
A Simultaneous Reconstruction of Missing Data in DNA

Microarrays

Shmuel Friedland ∗†, Amir Niknejad *, and Laura Chihara‡

Institute for Mathematics and its Applications
400 Lind Hall, 207 Church St., S.E.

Minneapolis, MN 55455-0436

December 1, 2003

Abstract

We suggest here a new method of the estimation of missing entries in a
gene expression matrix, which is done simultaneously— i.e., the estimation
of one missing entry influences the estimation of other entries. Our method is
closely related to the methods and techniques used for solving inverse eigenvalue
problems.

2000 Mathematical Subject Classification: 15A18, 92D10
Keywords: Gene expression matrix, singular value decomposition (svd), missing
values, imputation

1 Introduction

In the last decade, molecular biologists have been using DNA microarrays as a tool
for analyzing information in gene expression data. During the laboratory process,
some spots on the array may be missing due to various factors (for example, machine
error.) Because it is often very costly or time consuming to repeat the experiment,
molecular biologists, statisticians, and computer scientists have made attempts to
recover the missing gene expressions by some ad-hoc and systematic methods.

∗Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,

Chicago, Illinois 60607-7045
†Corresponding author. Tel.: +1-312-996-3041; fax: +1-312-996-1491; email: friedlan@uic.edu
‡Department of Mathematics and Computer Science, Carleton College, One N. College St.,

Northfield, MN 55057

1

More recently, microarray gene expression data have been formulated as a gene
expression matrix E with N rows, which correspond to genes, and M columns, which
correspond to experiments. Typically N is much larger than M . In this setting,
the analysis of missing gene expressions on the array would translate to recovering
missing entries in the gene expression matrix.

The most common methods for recovery are [8]:
(a) Clustering analysis methods such as K-nearest neighbor clustering , hierarchical
clustering, or
(b) SVD - Singular Value Decomposition (also known as Principal Component Anal-
ysis).

In these methods, the recovery of missing data is done independently, i.e., the
estimation of each missing entry does not influence the estimation of the other
missing entries. The iterative method using SVD suggested in [8] takes into account
implicitly the influence of the estimation of one entry on the other ones. See also
[2].

We suggest a new method in which the estimation of missing entries is done
simultaneously, i.e., the estimation of one missing entry influences the estimation
of the other missing entries. If the gene expression matrix E has missing data, we
want to complete its entries to obtain a matrix Ê, such that the rank of Ê is equal
to (or does not exceed) d, where d is taken to be the number of significant singular
values of E. The estimation of the entries of E to a matrix with a prescribed
rank is a variation of the problem of communality (see [4, p. 637].) We give an
optimization algorithm for finding Ê using the techniques for inverse eigenvalue
problems discussed in [3].

We implemented our fixed rank approximation algorithm as a Matlab proce-
dure and ran simulations on the microarray data Saccharomyces cerevisiae [7]. We
describe the results in Section 7.

2 The Singular Value Decomposition

In this section, we recall some basic facts about Singular Value Decomposition SV D.
Let E be an N × M real-valued nonzero matrix. In this paper we assume that
N ≥ M . The SV D of E is a decomposition of E into the product UΣV T with
certain properties. There are a few variations of this definition, and we give the
following one which is most suitable for the applications in our context. We assume
that U is N × M , Σ is M × M , and V is M × M .

E = UΣV T, UTU = V TV = IM , Σ = diag(σ1, ..., σM), σ1 ≥ ... ≥ σM ≥ 0. (2.1)

2

The rank r of E is the number of positive singular values; the dimension of the row
space, and the dimension of the column space of E is also r.

Remark Singular value decomposition is related to principal component analysis
(PCA) in statistics. If we center each column in matrix E, then ET E = V Σ2V T

is proportional to the covariance matrix of the columns of E, the columns of V are
the principal components, and the {σ2

i } are proportional to the variances of the
principal components.

