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Abstract

LDPC codes are serious contenders to Turbo codes in terms of decoding perfor-
mance. One of the main problems is to give an explicit construction of such codes
whose Tanner graphs have known girth. For a prime power q and m ≥ 2, Lazeb-
nik and Ustimenko construct a q-regular bipartite graph D(m, q) on 2qm vertices,
which has girth at least 2dm/2e+ 4. We regard these graphs as Tanner graphs of
binary codes LU(m, q). We can determine the dimension and minimum weight of
LU(2, q), and show that the weight of its minimum stopping set is at least q +2 for
q odd and exactly q +2 for q even. We know that D(2, q) has girth 6 and diameter
4, whereas D(3, q) has girth 8 and diameter 6. We prove that for an odd prime
p, LU(3, p) is a [p3, k]-code with k ≥ (p3 − 2p2 + 3p − 2)/2. We show that the
minimum weight and the weight of the minimum stopping set of LU(3, q) are at
least 2q and they are exactly 2q for many LU(3, q) codes. We find some interesting
LDPC codes by our partial row construction.

1 Introduction

Low density parity check (LDPC) codes were originally introduced by Gallager [5]. They
have again become interesting because of the success of iterative decoding for Turbo
codes. LDPC codes are competitors of these codes in performance of iterative decoding
algorithms, as their performance approaches the Shannon limit [11]. Tanner’s graphical
representation of LDPC codes [12] influenced much of the current literature. Most of these
codes are constructed randomly, but explicit constructions are needed for implementation
purposes as well as for knowing the properties of these codes. We give such constructions
based on constructions of graphs with good girth.



Let m ≥ 2 be an integer and q a power of a prime. In [9] Lazebnik and Ustimenko
construct a family D(m, q) of q-regular bipartite graphs on 2qm vertices, with qm vertices
called points and qm vertices called lines. Points and lines are elements of GF(q)m and
equations are given in [9], which determine incidence of points and lines. If a point is
incident to a line, an edge joins them in D(m, q). It is further shown [9] that when m is
odd, D(m, q) has girth at least m + 5. It also follows from general graph homomorphism
results of [10] that the girth of D(m, q) is not less than the girth of D(m− 1, q), so for m
even, the girth of D(m, q) is at least m+4. Thus for all m, the girth of D(m, q) is at least
2dm/2e+4. We let H(m, q) be the incidence matrix of lines and points of D(m, q), where
rows are indexed by lines and columns are indexed by points, and consider H(m, q) and
H(m, q)T to be parity check matrices of binary codes of length qm called LU(m, q) codes.
In other words, we take D(m, q) to be the Tanner graph [12] of the LDPC code LU(m, q)
and investigate the properties of these codes. As the rows as well as the columns of
H(m, q) are linearly dependent, the dimensions of these codes need to be determined.

The following is shown in [9].

Proposition 1 Any two rows (columns) of H(m, q) have a 1 in at most one common
column (row).

This implies that the girth of the graph is at least 6.
We show that D(2, q) has girth 6 and diameter 4. We derive the parameters of all

LU(2, q). When q is even we obtain Euclidean geometry codes.
We have computed the dimension of LU(3, q) codes through q = 25. We prove that

D(3, q) has girth 8 (already shown in [13]). This implies that the minimum weight of
LU(3, q) is at least 2q [12]. We show that when LU(3, q) is derived from H, the minimum
weight is exactly 2q. For q ≥ 3 the diameter of D(3, q) is 6 [13]. We conjecture the
dimension of LU(3, q) to be (q3 − 2q2 + 3q − 2)/2 when q is an odd prime power and
prove that it is at least (q3 − 2q2 + 3q− 2)/2 when q is an odd prime. When q is odd we
apparently have a family of codes whose rates approach 1/2.

We examined some LU codes for m = 4, 5, 6 and 7 and we give our observations. We
give a lower bound on the minimum weight of LU(m, q) in terms of q and m for odd m
using Tanner’s bound [12].

A stopping set in an LDPC code is a binary row vector having the length of the code
that does not have exactly one 1 in common with any row of the parity-check matrix.
A minimum stopping set is a nonzero stopping set with minimum weight. Note that
any codeword is a stopping set, and therefore the minimum weight of a code is at least
the weight of the minimum stopping set. The weight of the minimum stopping set is an
important measure of the performance of a code with iterative decoding over the binary
erasure channel [4]. We show that for LU(2, q) the weight of the minimum stopping set
is at least q + 2. It follows from [12] that the weight of the minimum stopping set of
LU(3, q) is at least 2q. We show that equality is achieved for LU(3, q) obtained from
H(3, q).

We use a new technique, the partial row construction, to obtain codes with larger
rate than LU(m, q) codes but not smaller girth. We give lists of interesting codes found
in this way.

A preliminary version of this paper appeared in [6].
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2 LU(2,q) Codes

Definition 1 ([9]) In D(2, q) a point (a, b) is on a line [x, y] if and only if y = ax + b,
where a, b, x, y are in GF(q).

