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Abstract

We show that the number of k-matching in a given undirected graph
G is equal to the number of perfect matching of the corresponding graph
G, on an even number of vertices divided by a suitable factor. If G is bi-
partite then one can construct a bipartite G. For bipartite graphs this
result implies that the number of k-matching has a polynomial-time ap-
proximation algorithm. The above results are extended to permanents
and hafnians of corresponding matrices.
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1 Introduction

Let G = (V, E) be an undirected graph, (with no self-loops), on the set of
vertices V' and the set of edges E. A set of edges M C FE is called a matching
if no two distinct edges e;,eo € M have a common vertex. M is called a
k-matching if #M = k. For k € N let M(G) be the set of k-matchings in
G. (My(G) =0 for k > |£/].) If #V = 2n is even then an n-matching is
called a perfect matching. ¢(k,G) = #My(G) is number of k-matchings, and
let ¢(0,G) := 1. Then ®(z,G) := > 1, #(k, G)z" is the matching polynomial
of G. It is known that a nonconstant matching polynomial of G has only real
negative roots [6].

Let G be a bipartite graph, i.e., V =V, UV, and £ C V; x V5. In the
special case of a bipartite graph where n = #V; = #V5, it is well known that
¢(n,G) is given as perm B(G), the permanent of the incidence matrix B(G)
of the bipartite graph G. It was shown by Valiant that the computation of the



permanent of a (0, 1) matrix is #P-complete [8]. Hence, it is believed that the
computation of the number of perfect matching in a general bipartite graph
satisfying #V; = #V5 cannot be polynomial.

In a recent paper Jerrum, Sinclair and Vigoda gave a fully-polynomial ran-
domized approzimation scheme (fpras) to compute the permanent of a non-
negative matrix [7]. (See also Barvinok [1] for computing the permanents
within a simply exponential factor, and Friedland, Rider and Zeitouni [5] for
concentration of permanent estimators for certain large positive matrices.)

[7] yields the existence a fpras to compute the number of perfect matchings
in a general bipartite graph satisfying #V; = #V5,. The aim of this note is to
show that there exists fpras to compute the number of k-matchings for any
bipartite graph G and any integer k € |1, %] In particular, the generating
matching polynomial of any bipartite graph G has a fpras. This observation
can be used to find a fast computable approximation to the pressure function,
as discussed in [4], for certain families of infinite graphs appearing in many
models of statistical mechanics, like the integer lattice Z¢ .

More generally, there exists a fpras for computing perm, B, the sum of all
k x k subpermanents of an m x n matrix B, for any nonnegative B. This is
done by showing that perm;, B = % for a corresponding (m + n —
k) x (m +n — k) matrix By.

It is known that for a nonbipartite graph G on 2n vertices, the number of
perfect matchings is given by haf A(G), the hafnian of the incidence matrix
A(G) of G. The existence of a fpras for computing the number of perfect
matching for any undirected graph GG on even number of vertices is an open
problem. (The probabilistic algorithm suggested in [7] applies to the compu-
tation of perfect matchings in G, however it is not known if this algorithm is
fpras.) The number of k-matchings in a graph G is equal to hafy A(G), the
sum of the hafnians of all 2k x 2k principle submatrices of A(G). We show
that that for any m x m matrix A there exists a (2m — 2k) x (2m — 2k) ma-
trix Ay such that haf, A = (gnaffé‘), Hence the computation of the number of
k-matching in an arbitrary G, where n = O(k), has fpras if and only if the
number of perfect matching in G has fpras.

perm By,
m—k)!|(n—k)!