Let Ur, Σr, Vr be matrices obtained from U, Σ, V , respectively, as follows: Ur is
an N × r matrix obtained by deleting the last N − r columns of U , Vr is the M × r

matrix obtained by deleting the last M − r columns of V , and Σr is obtained by
deleting the last M − r columns and rows of Σ . Then

E = UrΣrV
T
r , UT

r Ur = V T
r Vr = Ir, Σr = diag(σ1, ..., σr), σ1 ≥ ... ≥ σr > 0. (2.2)

In this setting Ur, Σr, Vr are all rank r matrices: the last N−r columns of U and the
last M −r rows of V T are arbitrary, up to the condition that the last N −r columns
U and last M − r rows of V T are orthonormal bases of the orthogonal complement
of the column space and the row space of E respectively. Hence (2.2) is sometimes
called a reduced SVD of E.

We now give another form of (2.2) which has a significant interpretation in
microarray data. Let u1, · · · ,uM denote the columns of U and v1, . . . ,vM denote
the columns of V . Then (2.1) and (2.2) can be written as

E =
M
∑

i=1

σiuiv
T
i =

r
∑

i=1

σiuiv
T
i . (2.3)

If σ1 > ... > σr then ui and vi are determined up to the sign ±1 for i =
1, ..., r. Namely ui and vi are length 1 eigenvectors of EET and ETE, respectively,
corresponding to the common eigenvalue σ2

i . (Note the choice of a sign in vi forces
a unique choice of the sign in ui.) Computationally, one first finds the positive
eigenvalues σ2

1, ..., σ
2
r and the corresponding orthonormal eigenvectors v1, ...,vr of

the smaller matrix ETE. Then

ui :=
1

σi

Evi ⇐⇒ σiui = Evi, i = 1, ..., r. (2.4)

To compute the decomposition (2.3), it is enough to know vi and σiui. If σi repeats
k > 1 times in the sequence σ1 ≥ ... ≥ σr > 0, then the choice of the corresponding k

eigenvectors vj is not unique: any choice of the orthonormal basis in the eigenspace
of ETE corresponding to the eigenvalue σ2

i is a legitimate choice.
Denote by ||E||F the Frobenius (`2) norm of E. It is the Euclidean norm of E

viewed as a vector with NM coordinates. Each term uiv
T
i in (2.3) is a rank one

3

matrix with ||uiv
T
i ||F = 1. Let R(N, M, k) denote the set of N × M matrices of at

most rank k (M ≥ k). Then for each k, k ≤ r, the SVD of E gives the solution to
the following approximation problem:

min
F∈R(N,M,k)

||E − F ||F = ||E −
k

∑

i=1

σiuiv
T
i ||F =

√

√

√

√

r
∑

i=k+1

σ2
i . (2.5)

If σk > σk+1 then
∑k

i=1 σiuiv
T
i is the unique solution to the above minima

problem. For the purposes of this paper, it will be convenient to assume that σi = 0
for any i > M .

In what follows we will use yet another equivalent definition of the singular values
of E. Let MNM denote the space of all real N × M matrices and SJ denote the
space of all real J × J symmetric matrices. For A ∈ SJ , we let

λ1(A) = λ1 ≥ ... ≥ λJ(A) = λJ , Awi = λiwi, wT
i wj = δij , i, j = 1, ..., J, (2.6)

be the eigenvalues and corresponding eigenvectors of A, where the eigenvalues are
counted with their multiplicities, and the eigenvectors form an orthonormal basis in
R

J .
Consider the following (N + M) × (N + M) real symmetric matrix:

S(E) :=

(

0 E

ET 0

)

. (2.7)

It is known [5, §7.3.7]

σi(E) := σi = λi(S(E)) = −λN+M+1−i(S(E)), for i = 1, ..., M, (2.8)

λi(S(E)) = 0 for i = M + 1, ..., N.

The Cauchy interlacing property for S(E) implies [5, §7.3.9]
Let [N] := {1, 2, . . . , N}, and let N ⊂ [N], M ⊂ [M] denote sets of cardinalities

N ′, M ′ ≥ 0 respectively.

Proposition 2.1 Let E ∈ MNM and denote by E ′ ∈ M(N−N ′)(M−M ′) the ma-
trix obtained from E by deleting all rows n ∈ N and all columns m ∈ M. Then

σi(E) ≥ σi(E
′) for i = 1, ..., M, (2.9)

σi(E
′) ≥ σi+N ′+M ′(E) for i = 1, ..., M − (M ′ + N ′).

4

3 The Gene Expression Matrix

In this section we will view E ∈ MNM , with N ≥ M as the gene expression matrix:

E =



















g11 g12 . . . g1M

g21 g22 . . . g2M
...