We label the rows and columns of H(2, q) with the pairs [x, y] and (a, b) ordered lexico-
graphically under a fixed ordering of GF(q). If q is a prime, this is the usual ordering;
if q is a prime power, we order the elements of GF(q) in some way, say as powers of a
primitive element, with the element 0 first. It can be seen that H(2, q) consists of q2

q× q permutation matrices, where each permutation matrix corresponds to a fixed a and
a fixed x. If q is a prime, these permutation matrices are circulants. So the first q rows
of H(2, q) consist of q permutation matrices, similarly for the next q rows, etc.

We call a row block the set of all rows with fixed x, and a column block the set of all
columns with fixed a.

Proposition 2 No two rows in a row block have a 1 in common, i.e., in the same column.
Any two rows from different row blocks have exactly one 1 in common. Similarly for
columns.

Proof. This follows from Definition 1. 2

Example.

H(2, 3) = {Hij} =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0


,

where i, j run over the index set {00, 01, 02, 10, 11, 12, 20, 21, 22}.

We also note that the code whose parity check matrix is H(2, 3)T is the same as the
one with parity check matrix H(2, 3).

Theorem 1 For q > 2, all D(2, q) have girth 6. Also all D(2, q) have diameter 4.

Proof. By Proposition 1, the girth of D(2, q) is at least 6. We show that we can find a
cycle of length 6. The first row r1 of H(2, q) has a common 1 with the first row r2 in the
second row block in a column c1. There is another column c2 with a 1 in r2. Column c2

has a 1 in a unique row r3 of the third row block. Row r3 must have a common 1 with
row r1, but not in c1 (or else r2 and r3 would have two common 1’s) and not in c2 (or else
r1 and r2 would have two common 1’s). So there is a third column c3 having common
1’s with r1 and r2. Then r1 − c1 − r2 − c2 − r3 − c3 − r1 is a cycle of length 6 in D(2, q).

Two rows in different row blocks and two columns in different column blocks have
distance 2 from each other. A row and a column have distance 1 or 3, and two rows or
columns in the same row or column block have distance 4. Hence the diameter of D(2, q)
is 4. 2
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Theorem 2 If q is odd, the two LU(2, q) codes are the same [q2, q − 1, 2q] code, whose
group has order (q!)q+1.

Proof. We construct a canonical spanning set of LU(2, q)⊥. If we add all the rows in any
row block of H(2, q), we obtain the all-one vector. If we add up all the rows in H(2, q)
that have 1 in a fixed column, we will be adding one row from each row block. If for
example the column is the first column, the resulting sum will be

10 . . . 0︸ ︷︷ ︸
q

11 . . . 1︸ ︷︷ ︸
q

. . . 11 . . . 1︸ ︷︷ ︸
q

.

This is so since no two rows in a row block have a 1 in common by Proposition 2 and
since q is odd. Hence LU(2, q)⊥ contains all the rows of the following matrix

A =


E 0 . . . . . . 0
0 E 0 . . . 0
...

...
...

...
...

0 0 0 . . . E
1 1 1 . . . 1

 ,

where E = I + J with I the q × q identity matrix and J the q × q all-one matrix, and
where 1 is the all-one row vector of length q.

As E has rank q−1, A generates a code of dimension q(q−1)+1 (the all-one vector of
odd weight is not equal to any sum of previous rows, as all such sums have even weight).
It is not hard to see that the rows of A span LU(2, q)⊥, as we can express any row of
H(2, q) as a sum of these rows. Hence for q odd, dim(LU(2, q)) = q2−(q(q−1)+1) = q−1.

From the generating set A of LU(2, q)⊥, we see that the group of this code consists of
Sym(q) operating independently on each column block of q elements, and another Sym(q)
permuting the q column blocks. Hence for q odd, the group of LU(2, q) has order (q!)q+1.

We can also determine the minimum weight of LU(2, q) by looking at A. The dual
of each E is the all-one vector of length q. But as the all-one vector of length q2 is in
LU(2, q)⊥, every vector in LU(2, q) has even weight. So the minimum weight of LU(2, q)
is 2q. LU(2, q) can be regarded as all even-weight row vectors made out of all-0 and all-1
blocks of length q. As we also get A as above for H(2, q)T , the two LU(2, q) codes are in
fact the same. 2

When q is even, we get interesting results.

Lemma 1 H(2, 2s) is the incidence matrix of 22s points and 22s lines consisting of par-
allel classes from the affine plane AG(2, 2s). Further, the code C generated by H(2, 2s)
contains all the lines of this affine plane. The same results hold for H(2, 2s)T .

