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Abstract

We show that the number of k-matching in a given undirected graph
G is equal to the number of perfect matching of the corresponding graph
Gk on an even number of vertices divided by a suitable factor. If G is bi-
partite then one can construct a bipartite Gk. For bipartite graphs this
result implies that the number of k-matching has a polynomial-time ap-
proximation algorithm. The above results are extended to permanents
and hafnians of corresponding matrices.
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1 Introduction

Let G = (V, E) be an undirected graph, (with no self-loops), on the set of
vertices V and the set of edges E. A set of edges M ⊆ E is called a matching
if no two distinct edges e1, e2 ∈ M have a common vertex. M is called a
k-matching if #M = k. For k ∈ N let Mk(G) be the set of k-matchings in
G. (Mk(G) = ∅ for k > b#V

2
c.) If #V = 2n is even then an n-matching is

called a perfect matching. φ(k, G) := #Mk(G) is number of k-matchings, and
let φ(0, G) := 1. Then Φ(x, G) :=

∑∞
k=0 φ(k, G)xk is the matching polynomial

of G. It is known that a nonconstant matching polynomial of G has only real
negative roots [6].

Let G be a bipartite graph, i.e., V = V1 ∪ V2 and E ⊂ V1 × V2. In the
special case of a bipartite graph where n = #V1 = #V2, it is well known that
φ(n,G) is given as perm B(G), the permanent of the incidence matrix B(G)
of the bipartite graph G. It was shown by Valiant that the computation of the
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permanent of a (0, 1) matrix is #P-complete [8]. Hence, it is believed that the
computation of the number of perfect matching in a general bipartite graph
satisfying #V1 = #V2 cannot be polynomial.

In a recent paper Jerrum, Sinclair and Vigoda gave a fully-polynomial ran-
domized approximation scheme (fpras) to compute the permanent of a non-
negative matrix [7]. (See also Barvinok [1] for computing the permanents
within a simply exponential factor, and Friedland, Rider and Zeitouni [5] for
concentration of permanent estimators for certain large positive matrices.)

[7] yields the existence a fpras to compute the number of perfect matchings
in a general bipartite graph satisfying #V1 = #V2. The aim of this note is to
show that there exists fpras to compute the number of k-matchings for any
bipartite graph G and any integer k ∈ [1, #V

2
]. In particular, the generating

matching polynomial of any bipartite graph G has a fpras. This observation
can be used to find a fast computable approximation to the pressure function,
as discussed in [4], for certain families of infinite graphs appearing in many
models of statistical mechanics, like the integer lattice Zd .

More generally, there exists a fpras for computing permk B, the sum of all
k × k subpermanents of an m × n matrix B, for any nonnegative B. This is
done by showing that permk B = perm Bk

(m−k)!(n−k)!
for a corresponding (m + n −

k)× (m + n− k) matrix Bk.
It is known that for a nonbipartite graph G on 2n vertices, the number of

perfect matchings is given by haf A(G), the hafnian of the incidence matrix
A(G) of G. The existence of a fpras for computing the number of perfect
matching for any undirected graph G on even number of vertices is an open
problem. (The probabilistic algorithm suggested in [7] applies to the compu-
tation of perfect matchings in G, however it is not known if this algorithm is
fpras.) The number of k-matchings in a graph G is equal to hafk A(G), the
sum of the hafnians of all 2k × 2k principle submatrices of A(G). We show
that that for any m×m matrix A there exists a (2m− 2k)× (2m− 2k) ma-
trix Ak such that hafk A = haf Ak

(2m−k)!
. Hence the computation of the number of

k-matching in an arbitrary G, where n = O(k), has fpras if and only if the
number of perfect matching in G has fpras.

2 The equality permk B = perm Bk
(m−k)!(n−k)!

Recall that for a square matrix A = [aij]
n
i,j=1 ∈ Rn×n, the permanent of A is

given as perm A :=
∑

σ∈Sn
a1σ(1) . . . anσ(n), where Sn is the permutation group

on 〈n〉 := {1, . . . , n}. Let Qk,m denote the set of all subset of cardinality k of
〈m〉. Identify α ∈ Qk,m with the subset {α1, . . . , αk} where 1 ≤ α1 < . . . <
αk ≤ m. Given an m× n matrix B = [bij]

m,n
i,j=1 ∈ Rm×n and α ∈ Qk,m, β ∈ Ql,n

we let B[α, β] := [bαiβj
]k,l
i,j=1 ∈ Rk×l to be the corresponding k× l submatrix of
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B. Then
permk B :=

∑

α∈Qk,m,β∈Qk,n

perm B[α, β].