...
...

...
gn1 gn2 . . . gnM
...

...
...

...
gN1 gN2 . . . gNM



















=



















gT
1

gT
2
...

gT
n
...

gT
N



















= [c1 c2 . . . cM], (3.1)

gT
n := (gn1, gn2, ..., gnM), n = 1, ..., N, ci =



















g1i

g2i
...

gni
...

gNi



















, i = 1, ..., M.

The row vector gT
n corresponds to the (relative) expression levels of the nth gene

in M experiments. The column vector ci corresponds to the (relative) expression
levels of the N genes in the ith experiment.

Consider the SVD of the gene expression matrix E = UΣV T . In the terminology
of [1], the columns of U are eigenarrays, the columns of V are eigengenes, and the
singular values of E are eigenexpression levels.

In many microarray data sets, researchers have found that only a few eigengenes
are needed to capture the overall gene expression pattern. The number of these
significant eigengenes is determined heuristically. For example, set

pi :=
σ2

i
∑M

j=1 σ2
j

, i = 1, ..., M, p := (p1, ..., pM)T, (3.2)

so that pi represents the fraction of the expression level contributed by the ith

eigengene. Then we choose the L eigengenes that contribute about 70% − 90%
of the total expression level. Another method is to use scree plots for the σ2

i . (In
principal component analysis, the pi are proportional to the variances of the principal
components, so we choose the principal components of maximum variability [6].)

If E has L significant eigenvalues, we view σi to be effectively equal to zero for
i > L. We define the matrix

EL :=
L

∑

i=1

σiuiv
T
i (3.3)

5

as the filtered part of E and consider E − EL the noise part of E.
Let

1 ≥ h(p) := −
1

log M

M
∑

i=1

pi log pi ≥ 0. (3.4)

Then h(p) is the rescaled entropy of the probability vector p. h(p) = 1 only when
pi = 1

M
, i = 1, ..., M ; in other words, all the eigengenes are equally expressed.

On the other hand, h(p) = 0 if and only if pi(1 − pi) = 0, i = 1, ..., M and this
corresponds to r = 1: in other words, the gene expression is captured by a single
eigengene (and eigenarray).

The following example points out a potential weakness of SVD theory in trying
to detect groups of genes with similar properties.

3.1 SVD and gene clusters

Suppose the set of genes gT
n , n ∈ [N] can be grouped into K+1 disjoint subsets [N] =

∪K+1
j=1 Gj with G1, ..., GK nonempty and M ≥ K (usually M > K). In particular,

consider the genes in each group Gj (j = 1, ..., K) to have similar characteristics (in
other words, Gj is a cluster). Genes that have no similar characteristics are placed
in GK+1. Also,

gpj = akj for each p ∈ Gk and k = 1, ..., K, j = 1, ..., M, (3.5)

gpj = 0 for each p ∈ GK+1 and j = 1, ..., M,

Let A = (akj)
K,M
k,j=1 ∈ MKM be the corresponding K × M matrix with the rows

rT
1 , ..., rT

L:

A =









rT
1

rT
2
...

rT
K









.

Clearly the row space of E is the row space of A. So K ≥ rank E = rank A. Hence
if rank A = K then

σ1(E) ≥ ... ≥ σK(E) > σK+1(E) = ... = σM (E) = 0.

However, there is no simple formula relating the singular values of E and A. It
may happen that the rows of A are linearly dependent which indicates that several
groups out of G1, ..., GK are somehow related, and the number of the significant
singular values of E is less than K.

6

4 Missing Data in the Gene Expression Matrix

We now consider the problem of missing data in the gene expression matrix E. (Our
analysis can be applied to any matrix E.) Let N ⊂ [N] denote the set of rows of
E that contain at least one missing entry. Thus for each n ∈ N c := [N]\N , the
gene gT

n has all of its entries. Let N ′ denote the size of N c so that the size of N is
N − N ′. We want to complete the missing entries of each gT

n , n ∈ N , under some
assumptions.

We first describe the reconstruction of the missing data in E using SVD as given
in [1].