2 The equality perm; B = (

Recall that for a square matrix A = [a;;]};—; € R™", the permanent of A is
given as perm A := Zoesn A15(1) - - - Uno(n), Where S, is the permutation group
on (n) :={1,...,n}. Let Qgm denote the set of all subset of cardinality k of
(m). Identify o € Qi with the subset {ay,...,qr} where 1 < a; < ... <
o < m. Given an m X n matrix B = [bw]fnjll e R™" and @ € Qym, 5 € Qin

we let Bla, (] == [baiﬁj]i’jl:l € R*! to be the corresponding k x [ submatrix of



B. Then
perm, B := Z perm Bla, (3].
aer,maﬁerﬁn

Let G = (V3 U V,, E) be a bipartite graph on two classes of vertices V;
and V5. For simplicity of notation we assume that £ C V; x V5. It would be
convenient to assume that #V; = m,#V, = n. So G is presented by (0,1)
matrix B(G) € {0,1}™*". That is B(G) = [b;;];;2, and b =1 <= (i,j) €
E. Let k € [1,min(m,n)] be an integer. Then k-matching is a choice of k
edges in Ej, :={eq,...,er} C E such that Ej, covers 2k vertices in G. That is,
no two edges in Ej have a common vertex. It is straightforward to show that
perm, B(G) is the number of k-matching in G.

More generally, let B = [b;] € RT™*™, R} := [0,00) be an m X n non-
negative matrix. We associate with B the following bipartite graph G(B) =
(Vi(B)UV,(B), E(B)). Identify Vi (B), Vo(B) with (m), (n) respectively. Then
for i € (m),j € (n) the edge (i,7) is in E(B) if and only if b;; > 0. Let
Gy = (Vi(B) U Vu(B), E,(B)) be the weighted graph corresponding to B.
Le., the weight of the edge (i,75) € E(B) is b;; > 0. Hence B(G,,), the rep-
resentation matrix of the weighted bipartite graph G, is equal to B. Let
M € My(G(B)). Then []; jycps bij is the weight of the matching M in G,
In particular, perm,, B is the total weight of weighted k-matchings of G,,. The
weighted matching polynomial corresponding to B € R"*", or G,, induced by
B, is defined as:

min(m,n)
O(x, B) = Z perm, B z*, B ¢ R™*™ permy B := 0.
k=0
®(x, B) can be viewed as the grand partition function for the monomer-dimer
model in statistical mechanics [6]. (See §3 for the case of a nonbipartite graph.)
In particular, all roots of ®(x, B) are negative.

Theorem 2.1 Let B € R"™" and k € (min(m,n)). Let
B € Rgrmn*k)x(mm*k) be the following 2 x 2 block matrix

By = 1 B 1mg_k , where 1, , 15 a p X ¢ matriz whose all entries are
n—k,n
equal to 1. Then
perm By,
B = . 2.1
P = = 0 — 1) (n — k)] 21)

Proof. For simplicity of the exposition we assume that £ < min(m,n). (In
the case that k& = min(m, n) then By has one of the following block structure:
1x1,1x2 2x1.) Let G, = (Vi(B) U Va(B),Ey(B)), G = (Vi(Bg) U
Vo(B), Eyw(By)) be the weighted graphs corresponding to B, By respectively.
Note that G, is a weighted subgraph of G, induced by Vi(B) = (m) C
(m+n—k)=Vi(By),Va(B) = (n) C (n+m — k) = Va(By). Furthermore,
each vertex in V;(By)\V1(B) is connected exactly to each vertex in V5(B), and
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each vertex in V(By)\Va2(B) is connected exactly to each vertex in Vi(B). The
weights of each of these edges is 1. These are all edges in G(By). A perfect
match in G(By) correspond to:

e An n — k match between the set of vertices V;(Bg)\Vi(B) and the set of
vertices ' € Qu_xn, viewed as a subset of V5(B).

e An m — k match between the set of vertices Vo(By)\Va2(B) and the set
of vertices o € Qu_km, viewed as a subset of V;(B).

e A k match between the set of vertices a := (m)\o/ C Vi(B) and [ :=
(n)\B" C Va(B).