Proof. Each row of H(2, 2s) has weight 2s, the weight of a line in an affine geometry from
a projective plane PG(2, 2s) of order 2s. We regard these rows as lines of the geometry.
By Proposition 2, each row block is a parallel class of lines. There are 2s such blocks
in H(2, 2s). The affine plane has 2s + 1 parallel classes of lines. This last parallel class
consists of the 2s row vectors each of which is the all-one vector in a fixed column block
and zero outside the block. We show as follows that these vectors are in C. If we add up
all the rows of H(2, 2s) that have a 1 in their first position, we get 0 . . . 0︸ ︷︷ ︸

2s

1 . . . 1︸ ︷︷ ︸
2s

. . . 1 . . . 1︸ ︷︷ ︸
2s

by Proposition 2 and since 2s is even. Adding the all-one vector, which is the sum of
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the rows in any row block, we get 1 . . . 1︸ ︷︷ ︸
2s

0 . . . 0︸ ︷︷ ︸
2s

. . . 0 . . . 0︸ ︷︷ ︸
2s

, a line in the missing parallel

class. We can get the rest of the lines similarly. The fact that this affine plane comes
from PG(2, 2s) follows from the equations in Definition 1. The same proof works for
H(2, 2s)T . 2

Theorem 3 LU(2, 2s) are [22s, 22s − 3s, 2s + 2] codes.

Proof. We only consider H(2, 2s). It is known [1] that the incidence matrix of an affine
plane of order 2s generates a [22s, 3s] binary code C. By Lemma 1 LU(2, 2s) is the code C.
The minimum-weight vectors of C⊥ contain all the ovals of the corresponding projective
plane [8], and as there exist ovals disjoint from the line at ∞, the minimum weight of
LU(2, 2s) is 2s + 2. Hence LU(2, 2s) is a [22s, 22s − 3s, 2s + 2] code. 2

Theorem 4 The weight of the minimum stopping set of LU(2, q) is at least q + 2.

Proof. We denote by ri and ci the i-th row and the i-th column of H(2, q), respectively.
Let v be a minimum stopping set of LU(2, q). Pick some component of v that is equal to
1, say v1 = 1. The column c1 has q 1’s, say in rows r1, . . . , rq. Since r1, . . . , rq have a com-
mon 1 with v in c1, each of them has another common 1 with v, and no two of them can
have the other common 1 with v in the same column by Proposition 1. Therefore we may
assume that ri has a common 1 with v in ci+1 for i = 1, . . . , q. For each i = 2, . . . , q+1, ci

has a common 1 with c1 in ri−1, and therefore by Proposition 2 the ci belong to different
column blocks than the column block containing c1. There are only q column blocks, and
therefore two of c1, . . . , cq+1 are in the same column block. By the above both of them
are distinct from c1, so we may assume that cq and cq+1 are in the same column block.
By Proposition 2 cq+1 does not have a common 1 with cq. Column cq+1 must have 0’s in
r1, . . . , rq−1, otherwise it would have two common 1’s with c1. Since it has weight q, we
may assume that it has 1’s in rq+1, . . . , r2q−1. Each of the q− 1 rows rq+1, . . . , r2q−1 has a
common 1 with v in cq+1, and therefore must have another common 1 with it, but not in
c1 (since c1 already has its q 1’s in r1, . . . , rq), and not in cq (since cq+1 and cq do not have
common 1’s). Furthermore, no two of these q−1 rows can have a common 1 with v in the
same column (since both of them already have a common 1 with it in cq+1). Therefore at
most q−2 of them can have a common 1 with v in c2, . . . , cq−1, and one of them must have
a common 1 with v outside c1, . . . , cq+1, say in cq+2. Thus q+2 components of v are 1. 2

It follows from Theorems 3 and 4 that for q even, the weight of the minimum stopping
set of LU(2, q) is q + 2.

In [7] families of LDPC codes with girth 6 were constructed from finite geometries.
One of these families of Euclidean geometry codes has parameters [22s−1, 22s−3s, 2s+1].
We extended two of these codes for s = 2 and s = 3 and (using Magma [3]) found that
they are equivalent to LU(2, 4) and LU(2, 8). This will be so in general since both families
of codes are constructed from PG(2, 2s). However, the two families could have different
decoding performance as the parity check matrices used are different. In fact, the parity
check matrices in [7] are cyclic, whereas ours are not.
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3 LU(3,q) Codes

Definition 2 ([9]) In D(3, q), a point (a, b, c) is incident with a line [x, y, z] if and only
if y = ax + b and z = ay + c, where a, b, c, x, y, z are in GF(q).

We investigated the parameters of the LU(3, q) codes for q = 2 up to q = 25 by Magma.
By [9], all the Tanner graphs of the LU(3, q) codes have girth at least 3 + 5 = 8. We
give a simple proof that the girth is exactly 8. By [13], D(3, q) has diameter 6 for q ≥ 3.
D(3, 2) is disconnected; it is a union of two 8-cycles. So LU(3, 2) is the direct sum of two
[4, 1, 4] codes, each of which is an LU(2, 2) code.

Theorem 5 ([13]) D(3, q) has girth 8. Its diameter is 6 if q > 2.

Proof. Since by [9] we know that the girth of D(3, q) is at least 8, finding one 8-cycle
shows that the girth is 8. It is not hard to check that (000) − [000] − (100) − [111] −
(011)− [011]− (110)− [−100]− (000) is an 8-cycle in D(3, q). D(3, q) has diameter 6 for
q > 2 [13, Theorem 3.9]. 2

Theorem 6 For p an odd prime, LU(3, p) is a [p3, k]-code with k ≥ (p3−2p2+3p−2)/2.