4.1 Imputation using SVD

Let E′ be the N ′ × M matrix containing the rows gT
m, m ∈ N c of E which do

not have any missing entries, and L′ be the number of significant singular values of
E′. Let X ⊂ R

M be the invariant subspace of the symmetric matrix (E ′)TE′ corre-
sponding to the eigenvalues σ1(E

′)2, ..., σL′(E′)2. Let x1, ...,xL′ be the orthonormal
eigenvectors of (E ′)TE corresponding to the eigenvalues σ1(E

′)2, ..., σL′(E′)2. Then
x1, ..xL′ is a basis of X.

Let M ⊂ [M] be a subset of cardinality M ′. Consider the projection πM : R
M →

R
M−M ′

by deleting the coordinate i ∈ M for any vector x = (x1, ..., xM)T ∈ R
M .

Then πM(X) is spanned by πM(x1), ..., πM(xL′).
Fix n ∈ N and let M ⊂ [M] be the set of experiments (columns) where the

gene gT
n has missing entries. Let y ∈ πM(X) be the least square approximation to

πM(gn). Then any gn ∈ π−1
M (y) is a completion of gn. If πM|X is 1-1 then gn is

unique. Otherwise one can choose gn ∈ π−1
M (y) with the least norm. Note that to

find y ∈ πM(X) one needs to solve the least square problem for a subspace πM(X).
In principle, for each n ∈ N one solves a different least square problem. The crucial
assumption of this method that

L = L′. (4.1)

The significant singular values of E ′ and of the reconstructed E are joint func-
tions of all the rows (genes). By trying to reconstruct the missing data in each
gene gT

n , for n ∈ N , separately, we ignore any correlation between gT
n and the genes

gT
k , k ∈ N ; consequently, this will have an impact on the singular values of E. In

the following section we suggest a different approach which treats the estimation
problem of all the missing data simultaneously.

7

4.2 Reconsideration of 3.1

Let us reconsider Example 3.1. Assume that rank A = K. Then we can reconstruct
exactly each missing entry of gT

n , n ∈ N if and only if Gi\N 6= ∅ for i = 1, ..., M .
In this example this condition is equivalent to the assumption that E ′ has the same
rank as E.

4.3 Iterative method using SVD

In the recent papers [8] and [2], the following iterative method using SVD to impute
missing values in a gene expression matrix is suggested. First, replace the missing
values with 0 or with values computed from another method. Call the estimated
matrix Ep, where p = 0. Find the Lp significant singular values of Ep, and let ELp

be
the filtered part of Ep (3.3). Replace the missing values in E by the corresponding
values in ELp

to obtain the matrix Ep+1. Continue this process until Ep converges
to a fixed matrix (within a given precision). This algorithm takes into account
implicitly the influence of the estimation of one entry on the other ones. But it is
not clear if the algorithm converges, nor what are the features of any fixed point(s)
of this algorithm.

5 The Optimization Problem

We now show that the estimation problem discussed in the previous section can be
cast as the following optimization problem:

Problem 5.1 Let S ⊂ [N]×[M] and denote by E(S) a given set of real numbers
eij for (i, j) ∈ S. Let M(E(S)) ⊂ MNM be the affine subset of all matrices A =
(aij) ∈ MNM such that aij = eij for all (i, j) ∈ S. Let ` be a positive integer not
exceeding M . Find Ê ∈ M(E(S)) with the minimal σ`.

Let E = (gij) denote the gene expression matrix with missing values. We choose
the S in Problem 5.1 to be the set of coordinates coordinates (i, j) for which the entry
gij is not missing. Recall that N ⊂ [N] denotes the set of rows of E that contain at
least one missing entry. Hence the set S contains all the rows i ∈ N c. Clearly, the
complement of S is the set of coordinates Sc = {(i, j) | gij is missing} ⊂ N × [M] .
Let N1 denote the total number of missing entries in E; thus N1 ≥ N ′.

Let E′ be the matrix as in 4.1 with L′ significant singular values. Note that (2.9)
yields σi(E) ≥ σi(E

′) for i = 1, ..., M . Thus if we want to complete E such that the
resulting matrix still has exactly L′ significant singular values, we should consider
Problem 5.1 with ` = L′ + 1.

8

A more general possibility is to assume that the number of significant singular
values of a possible estimation of E is L = L′ + k where k is a small integer, e.g.
k = 1 or 2. That is, in the group of genes gT

n , n ∈ N, there are k significant genes
which are not found in the group of genes in N c. Then one considers Problem 5.1
with ` = L′ + k + 1.

