrier Model

(=100.0, 103.6279), (2.5757, —100.0), (2.5757, 0.8754), In this section, we extend our previous results in Section
(0.9959, 5.1941). We then proceed to Step 2 to find thell to a multiuser multiple carrier model, where a common
optimal vertex ofD*. spectrum is divided intd< frequency tones denoted Hy).

After twenty nine more |terat|ons we arrive at the powsefFor illustration purpose, we assume the standard synchsono
vectorp?? = [1.8000 1. 442] andmax; p;¥ —p; = 5.5485 x  orthogonal frequency-division modulation, where orthoale

109, whereupon Algorithm 1 terminates. Figure 3 illustrately among subchannels of the intended signal and the sub-
the evolution of the approximating polyhedron, where Figurchannels of the interference signal in different frequency
3(a) and (b) show the initial enclosing polyhedrtt?) and tones is maintained.Thus, transmissions can be modeled
the polyhedrorD (4 at the fourteen iteration respectively. Wendependently on each tone. The achievable rate at tone
observe that, by the fourteen iteratiai{'*) provides a rela- can be modeled as [22]:
tively good approximation to the feasible regié{{F}, K). Gu bk
Figure 4 (a) and (b) illustrates the convergence of the rate log | 1+ S, G N +n (38)

- A1 Y15,k Pj .k 1,k

vectors generated bog(1 + 71 (Pk)T) log(1+72(p*))] and The total data rate for each user is then obtained by adding
[log(1 + ~v1(p*)) log(1 + ~2(p*))] respectively. As shown its transmitted bits over all th& tones. The total power budget
on Figure 4 (b), the rate vector converges close to the optingd the Ith user is constramed (across &ll tones) by
rate vector by the tenth iteration. Figure 4 also illussatee
optimal rate vector. thk <m. (39)

Note that the inner approximation technique, i.e., solving =
(31) in Lemma 4 yields the optimal solution (solved by 3This is also known as discrete multitone modulation in the. @Sntext.
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It is easy to see that our previous model in Section This results in intercarrier interference (ICI) and tonegiing
is a special case of this multiple carrier model assumirig (38); as mentioned earlier, ICI effects are capturedbin
standard synchronous discrete multi-tone (DMT) modutatiq40), where the optimal solution to (43) is then characestiz
when K = 1. by the spectral radius of an appropriately constructedfirte

For brevity of notations, we define € R\ *") as a vector ence matrix. This means, the appropriate choice of suppprti
that stacks theél x L power allocation lined-up according tohyperplanes permits decoupling of both users and frequency
tones of all users. For example, if = 2 and K = 2, then tones in theSIR domain.
P = (p1117p1727p2117p212)T . Slmllarly, we deflne"/ € ]RS_KXL)

as theSIR allocation, and the matri¥' having entries: B. Receivers with Interference Suppression
Fiip = 0, ifi=ji,jefl,....,L}, ke{l,....K} |nstead of treating multiuser interference as noise, more
ij.k —

Gij, H . . L . . . . .
oo Wi i jef{l,...,L}, ke{l,...,K} sophisticated receiver techniques can improve the daea rat
(40) performance. For example, multiuser detection techniques

and . that decode and cancel the signals of other users or using
_ [ P11 N2 niK  MN21 nr K receive beamformers at the user increases the reliability o
Giig Guyp' UGk Ganl Gk ) decoding the desired signal. The receiver techniques can al

be integrated with the different cognitive spectrum segsin

Note that asynchronous transmission can result inithe techniques [4], [5] that adapt the effective channel.
user at toné having interference from the power allocation at We briefly discuss how some of these different receiver
neighboring tones of torle Hence, in generak’ is not a block techniques can be incorporated into our problem formula-
diagonal matrix. However, assuming synchronous trangomisstion and leave the details for a future work. In general,
of all users,F is block diagonal. the various interference suppression techniques charge th

As in the previous, théth user is given a positive weightspectra (Perron-Frobenius eigenvalues and eigenveofdis
parameten; to reflect its long-term priority. The problem ofnonnegative matrices considered in this paper. For example
maximizing the weighted sum rate in a Gaussian channel witthen multiuser detection is considered, i.e., user degpidin