Proof. See Appendix. 2

Conjecture For odd q, LU(3, q) is a [q3, (q3 − 2q2 + 3q − 2)/2] code.

We verified this for all of the LU(3, q) codes for all odd q from 3 until 25. If this is true,
then the rate of these codes approach 1/2 as the odd q gets large. We noticed that for
q = 3 and q = 5, the two LU(3, q) codes we obtain from H(3, q) and its transpose have
different minimum weights. We checked by Magma that for q = 4 the two codes are
equivalent. See Table 1. For q ≥ 7, we were unable to determine the minimum weight of
LU(3, q) derived from HT .

Table 1: Parameters of LU(3, q) codes for q = 3, 4, 5.

q 3 4 5
H [27,8,6] [64,22,8] [125,44,10]
HT [27,8,8] [64,22,8] [125,44,20]

Theorem 7 The minimum weight and the weight of the minimum stopping set of LU(3, q)
are at least 2q.

Proof. The bound on the minimum weight follows from [12, Theorem 2] since we know
that the girth of LU(3, q) is 8. However, Tanner’s proof in [12] also holds for the minimum
stopping set. 2

Theorem 8 The minimum weight of LU(3, q) obtained from H is 2q. Consequently the
weight of the minimum stopping set of LU(3, q) obtained from H is also 2q.
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Proof. By Theorem 7 the minimum weight of LU(3, q) is at least 2q. Therefore finding
a codeword of weight 2q in LU(3, q) obtained from H will complete the proof of the
theorem.

Let α be a primitive element of GF (q). Consider a word W containing the following
points:

1. (α−2, 0, 0), which lies only on lines of the form [x, α−2x, α−4x];

2. (α−2, αk, αk−1), 0 ≤ k ≤ q − 2, which lies only on lines of the form [x, α−2x +
αk, α−4x + αk−2 + αk−1];

3. (α−1, 0, 0), which lies only on lines of the form [x, α−1x, α−2x];

4. (α−1, αl+2, αl), 0 ≤ l ≤ q − 2, which lies only on lines of the form [x, α−1x +
αl+2, α−2x + αl+1 + αl].

These 2q points are distinct, so W has weight 2q. We show that W is a codeword.
Lines of the form 1 and 2 never coincide. Lines of the form 3 and 4 never coincide.

A line of the form 1 coincides with a line of the form 3 if and only if x = 0; it coincides
with a line of the form 4 if and only if x = αl+4

1−α
. A line of the form 2 coincides with a

line of the form 3 if and only if x = αk+2

1−α
; it coincides with a line of the form 4 if and only

if x = αl+4−αk+2

1−α
. Now let L be a line of the form 1. If x = 0, then L is also of the form

3, but not of the forms 2 or 4. So L contains only two points of W , namely (α−2, 0, 0)
and (α−1, 0, 0). If x 6= 0, then L coincides with a unique line of the form 4 given by the

unique l such that x = αl+4

1−α
, but not with any line of the form 2 or 3. So L contains only

two points of W , namely (α−2, 0, 0) and (α−1, αl+2, αl). Let L be a line of the form 2.
Then L does not coincide with any line of the form 1. If x 6= 0, then L coincides with a
unique line of the form 3 given by the unique k such that x = αk+2

1−α
; in that case L cannot

coincide with a line of the form 4, since lines of the forms 3 and 4 never coincide. So L
contains only two points of W , namely (α−2, αk, αk−1) and (α−1, 0, 0). If x = 0, then L
cannot coincide with a line of the form 3, but it does coincide with a unique line of the
form 4 given by l = k − 2, so again L contains only two points of W . Let L be a line of
the form 3. If x = 0, then L coincides with a unique line of type 1 and no line of type
2 or 4. If x 6= 0, then L coincides with a unique line of type 2 and no line of type 1 or
4. In any case L contains only two points of W . Let L be a line of type 4. If x 6= 0,
then L coincides with a unique line of type 1 and no line of type 2 or 3. If x = 0, then L
coincides with a unique line of type 2 and no line of type 1 or 3. In any case L contains
only two points of W . We have shown that each line containing a point of W contains
precisely two points of W . Therefore W is a codeword. 2

From the examples above for q = 3 and q = 5 it seems that for odd q, LU(3, q) derived
from HT has minimum weight larger than 2q.

4 The Partial Row Construction

In investigating the LU codes, we found many that have low rates. We decided to
consider those codes whose parity check matrices consist of the first i rows of H(m, q),
where i < qm (we order the rows and columns lexicographically as in Section 2). We
call this the partial row construction. If we consider a code C whose parity check matrix
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consists of the first i rows of H(m, q), then the rate of C may stay the same or be higher
than that of LU(m, q), the girth of its Tanner graph may stay the same or go up, but
the minimum weight might go down. We found a number of interesting LDPC codes by
the partial row construction for m = 2, which we list in Table 2.