We now consider a modification of Problem 5.1 which has a nice numerical
algorithm.

Problem 5.2 Let S ⊂ [N]×[M] and denote by E(S) a given set of real numbers
eij for (i, j) ∈ S. Let M(E(S)) ⊂ MNM the affine subset of all matrices A = (aij) ∈
MNM such that aij = eij for all (i, j) ∈ S. Let ` be a positive integer not exceeding

M . Find Ê ∈ M(E(S)) such that
∑M

i=` σ2
i is minimal.

Clearly, we can find E ∈ M(E(S)) with a “small” σ2
` (E) if and only if we can find

E ∈ M(E(S)) with a “small”
∑M

i=` σ2
i (E).

6 Fixed Rank Approximation Algorithm

We now describe one of the standard algorithms to solve Problem 5.2.

Algorithm 6.1 Fixed Rank Approximation Algorithm (FRAA)
Let Ep ∈ M(E(S)) be the pth approximation to a solution of Problem 5.2. Let
Ap := ET

p Ep and find an orthonormal set of eigenvectors for Ap, vp,1, ...,vp,M as in
(2.6). Then Ep+1 is a solution to the following minimum of a convex nonnegative
quadratic function

min
E∈M(E(S))

M
∑

i=`

(Evp,i)
T(Evp,i). (6.1)

We now explain the algorithm and show that in each step, we decrease the value of
the function we minimize:

M
∑

i=`

σ2
i (Ep) ≥

M
∑

i=`

σ2
i (Ep+1). (6.2)

For any integer k ∈ [M], let Ωk denote the set of all k orthonormal vectors {y1, ...,yk}
in R

M . Let A ∈ SM and assume (2.6) with J = M . Then the minimal principle
(the Ky-Fan characterization for −A) is:

M
∑

i=`

λi(A) =
M
∑

i=`

wT
i Awi = min

{y`,...,yM}∈ΩM−`+1

M
∑

i=`

yT
i Ayi. (6.3)

9

See for example [3].
Let E = Ep + X ∈ M(E(S)). Then X = (xi,j)

N,M
i,j=1 where xij = 0 if (i, j) ∈ S

and xij is a free variable if (i, j) 6∈ S.
Let x = (xi1,j1 , xi2,j2 , . . . , xiN1

,jN1
)T denote the N1 × 1 vector whose entries are

indexed by Sc, the coordinates of the missing values in E. Then there exists a
unique N1 ×N1 real valued symmetric nonnegative definite matrix N1 ×N1 matrix
Bp which satisfies the equality

xTBpx
T =

M
∑

i=`

up,iX
TXup,i. (6.4)

Let F (i, j) be the N ×M matrix with 1 in the (i, j) entry and 0 elsewhere. Then
the (s, t) entry of Bp is given by

bp(s, t) =
1

2

M
∑

i=`

vT
p,i(F (is, js)

TF (it, jt) + F (it, jt)
TF (is, js))vp,i, (6.5)

s, t = 1, . . . N1

The proof of 6.5 is given in the Appendix. The crucial observation is that Bp can
be decomposed into the direct sum of N1 symmetric nonnegative definite matrices
indexed by N .

Hence the function minimized in (6.1) is given by

M
∑

i=`

vT
p,iE

TEvp,i =

M
∑

i=`

vT
p,i(Ap + ET

p X + XTEp + XTX)vp,i =

xTBpx + 2wT
p x +

M
∑

i=`

λi(Ap) =

∑

i∈N
(xT

i Bp,ixi + 2wT
p,ixi) +

M
∑

i=`

λi(Ap), (6.6)

where wp := (wp,1, . . . , wp,N1
)T, for i ∈ N ,

wp,t =
M
∑

i=`

vT
p,iE

T
p F (it, jt)vp,i, t = 1, ..., N1.

Since the expression in (6.1), and hence in (6.6), is always nonnegative, it follows
that wp is in the column space of Bp. Hence the minimum of the function given in
(6.6) is achieved at the critical point

Bpxp+1 = −wp, (6.7)

10

and this system of equations is always solvable. (If Bp is not invertible, we find the
least-squares solution).