Fix a € Qim, 5 € Qrn- Then the total weight of k-matchings in G, (By,)
using the set of vertices a C Vi(By),3 C Va(By) is given by perm Bla, f3].
The total weight of n — k& matchings using Vi(By)\Vi(B) and 5 C Vi(By)
is (n — k)!. The total weight of m — k matchings using V5(By)\Va(B) and
o/ C Vi(By)is (m—k)!. Hence the total weight of perfect matchings in G\, (By),
which matches the set of vertices a C V4 (By) with the set 8 C V,(By) is given
by (m—k)!(n—k)! perm Bla, §]. Thus perm By = (m—k)!(n—k)! perm;, B. O

We remark that the special case of Theorem 2.1 where m = n appears in
an equivalent form in [2].

Proposition 2.2 The complexity of computing the number of k-matchings
in a bipartite graph G = (Vy U V,, E), where
min(#Vi, #Vs) > k > cmax(#V1, #V5)* and ¢, € (0,1], is polynomially
equivalent to the complexity of computing the number of perfect matching in a

bipartite graph G' = (V/ U V4, E"), where #V| = #V}.

Proof. Assume first that G = (V; U Vo, E),m = #Vi,n = #V, and
k € [cmax(#V1, #V2)%, min(m, n)] are given. Let G' = (V] UV, E’) be the bi-
partite graph constructed in the proof of Theorem 2.1. Theorem 2.1 yields that
the number of perfect matching in G’ determines the number of k-matching
in G. Note that n/ := #V/ = #VJ = O(k=). So the k-matching problem is a
special case of the perfect matching problem.

Assume second that G' = (V] U VY, E') is a given bipartite graph with k =
#V) = #V,. Let m,n > k and denote by G = (ViU VL, EY), #Vi =m, #Vo =n
the graph obtained from G by adding m —k, n—k isolated vertices to V{, VJ re-
spectively, (E' = E). Then a perfect matching in G’ is a k-matching in G, and
the number of perfect matching in G’ is equal to the number of k-matchings
in G. Furthermore if k > cmax(m,n)® it follows that m,n = O(k=). O

The results of [7] yield.

Corollary 2.3 Let B € RT*" and k € (min(m,n)). Then there ezists a
fully-polynomial randomized approximation scheme to compute permy B. Fur-
thermore for each x € R there exists a fully-polynomial randomized approxi-
mation scheme to compute the matching polynomial ®(z, B).



3 Hafnians

Let G = (V, E) be an undirected graph on m := #V vertices. Identify V'
with (m). Let A(G) = [a;]{%=; € {0, 1}™*™ be the incidence matrix of G, i.e.
a;; = 1 if and only if (¢, j) € E. Since we assume that G ia undirected and has
no self-loops, A(G) is a symmetric (0, 1) matrix with a zero diagonal. Denote
by Sm(7) D Smo(7) the set of symmetric matrices and the subset of symmetric
matrices with zero diagonal respectively, whose nonzero entries are in the set
7 C R. Thus any A = [a;;] € Smo(Ry) induces G(A) = (V(A), E(A)), where
V(A) = (m) and (i,7) € E(A) if and only if a;; > 0. Such an A induces a
weighted graph G,,(A), where the edge (i,7) € E(A) has the weight a;; > 0.
Let M € My(G(A)) be a k-matching in G(A). Then the weight of M in
Gw(A) is given by []; »ear aij-

Assume that m is even, i.e. m = 2n. It is well known that the number
of perfect matchings in G is given by haf A(G), the hafnian of A(G). More
general, the total weight of all weighted perfect matchings of G,(A), A €
Sono(R4) is given by haf A, the hafnian of A.