Let G = (V1 ∪ V2, E) be a bipartite graph on two classes of vertices V1

and V2. For simplicity of notation we assume that E ⊂ V1 × V2. It would be
convenient to assume that #V1 = m, #V2 = n. So G is presented by (0, 1)
matrix B(G) ∈ {0, 1}m×n. That is B(G) = [bij]

m,n
i,j=1 and bij = 1 ⇐⇒ (i, j) ∈

E. Let k ∈ [1, min(m,n)] be an integer. Then k-matching is a choice of k
edges in Ek := {e1, . . . , ek} ⊂ E such that Ek covers 2k vertices in G. That is,
no two edges in Ek have a common vertex. It is straightforward to show that
permk B(G) is the number of k-matching in G.

More generally, let B = [bij] ∈ Rm×n
+ , R+ := [0,∞) be an m × n non-

negative matrix. We associate with B the following bipartite graph G(B) =
(V1(B)∪V2(B), E(B)). Identify V1(B), V2(B) with 〈m〉, 〈n〉 respectively. Then
for i ∈ 〈m〉, j ∈ 〈n〉 the edge (i, j) is in E(B) if and only if bij > 0. Let
Gw := (V1(B) ∪ V2(B), Ew(B)) be the weighted graph corresponding to B.
I.e., the weight of the edge (i, j) ∈ E(B) is bij > 0. Hence B(Gw), the rep-
resentation matrix of the weighted bipartite graph Gw, is equal to B. Let
M ∈ Mk(G(B)). Then

∏
(i,j)∈M bij is the weight of the matching M in Gw.

In particular, permk B is the total weight of weighted k-matchings of Gw. The
weighted matching polynomial corresponding to B ∈ Rm×n

+ , or Gw induced by
B, is defined as:

Φ(x,B) :=

min(m,n)∑

k=0

permk B xk, B ∈ Rm×n
+ , perm0 B := 0.

Φ(x,B) can be viewed as the grand partition function for the monomer-dimer
model in statistical mechanics [6]. (See §3 for the case of a nonbipartite graph.)
In particular, all roots of Φ(x,B) are negative.

Theorem 2.1 Let B ∈ Rm×n
+ and k ∈ 〈min(m,n)〉. Let

Bk ∈ R(m+n−k)×(m+n−k)
+ be the following 2× 2 block matrix

Bk :=

[
B 1m,m−k

1n−k,n 0

]
, where 1p,q is a p × q matrix whose all entries are

equal to 1. Then

permk B =
perm Bk

(m− k)!(n− k)!
. (2.1)

Proof. For simplicity of the exposition we assume that k < min(m,n). (In
the case that k = min(m,n) then Bk has one of the following block structure:
1 × 1, 1 × 2, 2 × 1.) Let Gw = (V1(B) ∪ V2(B), Ew(B)), Gw,k = (V1(Bk) ∪
V2(B), Ew(Bk)) be the weighted graphs corresponding to B, Bk respectively.
Note that Gw is a weighted subgraph of Gw,k induced by V1(B) = 〈m〉 ⊂
〈m + n − k〉 = V1(Bk), V2(B) = 〈n〉 ⊂ 〈n + m − k〉 = V2(Bk). Furthermore,
each vertex in V1(Bk)\V1(B) is connected exactly to each vertex in V2(B), and
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each vertex in V2(Bk)\V2(B) is connected exactly to each vertex in V1(B). The
weights of each of these edges is 1. These are all edges in G(Bk). A perfect
match in G(Bk) correspond to:

• An n− k match between the set of vertices V1(Bk)\V1(B) and the set of
vertices β′ ∈ Qn−k,n, viewed as a subset of V2(B).

• An m − k match between the set of vertices V2(Bk)\V2(B) and the set
of vertices α′ ∈ Qm−k,m, viewed as a subset of V1(B).

• A k match between the set of vertices α := 〈m〉\α′ ⊂ V1(B) and β :=
〈n〉\β′ ⊂ V2(B).