We now show (6.2). The vector xp+1 contains the entries for the matrix Xp+1.
Then Ep+1 := Ep + Xp+1. From the definition of Ap+1 := ET

p+1Ep+1 and the
minimality of xp+1 we obtain

M
∑

i=`

σi(Ep)
2 =

M
∑

i=`

vT
p,i(Ep + 0)T(Ep + 0)vp,i ≥

M
∑

i=`

vT
p,i(Ep + Xp+1)

T(Ep + Xp+1)vp,i =
M
∑

i=`

vT
p,iAp+1vp,i ≥

M
∑

i=`

λi(Ap+1) =
M
∑

i=`

σi(Ep+1)
2.

�

In Appendix B, we give an algorithm to solve 6.7 efficiently. We conclude this
section by remarking that to solve Problem 5.1, one may use the methods of [4].

7 Simulation

We implemented the Fixed Rank Approximation Algorithm (FRAA) in Matlab
and tested it on the microarray data Saccharomyces cerevisiae [7] as provided at
http://genome-www.stanford.edu (the elutriation data set). The dimensions of the
complete gene expression matrix is 5981× 14. We randomly deleted a set of entries
and ran FRAA on this “corrupted” matrix to obtain estimates for the deleted entries.
The FRAA requires four inputs: the matrix with missing entries, an initial guess, a
parameter L–the number of significant singular values, and the number of iterations.
We set the initial guess to the missing data matrix with 0’s replacing the missing
values, the number of significant values to L = 2, and ran the algorithm through 5
iterations.

We compared our estimates to estimates obtained by three other methods: re-
placing missing values with 0’s (zeros method), row means (row means method), or
the values obtained by the KNNimpute program [8]. We used a normalized root
mean square as the metric for comparison: if C represents the complete matrix and
Ep represents an estimate to the corrupted matrix E, then the root mean square

(RMS) of the difference D = C − Ep is ||D||F√
N

, where N is the length (the larger of

11

the two dimensions) of D. We normalized the root mean square by dividing RMS
by the average value of the entries in C.

In simulations where 1% − 20% of the entries were randomly deleted from
the complete matrix C, the FRAA performed slightly better than the row means
method, and significantly better than the zeros method. However, the KNNimpute
algorithm (with parameters k=15, d=0) produced the most accurate estimates, with
normalized RMS errors that were smaller than the normalized RMS errors from the
other three methods. Figure 7.1 gives the results of one set of experiments: the nor-
malized RMS errors is plotted against percent missing. Not surprisingly, normalized
RMS’s increase with increasing percentage of missing values.

In [8], the authors caution against using KNNimpute for matrices with fewer than
6 columns. We randomly selected four columns from the elutriation data set to form
a truncated data set, then randomly deleted from 1%− 20% of the entries from this
newly formed matrix. Figure 7.2 gives a comparison of the normalized RMS errors
against percent missing for three of the estimation methods. In this case, FRAA
performed slightly better than the KNNimpute algorithm. Figure 7.2(b) shows the
distribution of raw errors (true value - estimated value) for one simulation where
10% (2400) of the entries were deleted and then estimated. The standard deviation
of the errors was .206 for FRAA, .237 for KNNimpute, and .255 for the row means
method.

However, in other simulations choosing four other different columns from C, the
results were mixed: sometimes FRAA gave the smallest normalized RMS, other
times KNNimpute gave the smallest normalized RMS. In all cases, these two meth-
ods were more accurate than the row means method for imputation.

8 Discussion

The Fixed Rank Approximation Algorithm uses singular value decomposition to
obtain estimates of missing values in a gene expression matrix. It uses all the
known information in the matrix to simultaneously estimate all missing entries.
Preliminary tests indicate that FRAA is more accurate than replacing missing values
with 0’s or with row means. The KNNimpute algorithm was more accurate when
estimating missing entries deleted from the full elutriation matrix, but FRAA might
be a feasible alternative in cases when the number of columns is small.

FRAA is another option for estimating missing values in gene expression data.
Future work should look at estimating missing data from other types of microarray
data sets. The biology of the data should guide the researcher in determining the
best method to use for imputing missing values in these data sets.

12

Appendix

A Proof of 6.5

Let N ⊂ [N]. Let S(i) denote the set of coordinates in row i with known values in
E so that S(i)c denotes the set of coordinates of the missing values in row i.