Table 2: LDPC codes obtained by the partial row construction from LU(2, q) codes.

q [n, k, d] (girth, diameter) # of rows of H(2, q)

3 [9,4,4] (8,4) 6
4 [16,9,4] (8,4) 8
5 [25,12,6] (6,4) 14–15
7 [49,24,8] (6,4) 27–28
8 [64,37,10] (6,4) 57–64
9 [81,32,16] (6,4) 53–54

11 [121,84,8] (6,4) 39

When q = 8 and the number of rows is 64, this code is LU(2, 8). Note that the [9,4,4],
[16,9,4] and [64,37,10] codes are optimal, whereas the [25,12,6] and [81,32,16] codes are
just 2 short of being optimal [2]. The other two codes have minimum weight 4 less than
the optimal codes. The parity check matrix for the [9,4,4] code consists of the first 6
rows of H(2, 3) given in the example in Section 2.
We also improve the rate while maintaining the minimum weight, girth and diameter for
LU(2, q) codes by the partial row construction. We list them below.

old [25,4,10] [49,6,14] [81,8,18]
new [25,6,10] [49,10,14] [81,14,18]

We obtain interesting LDPC codes from LU(3, q) codes by the partial row construction.
They are listed in Table 3. Many have larger girths than the LU(3, q) code. We list only
those where we were able to find the minimum distance.

Table 3: Codes from LU(3, q) codes by the partial row construction.

q [n, k, d] (girth, diameter) H(3, q) or HT (3, q) # of rows

3 [27,12,4] (16,10) H 15
3 [27,10,6] (12,8) H 18
4 [64,35,4] (8,10) HT 33
5 [125,54,14] (8,6) HT 85
5 [125,47,20] (8,6) HT 105

5 The Cases m = 4,5,6,7

The equations for D(m, q) for m = 4, 5, 6, 7 are considerably more complicated than for
m = 2, 3. They can be found in [9].

D(m, 2) is disconnected for m = 3, 4, 5, 6 and 7. In [9], the authors state that they
and A.J. Woldar proved that for m ≥ 6, all D(m, q) are disconnected. In fact, in [13,
pg. 79] it is shown that for q = 3 and for q > 4, D(m, q) has qt−1 connected components,
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where t = bm+2
4
c, and for m ≥ 4 D(m, 4) has 4t connected components. So even though

the graphs D(m, q) have large girth (at least 2dm/2e + 4), the large length of the code
and the disconnectedness makes them more difficult to use as Tanner graphs of LDPC
codes. We do know the following.

Theorem 9 When D(m, q) is disconnected, it is a union of isomorphic connected sub-
graphs. In this case LU(m, q) is a direct sum of equivalent codes each of which has its
parity check matrix from the incidence matrix of a connected component subgraph.

Proof. When D(m, q) is disconnected, it is a union of isomorphic connected subgraphs
since the group of D(m, q) is edge-transitive [9]. This is so because if an automorphism
of a graph maps an edge e into an edge f , then it maps the connected component of
e onto the connected component of f . So if for every two edges of D(m, q) there is an
automorphism mapping one onto the other, then for every two connected components
there is an automorphism mapping one onto the other.

We can reorder the rows and the columns of H(m, q) by putting the rows and the
columns of the first connected component first, the rows and the columns of the second
connected component second, etc. From this we can see that LU(m, q) is a direct sum of
codes. Codes corresponding to distinct connected components are equivalent, since the
connected components are isomorphic. 2

We found directly that LU(4, 4), a [256,88,8] code, is a direct sum of four [64,22,8]
codes of girth 8 and diameter 6; and that LU(5,4), a [1024,216] code, is a direct sum of
four [256,54] codes of girth 10 and diameter 8.

Since we have a lower bound of 2dm/2e + 4 on the girth, a lower bound on the
minimum distance can be obtained.

Theorem 10 The minimum distance d of LU(m, q) satisfies

d ≥


2
(q − 1)bm/4c+1 − 1

q − 2 , m ≡ 0 mod 4

2
(q − 1)bm/4c+2 − 1

q − 2 , m ≡ 3 mod 4

2
(q − 1)bm/4c+1 − 1

q − 2 + 2
q (q − 1)bm/4c+1, m ≡ 1, 2 mod 4.

When q = 2, the fraction (q−1)bm/4c+1−1
q−2

is understood to be bm/4c+ 1, and (q−1)bm/4c+2−1
q−2

to be bm/4c+ 2. The same bound holds for the weight of the minimum stopping set.

Proof. This bound on the minimum weight follows from the proof of [12, Theorem 2],
using the fact that the column sums of H(m, q) are q. However, Tanner’s proof in [12]
also holds for the minimum stopping set. 2

In particular, d ≥ 2q for m = 3, 4; d ≥ 4q − 3 for m = 5, 6; d ≥ 2(q2 − q + 1) for
m = 7, 8; and d ≥ 4(q − 1)2 + 4 for m = 9, 10 and q > 2.