Fix α ∈ Qk,m, β ∈ Qk,n. Then the total weight of k-matchings in Gw(Bk)
using the set of vertices α ⊂ V1(Bk), β ⊂ V2(Bk) is given by perm B[α, β].
The total weight of n − k matchings using V1(Bk)\V1(B) and β′ ⊂ V2(Bk)
is (n − k)!. The total weight of m − k matchings using V2(Bk)\V2(B) and
α′ ⊂ V1(Bk) is (m−k)!. Hence the total weight of perfect matchings in Gw(Bk),
which matches the set of vertices α ⊂ V1(Bk) with the set β ⊂ V2(Bk) is given
by (m−k)!(n−k)! perm B[α, β]. Thus perm Bk = (m−k)!(n−k)! permk B. 2

We remark that the special case of Theorem 2.1 where m = n appears in
an equivalent form in [2].

Proposition 2.2 The complexity of computing the number of k-matchings
in a bipartite graph G = (V1 ∪ V2, E), where
min(#V1, #V2) ≥ k ≥ c max(#V1, #V2)

α and c, α ∈ (0, 1], is polynomially
equivalent to the complexity of computing the number of perfect matching in a
bipartite graph G′ = (V ′

1 ∪ V ′
2 , E

′), where #V ′
1 = #V ′

2 .

Proof. Assume first that G = (V1 ∪ V2, E),m = #V1, n = #V2 and
k ∈ [c max(#V1, #V2)

α, min(m, n)] are given. Let G′ = (V ′
1 ∪V ′

2 , E
′) be the bi-

partite graph constructed in the proof of Theorem 2.1. Theorem 2.1 yields that
the number of perfect matching in G′ determines the number of k-matching
in G. Note that n′ := #V ′

1 = #V ′
2 = O(k

1
α ). So the k-matching problem is a

special case of the perfect matching problem.
Assume second that G′ = (V ′

1 ∪ V ′
2 , E

′) is a given bipartite graph with k =
#V1 = #V2. Let m,n ≥ k and denote by G = (V1∪V2, E

′), #V1 = m, #V2 = n
the graph obtained from G by adding m−k, n−k isolated vertices to V ′

1 , V
′
2 re-

spectively, (E ′ = E). Then a perfect matching in G′ is a k-matching in G, and
the number of perfect matching in G′ is equal to the number of k-matchings
in G. Furthermore if k ≥ c max(m,n)α it follows that m,n = O(k

1
α ). 2

The results of [7] yield.

Corollary 2.3 Let B ∈ Rm×n
+ and k ∈ 〈min(m,n)〉. Then there exists a

fully-polynomial randomized approximation scheme to compute permk B. Fur-
thermore for each x ∈ R there exists a fully-polynomial randomized approxi-
mation scheme to compute the matching polynomial Φ(x,B).
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3 Hafnians

Let G = (V, E) be an undirected graph on m := #V vertices. Identify V
with 〈m〉. Let A(G) = [aij]

m
i,j=1 ∈ {0, 1}m×m be the incidence matrix of G, i.e.

aij = 1 if and only if (i, j) ∈ E. Since we assume that G ia undirected and has
no self-loops, A(G) is a symmetric (0, 1) matrix with a zero diagonal. Denote
by Sm(T ) ⊃ Sm,0(T ) the set of symmetric matrices and the subset of symmetric
matrices with zero diagonal respectively, whose nonzero entries are in the set
T ⊆ R. Thus any A = [aij] ∈ Sm,0(R+) induces G(A) = (V (A), E(A)), where
V (A) = 〈m〉 and (i, j) ∈ E(A) if and only if aij > 0. Such an A induces a
weighted graph Gw(A), where the edge (i, j) ∈ E(A) has the weight aij > 0.
Let M ∈ Mk(G(A)) be a k-matching in G(A). Then the weight of M in
Gw(A) is given by

∏
(i,j)∈M aij.

Assume that m is even, i.e. m = 2n. It is well known that the number
of perfect matchings in G is given by haf A(G), the hafnian of A(G). More
general, the total weight of all weighted perfect matchings of Gw(A), A ∈
S2n,0(R+) is given by haf A, the hafnian of A.