Recall the definition of the hafnian of 2n x 2n real symmetric matrix A =
[aij] € R*™ 2" Let K,, be the complete graph on 2n vertices, and denote
by M(K3,) the set of all perfect matches in Ks,. Then @ € M(Ky,) can
be represented as a = {(i1,71), (12, J2), -, (in, Jn) } With i < jg for k =1,....
Denote a, = [[,_; ai,j,- Then haf A := ZaeM(K%) a,. Note that haf A
does not depend on the diagonal entries of A. Hafnian of A is related to the
pfaffian of the skew symmetric matrix B = [b;;] € R**?" where b;; = a;; if
1 < 7, the same way the permanent of C' € R"*" is related to the determinant
of C. Recall pfaf B = }° . \((r,.) S810(@)ba, Where sgn(a) is the signature of

the permutation o € s, given by a = {1 203 4. 2”

g1 %2 J2 o Jn
det B = (pfaf B)%.
Let A € Sp(R). Then

. Furthermore

hafy, A := Z haf Ala,af, k=1,...,|

a€Q2k,m

m
2

|.

For A € Sno(Ry) hafy A is the total weight of all weighted k-matchings
in G,(A). Let hafy(A) := 1. Then the weighted matching polynomial of

Guw(A) is given by &(x, A) := Z,ﬁé haf;, A 2*. Tt is known that a nonconstant
O (z, A), A € Spmo(Ry) has only real negative roots [6].

Theorem 3.1 Let A € Sy, 0(Ry) and k € ([%]). Let A € Som—ao(Ry)

be the following 2 x 2 block matriz Ay, := 1 4 1m’872k . Then
m—2k,m
haf Ak
haf, A = ———. 3.1
a (m — 2k)! (3:1)



Proof. It is enough to consider the nontrivial case k < %. Let G, =
(V(A), Ey(A)),Gur = (V(Ag), EWw(Ag)) be the weighted graphs corresponding
to A, Ay, respectively. Note that G, is a weighted subgraph of G, induced by
V(A) = (m) C (2m —2k) = V(Ay). Furthermore, each vertex in V' (A;)\V (4)
is connected exactly to each vertex in V(A). The weights of each of these edges
is 1. These are all edges in G(Ag). A perfect match in G(Ay) correspond to:

e An m — 2k match between the set of vertices V(Ax)\V(A) and the set
of vertices o € Qu_2km, viewed as a subset of V' (A).

e A k match between the set of vertices o := (m)\o/ C V(B).

Fix a € Qag,m- Then the total weight of k-matchings in G,,(Ax) using the
set of vertices a C V'(Ay) is given by haf A[a, . The total weight of m — 2k
matchings using V (Ax)\V (A) and V (A)\« is (m—2k)!. Hence the total weight
of perfect matchings in G,,(Ax), which matches the set of vertices o C V' (Ag)
is given by (m — 2k)!haf Ao, o]. Thus haf Ay = (m — 2k)!hafy A. O

It is not known if the computation of the number of perfect matching in an
arbitrary undirected graph on an even number of vertices, or more generally
the computation of haf A for an arbitrary A € Sy, o(Ry), has a fpras. The
probabilistic algorithm outlined in [7] carries over to the computation of haf A,
however it is an open problem if this algorithm is a fpras. Theorem 3.1 shows
that the computation of hafy A, for A € S,, (R4 ), has the same complexity
as the computation of haf A, for A € Sy, o(Ry).

4 Remarks

In this section we offer an explanation, using the recent results in [3], why
perm A is a nicer function than haf A. Let A = [a;;] € Sy(R), B = [by] € R™™.
For x := (z1,...,2,) € R" let

n n 1
p(x) = | (Z bijri), q(x):= §XTAX.
i=1 j=1
Then perm B = —axl‘?gxnp(x) and haf A = ((%)!)_1Mf+8mq(x)% if n is even.

Assume that B € R}*" has no zero row. Then p(x) is a positive hyperbolic
polynomial. (See the definition in [3].) Assume that A € Sopo(Ry) is irre-
ducible. Then ¢(x), and hence any power ¢(x),i € N, is positive hyperbolic
if and only if all the eigenvalues of A, except the Perron-Frobenius eigenvalue,
are nonpositive.
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