6 Appendix: Proof of Theorem 6

We begin by a series of lemmas determining the ranks of certain matrices. Then we
proceed to obtain an upper bound on the rank of H(3, p) when p is an odd prime, using
the previous results.
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Lemma 2 Let x1, . . . , xm be indeterminates, and consider the m×m matrix

A(x1, . . . , xm) = (aij)
m
1 , aij = (xj)

i − 1

over Z. Then

det A(x1, . . . , xm) =
∏

0≤i<j≤m

(xj − xi), where x0 = 1. (1)

Proof. Consider the (m+1)× (m+1) Vandermonde matrix with variables x0, x1, . . . , xm,
and substitute x0 = 1. The determinant of the resulting matrix is given by the right-
hand side of (1). If we subtract the first row from all other rows and then expand the
determinant by the first column, we see that it is also equal to the left-hand side of (1). 2

Lemma 3 If t is an indeterminate, then

det(ti·j − 1)m
1 =

∏
0≤i<j≤m

(tj − ti). (2)

Proof. This is a special case of Lemma 2, where xj = tj for all j = 1, . . . ,m. 2

Lemma 4 Let ζ ∈ C be a primitive s-th root of unity, and consider the matrix A(m, ζ) =
(ζ ij − 1)m

1 . Then the rank of A(m, ζ) is min(s− 1, m).

Proof. This is trivial for s = 1, where ζ = 1 and A(m, ζ) = 0, so we assume s > 1. Our
first case is m ≤ s− 1. Then ζ0, . . . , ζm are all distinct, and so Lemma 3 shows that the
rank of A(m, ζ) is m. Our second case is m ≥ s. Then row i of A(m, ζ) vanishes for each
1 ≤ i ≤ m that is divisible by s. If 1 ≤ i ≤ m is not divisible by s, we write i = sq + r
with 1 ≤ r < s, and then row i of A(m, ζ) is equal to row r. It follows that the row-space
of A(m, ζ) is spanned by the first s− 1 rows, which are linearly independent by the first
case. Hence the rank of A(m, ζ) is s− 1. 2

For a positive integer q, we denote by Ik an identity matrix of order q whose rows are
cyclically shifted k positions to the right, i.e., (Ik)i,j = 1 if j − i ≡ k mod q, 0 otherwise.
For example, with q = 5, we have

I2 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 .

Note that Ik = Ik
1 for all integers k (not necessarily positive, so for example, I2 above

is equal to I−3). For positive integers m and q, we denote by M the block matrix with
m block rows and m block columns, where the (i, j) block is Ii·j − I0 of order q. For
example, with m = 3, we have

M =


I1 − I0 I2 − I0 I3 − I0

I2 − I0 I4 − I0 I6 − I0

I3 − I0 I6 − I0 I9 − I0

 ,
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where the subscripts in the Ik can be reduced mod q if desired. Recall that the Euler
function φ(n) is defined by

φ(n) = |{k ∈ Z | 1 ≤ k ≤ n, gcd(k, n) = 1}|.

Lemma 5 With M defined above, the rank of M over C is∑
1≤s≤q

s|q

φ(s) min(s− 1, m). (3)

Proof. If ζ is a q-th root of unity, then (1, ζ, . . . , ζq−1)T is an eigenvector of I1 with
eigenvalue ζ. Therefore if X = (ζj−1

i )q
i,j=1 is the Vandermonde matrix corresponding to

all the q-th roots of unity ζ1, . . . , ζq, then

I1 = XDX−1, where D = diag(ζ1, . . . , ζq). (4)

Let Xm be the m × m block diagonal matrix diag(X, . . . , X). The matrix X−1
m MXm

has the same rank as M . By (4), the (i, j) block of X−1
m MXm is the q × q diagonal

matrix diag(ζ ij
1 − 1, . . . , ζ ij

q − 1). By permuting the rows of X−1
m MXm so that rows

1, q + 1, . . . , (m − 1)q + 1 come first, then rows 2, q + 2, . . . (m − 1)q + 2, and so on,
and likewise for columns, we see that X−1

m MXm is permutationally similar to the block
diagonal matrix

q⊕
k=1

(ζ ij
k − 1)m

i,j=1 (5)

(m×m blocks, q block rows and q block columns). Thus the rank of M is the sum of the
ranks of the diagonal blocks in (5). To find the rank of the k-th diagonal block, let ζk be
a primitive s-th root of unity, so that s|q. By Lemma 4, the rank of the k-th diagonal
block is min(s−1, m). Since there are exactly φ(s) primitive s-th roots of unity, the sum
of the ranks of the diagonal blocks is given by (3). 2

We now consider M as a binary matrix, so that its (i, j) block can be written as Iij + I0.

Lemma 6 If q is an odd positive integer, then the binary rank of M defined above is
again given by (3).

Proof. Consider the polynomial f(t) = tq − 1 over GF(2). Since q is odd, we have
f ′(t) = qtq−1 = tq−1, so f and f ′ are relatively prime in GF(2)[t], and so the roots of
f are simple. Let F be a finite extension field of GF(2) such that f(t) splits over F:
f(t) = (t− ζ1) · · · (t− ζq). Thus ζ1, . . . , ζq are q-th roots of unity in F. They are distinct
since f has simple roots, so they comprise all the q-th roots of unity in F. We can then
repeat the entire argument from Lemma 2 through Lemma 5 in F instead of in C, and
we obtain that the rank of M over F is given by (3). However, the rank over F is the
same as the binary rank, since the entries of M are in GF(2), and the rank is the largest
order of a nonzero minor. 2

Lemma 7 If p is an odd prime and 1 ≤ m ≤ p − 1, then the binary rank of M defined
above is m(p− 1).