Recall the definition of the hafnian of 2n× 2n real symmetric matrix A =
[aij] ∈ R2n×2n. Let K2n be the complete graph on 2n vertices, and denote
by M(K2n) the set of all perfect matches in K2n. Then α ∈ M(K2n) can
be represented as α = {(i1, j1), (i2, j2), .., (in, jn)} with ik < jk for k = 1, . . ..
Denote aα :=

∏n
k=1 aikjk

. Then haf A :=
∑

α∈M(K2n) aα. Note that haf A
does not depend on the diagonal entries of A. Hafnian of A is related to the
pfaffian of the skew symmetric matrix B = [bij] ∈ R2n×2n, where bij = aij if
i < j, the same way the permanent of C ∈ Rn×n is related to the determinant
of C. Recall pfaf B =

∑
α∈M(K2n) sgn(α)bα, where sgn(α) is the signature of

the permutation α ∈ S2n given by α =

[
1 2 3 4 .. 2n
i1 j1 i2 j2 .. jn

]
. Furthermore

det B = (pfaf B)2.
Let A ∈ Sm(R). Then

hafk A :=
∑

α∈Q2k,m

haf A[α, α], k = 1, . . . , bm
2
c.

For A ∈ Sm,0(R+) hafk A is the total weight of all weighted k-matchings
in Gw(A). Let haf0(A) := 1. Then the weighted matching polynomial of

Gw(A) is given by Φ(x,A) :=
∑bm

2
c

k=0 hafk A xk. It is known that a nonconstant
Φ(x,A), A ∈ Sm,0(R+) has only real negative roots [6].

Theorem 3.1 Let A ∈ Sm,0(R+) and k ∈ 〈bm
2
c〉. Let Ak ∈ S2m−2k,0(R+)

be the following 2× 2 block matrix Ak :=

[
A 1m,m−2k

1m−2k,m 0

]
. Then

hafk A =
haf Ak

(m− 2k)!
. (3.1)
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Proof. It is enough to consider the nontrivial case k < m
2
. Let Gw =

(V (A), Ew(A)), Gw,k = (V (Ak), Ew(Ak)) be the weighted graphs corresponding
to A,Ak respectively. Note that Gw is a weighted subgraph of Gw,k induced by
V (A) = 〈m〉 ⊂ 〈2m−2k〉 = V (Ak). Furthermore, each vertex in V (Ak)\V (A)
is connected exactly to each vertex in V (A). The weights of each of these edges
is 1. These are all edges in G(Ak). A perfect match in G(Ak) correspond to:

• An m − 2k match between the set of vertices V (Ak)\V (A) and the set
of vertices α′ ∈ Qm−2k,m, viewed as a subset of V (A).

• A k match between the set of vertices α := 〈m〉\α′ ⊂ V (B).

Fix α ∈ Q2k,m. Then the total weight of k-matchings in Gw(Ak) using the
set of vertices α ⊂ V (Ak) is given by haf A[α, α]. The total weight of m− 2k
matchings using V (Ak)\V (A) and V (A)\α is (m−2k)!. Hence the total weight
of perfect matchings in Gw(Ak), which matches the set of vertices α ⊂ V (Ak)
is given by (m− 2k)! haf A[α, α]. Thus haf Ak = (m− 2k)! hafk A. 2

It is not known if the computation of the number of perfect matching in an
arbitrary undirected graph on an even number of vertices, or more generally
the computation of haf A for an arbitrary A ∈ S2n,0(R+), has a fpras. The
probabilistic algorithm outlined in [7] carries over to the computation of haf A,
however it is an open problem if this algorithm is a fpras. Theorem 3.1 shows
that the computation of hafk A, for A ∈ Sm,0(R+), has the same complexity
as the computation of haf A, for A ∈ S2n,0(R+).

4 Remarks

In this section we offer an explanation, using the recent results in [3], why
perm A is a nicer function than haf A. Let A = [aij] ∈ Sn(R), B = [bij] ∈ Rn×n.
For x := (x1, . . . , xn)> ∈ Rn let

p(x) :=
n∏

i=1

(
n∑

j=1

bijxj), q(x) :=
1

2
x>Ax.

Then perm B = ∂n

∂x1...∂xn
p(x) and haf A = ((n

2
)!)−1 ∂n

∂x1...∂xn
q(x)

n
2 if n is even.

Assume that B ∈ Rn×n
+ has no zero row. Then p(x) is a positive hyperbolic

polynomial. (See the definition in [3].) Assume that A ∈ S2m,0(R+) is irre-
ducible. Then q(x), and hence any power q(x)i, i ∈ N, is positive hyperbolic
if and only if all the eigenvalues of A, except the Perron-Frobenius eigenvalue,
are nonpositive.
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