K frequency tones is given by: first ordered based on the receiveNR, the resultant matrix
= K F in (2) is then upper triangular. When transmit or receive
K o WZ“’Z > log(1 +7.4(p)), (42)  beamformers are considered, the effective channel gain and
=105 = =1 k=1

cross interference, i.e., the entries Bf become functions
{of beamformers. Let the set’ be the set of all possible
nonnegative matrices for a particular receive strategyh wit
interference suppression. One possible way to optimize ove
max Y Y dyxlog(l+mk(p). (43) F isto choose the matrif € F such that it solves
RN = wax min p(diagy)(F + (1/p)ve; ). (46)
wherew, ; = (w;/K)foralll € {1,..., L}, k € {I,..., K}, Algorithm 1¢an then be used to optimize the power by using

~ (KxL) . .
andw_ € Ry . IS _a_probabmty vector. _ . the optimal matrixF' that solves (46).
As in Section lll, it is instrumental to consider an alteimat

formulation of (43). VIIl. CONCLUSION
Theorem 5: The optimization problem (43) is equivalent to

wherey k= Gurpii/(3 4 Gijrpjk + nuk). In order to
be consistent with our previous results, we shall consider
following equivalent problem:

L K

. L i We studied the nonconvex NP-hard problem of weighted
thrﬁz;)(()ilrlﬁivzvéngi)ptz'gn'zﬁt'?n E’lr(fle,?;' sum rate maximization in a multiuser Gaussian channel that
. L Wik OBL T L) - models a cognitive wireless network with affine power con-
subject to p(diag(y)(F + (1/p1) X ke Ve(—1)x i) < L straints, e.g., an interference temperature constraisingJ
) V%, tools from nonnegative matrix theory, in particular therBer
variables: f, VI, Vk. Frobenius Theorem and the Friedland-Karlin inequalities,
Y ) i ) ) (4f) we obtained necessary and sufficient conditions to optimal
_ Now, 7y i1san oppmal solution of (44) if and only 'P(_'Y ) power allocation and proposed a computationally fast dloba
IS an OP“ma' SO'Pt'orP* OT the problem (43). In particular, optimization algorithm. In particular, we designed an oute
any optimal solutiony* saﬂs}?es approximation technique that exploits the spectra of sigci
: * _ T _ crafted nonnegative matrices to accelerate computatioan. W
p | diag(y") ( F+ (1/pl)kz_:]ve((’l)XK+k)>> b (9) also studied an inner approximation method and a relaxed
for some integel € [1, L]. problem that provided insights to special cases. Our tegles
Using Theorem 5, it is straightforward to extend Algorithn@nd algorithm can be extended to the multiple carrier model,
1 in Section IV-A to design optimal spectrum manageme#td., an OFDM cognitive wireless system, and systems with

schemes for multiple carrier channels. receivers having interference suppression capability.
We add the following brief discussion to get more intuition
on the above theorem. Our techniques are general enough ACKNOWLEDGEMENT

to deal with asynchronous transmission, where the powerThis research has been supported in part by ARO MURI
allocations in neighboring tones interfere with one anothédward W911NF-08-1-0233.



APPENDIX G. Proof of Lemma 6
A. Proof of Theorem 2 In view of (34), we see that the optimal value in (35) is

Sincew > 0, the objective function in (13) is a strictly @chieved on a bigger set than that in (9). Singé) and
convex function in§ € RL. Hence, the optimal value of log p(diag(e¥)F) increase withy, this proves the lemma.
(13) is achieved exactly on an extreme point of the closed
unbounded set specified in (13). It may happen that sorde Proof of Lemma 7

coordinate of the extreme point (optimal solution) areo. The definition of F' implies (36) forp* = p. Assume now
Since (13) is a strictly convex maximization problem, thghatp = 0 for somel. Theny,(p*) = 0 for somel. Then, the
optimality conditions given by (16) can be obtained (cf.[128 ;th row of diag(v(p*))F is zero. LetF, be the submatrix
of F obtained by deleting théth row and column. Lety,
be the vector obtained from by deleting thelth coordinate.
From the definition of K, we have p(e "(F + Hence, the characteristic polynomial dfag(<)F, det(zI —
(1/pi)ve; ) < 1forl =1,...,L Thus,—K1 € D({F}). diag(y)F, is equal tox det(zI — diag(~ ) F(;)). Therefore,
Let y = e ®1. Assume thaty € D({F},K). Theny > p(diag()F) = p(diag () F(;)). Continuing in this manner,
—K1. Hence,sy = ¢Y > ~. Sincep(diag(v)F) < 1, we have we deduce the lemma.
p = P(v) > P(v) = p, where P is defined by (5). The
inequality P(v) < p can be proved likewise. I. Proof of Corollary 1