Proof. This is a special case of Lemma 6. 2
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We now shift our attention to H(3, q)T . Its rows are indexed by triples (a, b, c) with
a, b, c ∈ GF(q), and we let R(a, b, c) denote the row indexed by (a, b, c). Similarly, the
columns are indexed by triples [x, y, z] with x, y, z ∈ GF(q), and we let C[x, y, z] denote
the corresponding column. As before, we call a row block the set of all q2 rows R(a, b, c)
with the same a, and we also call a row subblock a set of all q rows R(a, b, c) with the
same (a, b). Similarly for column blocks and column subblocks.

Recall from Definition 2 that R(a, b, c) meets C[x, y, z] (i.e., H(3, q)T has a 1 in this
row and column) if and only if y = ax + b and z = ay + c. It follows that the q × q
intersection of a row subblock and a column subblock is either zero or a permutation
matrix. In the latter case, we say that the row subblock and the column subblock meet.
Moreover, each row subblock meets exactly one column subblock of each column block.

Lemma 8 For each (a, b, c) and each a′ 6= a, one has∑
b′

R(a′, b′, ab′ − a′b + c) +
∑
b′′

R(a, b′′, a′(b′′ − b) + c) = 0. (6)

Proof. We need to show that each column C[x, y, z] meets an even number of rows in-
volved in the left-hand side of (6). Column C[x, y, z] meets R(a′, b′, ab′ − a′b + c) if and
only if y = a′x+ b′ and z = a′y +ab′−a′b+ c. These two equations can be satisfied by at
most one value of b′, and such b′ exists if and only if z = a′y+a(y−a′x)−a′b+c. Similarly,
C[x, y, z] meets R(a, b′′, a′(b′′−b)+c) if and only if y = ax+b′′ and z = ay+a′(b′′−b)+c.
Again, these two equations can be satisfied by at most one value of b′′, and such b′′ exists
if and only if z = ay + a′(y− ax− b) + c. Since the conditions of existence of b′ and of b′′

are equivalent, C[x, y, z] meets exactly zero or exactly two rows involved in the left-hand
side of (6). 2

From now on we assume that p is an odd prime. Then any nonzero intersection of a
row subblock and a column subblock has the form of a circulant Ic of order p.

Definition 3 A vector of the form
∑

c R(a, b, c), i.e., the sum of the rows in a given row
subblock, is said to be of Type I. A vector of the form R(a, b, c) with a + b ≤ p − 1 and
c 6= 0 is said to be of Type II.

Lemma 9 The span of all p2 vectors of Type I has dimension p2 − p + 1.

Proof. Since p is odd, and since each row subblock meets exactly one column subblock of
each column block, a vector of Type I is the all-one vector in exactly one column subblock
of each column block, and is zero in all other column subblocks. Therefore, the rank of
the matrix A whose rows are all the p2 vectors of Type I is the same as the rank of the
matrix of order p2 obtained from A by suppressing all but one column in each column
subblock. But by Definitions 1 and 2, the latter matrix is precisely H(2, p)T , whose rank
is p2 − p + 1 by Theorem 2. 2

Let B be the set of vectors consisting of all vectors of Type II and a basis of the span
of the vectors of Type I.

Lemma 10 B consists of (p3 + 2p2 − 3p + 2)/2 vectors.

Proof. There are (p+1)p(p−1)/2 vectors of Type II, and by Lemma 9 there are p2−p+1
vectors in the basis of the span of the vectors of Type I, totaling (p3 + 2p2 − 3p + 2)/2
vectors. 2
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Lemma 11 B spans the row-space of H(3, p)T .

Proof. Consider a row subblock (a, b) satisfying a+ b ≤ p−1. Since all its rows R(a, b, c)
with c 6= 0 are of Type II, and since

∑
c R(a, b, c) is of Type I and thus in span B, it

follows that all the rows of this subblock are in span B. Therefore it is enough to prove
that all rows R(a, b, c) with a+b ≥ p are spanned by the rows R(a, b, c) with a+b ≤ p−1
and the vectors of Type I. We do this by induction on a. In fact, we prove that for each
a, all the rows R(a, b, c) with a + b ≥ p are spanned by the rows of the form R(a′, ·, ·)
with a′ ≤ a − 1, the rows of the form R(a, b′, ·) with a + b′ ≤ p − 1, and the vectors of
Type I of the form R(a, b, 0) with a+ b ≥ p. We denote by S the span of the latter rows.

The basis of the induction for a = 1 follows directly from Lemma 8. We assume now
that a ≥ 2, and apply Lemma 8 with a′ ≤ a − 1. Since the first summation in (6) is in
S, so is the second:

for a′ ≤ a− 1,
∑
b′′

R(a, b′′, a′(b′′ − b) + c) ∈ S. (7)

In (7), let a′ take two values in turn: a′ = 0 and a′ = a′2 with 1 ≤ a′2 ≤ a − 1, then add
the two resulting equations to obtain:

for 1 ≤ a′2 ≤ a− 1,
∑
b′′

R(a, b′′, c) +
∑
b′′

R(a, b′′, a′2(b
′′ − b) + c) ∈ S. (8)

When b′′ takes the value b in both summations of (8), the two terms cancel out. Further-
more, the terms involving b′′ such that a + b′′ ≤ p− 1 are in S, and so:

for 1 ≤ a′2 ≤ a− 1,
∑

p−a≤b′′≤p−1
b′′ 6=b

[R(a, b′′, c) + R(a, b′′, a′2(b
′′ − b) + c)] ∈ S. (9)

Now given a and a′2 ∈ {1, . . . , a − 1}, choose b = p − a. Then (9) represents p linear
equations (one equation for each value of c) in the p(a−1) unknown rows R(a, b′′, ·) with
b′′ ∈ {p − a + 1, . . . , p − 1}. If we let a′2 take each value in {1, . . . , a − 1}, we obtain a
total of p(a − 1) equations in our p(a − 1) unknown rows. It is not hard to check that
the coefficient matrix of these equations is the matrix M appearing in Lemma 6.

For example, suppose p = 5 and a = 3. For a′2 = 1 and c = 0, (9) reads

R(3, 3, 0) + R(3, 3, 1) + R(3, 4, 0) + R(3, 4, 2) ∈ S;

for a′2 = 1 and c = 1 (9) reads

R(3, 3, 1) + R(3, 3, 2) + R(3, 4, 1) + R(3, 4, 3) ∈ S;

and so on. The coefficient matrix M of all these equations is displayed below, where
each column labelled by (a, b′′, c) (where b′′ = 3, 4, c = 0, 1, 2, 3, 4) represents one of the
5(3 − 1) = 10 unknowns R(a, b′′, c), and each row labelled by (a′2, c) (where a′2 = 1, 2,
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c = 0, 1, 2, 3, 4) represents one of the 5(3− 1) = 10 equations.

a 3 3 3 3 3 3 3 3 3 3
b′′ 3 3 3 3 3 4 4 4 4 4

a′2 c c 0 1 2 3 4 0 1 2 3 4
1 0 1 1 1 1
1 1 1 1 1 1
1 2 1 1 1 1
1 3 1 1 1 1
1 4 1 1 1 1

2 0 1 1 1 1
2 1 1 1 1 1
2 2 1 1 1 1
2 3 1 1 1 1
2 4 1 1 1 1

It is seen that in this example

M =

 I0 + I1 I0 + I2

I0 + I2 I0 + I4

 ,

confirming the general form of the matrix M in Lemma 6.
By Lemma 6, the rank of M is (p − 1)(a − 1) in general. Our unknown rows also

satisfy the additional a− 1 linear equations

for b′′ = b + 1, . . . , b + a− 1,
∑

c

R(a, b′′, c) ∈ S (10)

expressing the fact that the sum on the left is a vector of Type I. The coefficient matrix
N of the equations (10) has a−1 rows, each having the all-one vector in one block column
and zero in all other block columns. In our above example where q = 5, a = 3

N =

 1 1 1 1 1

1 1 1 1 1

 .

Clearly the rows of N are linearly independent, and furthermore, they are not spanned by
the rows of M , since the rows of N have odd weights and the rows of M have even weights.
So the combined coefficient matrix of the linear equations (9) and (10) in our p(a − 1)
unknown rows has rank (p− 1)(a− 1) + (a− 1) = p(a− 1). Therefore equations (9) and
(10) express all the unknown rows of the form R(a, b′′, ·) with b′′ ∈ {p− a + 1, . . . , p− 1}
as members of S.

The remaining unknown rows for the given a have the form R(a, p − a, ·). To deal
with them, we make another choice of b in (9), namely b = p− 1. When b was q− a and
we let b′′ run over its allowed values in (9), b′′− b ran over 1, . . . , a− 1 in order; now that
b = p − 1, we see that b′′ − b runs over −a + 1, . . . ,−1 in order. In our example where
q = 5, a = 3, the matrix of coefficients of the resulting equations is given by

M ′ =

 I0 + I−2 I0 + I−1

I0 + I−4 I0 + I−2

 ,
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and in general M ′ has the same shape of M , but its (i, j) block is I0+I−i(a−1−j). It follows
that M ′ is obtained from M by reversing the order of the block columns, as well as the
order of the columns in each block column and the order of the rows in each block row.
Therefore M and M ′ have the same rank, and the previous argument shows that all the
unknown rows of the form R(a, b′′, ·) with b′′ ∈ {p−a, . . . , p−2} are also members of S. 2

Proof of Theorem 6. The proof follows from Lemmas 10 and 11 and the fact that H(3, p)T

has p3 rows. 2
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