B. Proof of Lemma 2

C. Proof of Theorem 3 The first part of Corollary 1 is a _result of [7]. 1_'0 prove

the second part, we note that, using the mapping in (5),

, . - . maximizingw; log(1 + 1) + w2 log(1 + v2) or equivalently,

p(e¢B;) = 1 if and only if p, = p;. Hence,( lies exactly at : : = :

the int " f the h ¢ By —oilep M + 72 4+ 7172, subject top(diag(~v)F) = 1 (from (36) in

_”? n erse70_|020 g. )éper_sur ic.bgf_(e hl) _h P €D | emma 7) is equivalent to the following linear program:
eorem 7 in Appendix Section J implies that the supporting ,aximize (P1P2Fi2Fo — 0.50102) (71 + ¥2) — 1D

hyperplanes oD ({F}) at ¢ areH,(¢) <0 for ! € B. oY

bject t < A~.
D. Proof of Theorem 4 subjectio v <% n

The proof of convergence 6§* to the optimal solution of  As a linear program with two variables over a simple box
(13) by cutting plane methodology canlbe found in [24]. Sinagonstraint, (47) has an optimal solution that is an extreme

the mapp* — (I—dlag(exp('y ))F) diag(exp(3*))v is Point. If F is a non-zero matrix, the solution iy, 0)"

. _ T
bijective, the limit point ofp* solves (9). This proves the OW I p1p2Fi2foy — 0.50102 — wipy 2 0, and (0, %)
theorem. only if p1paFi2Fa — 0.50102 — vap1y2 > 0. Using (5), the

corresponding optimal power vector is deduced as given by
E. Proof of Lemma 4 Corollary 1.
Lemma 4 is easily proved as the objective function in ) o o
(31) is monotonically increasing and by using the equality Results based on Friedland-Karlin inequalities
condition of Lemma 3. Since all users achieve eci& or We state some nonnegative matrix theory results from [26]
more precisely, the maximum of the minim@&iR, the optimal and [19] that are used in this paper. The following result
power is given byx(F + (1/p;)ve, ), unique up to a constantextends [26, Theorem 3.1]:

Let p = P(e¢). Since the set3 is nonempty, we have

(cf. Theorem 2 in [17]). Theorem 6: Let A € RL*L pe an irreducible matrix.
Assume thatx(A) = (a:1 (A),...,z(A)T, y(A) =
F. Proof of Lemma 5 (y1(A),...,y(A))"T > 0 are the Perron right and left eigen-

Since0 < p; < p;, we haveEyp, < v, for all I. By the defi- Vvectors ofA respectively, normalized such thatA) o y(A)

nition of ~(p) in (4), we havep; = v (p) (Uz n Z#z Ejpj), is a probability vector. Suppose thatis a nonnegative vector.
- Then

which together yvith tht_—? definition of', we have (33)._ T_o 1—[7 A)oy(A)) < p(diag(y)A). (48)

prove that the inequality (34) holds, we note that it is a

consequence of the Wielandt’s characterization of thetsglec If ~ is a positive vector then equality holds if and onlv if
radius of an irreducible matrix [20]. Indeed, jif > 0, i.e., v P d y y

all the coordinates op are positive, theny(p) > 0. Hence, ?" nare )eTqutf;l]Ie :,:Olilr(t)cve":m?ﬁ L(;r“tangm%(;smve vector=
diag(~v(p)))F is a positive matrix. Then, by the Wielandt's e 2L g nequaty

. . . z), | XAy (A
max-min characterization of the spectral radius, we have ) < H < > ) (49)

. - (diag(v(p))Fp):
p(diag(~y(p))F) < ,max <l If A is an irreducible matrix W|th positive diagonal elements,

..... P
Observe next that ifp; = 0 ~then ~(p); = 0. So if some then equality holds in (49) if and only #f = ¢x(A) for some
of p = 0, thenp(diag(v(p))F) is the spectral radius of the positivez.

maximal positive submatrix ofliag(~y(p))F. Apply to this The following result gives an interpretation of the inedgyal

positive submatrix Wielandt's characterization to ded(88). (48) in terms of the supporting hyperplane of the convex



function log p(e!B), where B € R%*" is irreducible and
€ € RE.

Theorem 7: Let B € RY*" be an irreducible matrix.

Let n € RI satisfy the condition
p(e"B) = 1. Denote A = ¢"B and assume that(A) =
(z1(A),...,z(A) T, y(A) >0
are the Perron right and left eigenvectors Afrespectively,
normalized such that(A)oy(A) is a probability vector. Let

HE) = 3 w(Au(A)E - ).

)T

(50)

=1
ThenH(&) < 0 is the unique supporting hyperplane to the7)

convex sefog p(efB) <0 até = 7.
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