Sc = ∪i∈NS(i)c, S(i)c = {(i, j(i, 1)), ..., (i, j(i, k(i)))}, (A.1)

M ≥ j(i, k(i)) > ... > j(i, 1) ≥ 1 for i ∈ N ,

N1 :=
∑

i∈N
k(i). (A.2)

Theorem A.1 The N1×N1 symmetric nonnegative definite matrix Bp given by
(6.4) decomposes into a direct sum of N ′ symmetric nonnegative definite matrices
indexed by the set N :

Bp = ⊕i∈NBp,i, Bp,i = (bp,i(q, r))
k(i)
q,r=1) is k(i) × k(i) for i ∈ N , (A.3)

and
xTBpx =

∑

i∈N
xT

i Bp,ixi. (A.4)

More precisely, let vp,k = (vp,k,1, ..., vp,k,M)T, k = 1, ..., M be given as in Algorithm
6.1. Then

bp,i(q, r) =
M
∑

k=`

vp,k,j(i,q)vp,k,j(i,r), q, r = 1, ..., k(i). (A.5)

Equivalently, let Wp be the following M × M idempotent symmetric matrix (W 2
p =

Wp) of rank M − l + 1:

Wp =
M
∑

k=`

vp,kv
T
p,k = TpT

T
p , Tp = [vp,`, ...,vp,M] ∈ MM(M−`+1). (A.6)

Then Bp,i is the submatrix of Wp of order k(i) with respect to the rows and columns
in the set S(i)c for i ∈ N . In particular, if in each row of E there is at most one
missing entry then Bp is a diagonal matrix.

Proof. View the rows and the columns of Bp as indexed by (s, j(s, q)) and
(t, j(t, r)) respectively, where s, t ∈ N and q = 1, ..., k(s), r = 1, ..., k(t). (For the
purposes of this proof, the notation here is different from that in the body of the

13

paper.) So Bp = (bp((s, j(s, q)), (t, j(t, r)))). Let F (i, j) be the N ×M matrix which
has 1 on the (i, j) place and all other entries are equal to zero. Then

bp((s, j(s, q)), (t, j(t, r))) =

1

2

M
∑

i=`

vT
p,i(F (s, j(s, q))TF (t, j(t, r)) + F (t, j(t, r))TF (s, j(s, q)))vp,i, (A.7)

s, t ∈ N , q = 1, ..., k(s), r = 1, ..., k(t).

It is straightforward to show that F (s, j(s, q))TF (t, j(t, r)) = 0 if s 6= t. Further-
more, for s = t the matrix F (s, j(s, q))TF (t, j(t, r)) + F (t, j(t, r))TF (s, j(s, q)) has
1 in the places (j(s, q), j(t, r)) and (j(t, r), j(s, q)) for r 6= q, and has 2 in the place
(j(s, q), j(s, q)) if r = q and zero in all other positions. Hence
bp((s, j(s, q)), (t, j(t, q))) = 0 unless s = t. If s = t then a straightforward calculation
yields (A.5). Other claims of the theorem follow straightforward from the equality
(A.5). �

B Algorithm for 6.7

From Theorem A.1, the system of equations Bpx = −wp in N1 unknowns is equiv-
alent to N ′ smaller systems

Bp,ixp+1,i = −wp,i i ∈ N . (B.1)

Thus the big system of equations in N1 unknowns, the coordinates of xp+1, given
(6.7) splits to N ′ independent systems given in (B.1). That is, in the iterative update
of the unknown entries of E given by the matrix Ep+1, the values in the row i ∈ N
in the places S(i)c are determined by the values of the entries of Ep in the places
S(i)c and the eigenvectors vp,`, ...,vp,M of ET

p Ep.
We now show how to efficiently solve the system (6.7).

Algorithm B.1 For i ∈ N let Vp,i is the k(i)×(M−`+1) matrix obtained from
Vp, given by (A.6), by deleting all rows except the rows j(i, 1), ..., j(i, k(i)). Then
(B.1) is equivalent to

Vp,iV
T
p,ixp+1,i = −wp,i, i ∈ N , (B.2)

which can be solved efficiently by the QR algorithm as follows. Write Vp,i as Qp,iRp,iPp,i,
where Qp,i is an k(i) × dp,i matrix with dp,i orthonormal columns, Rp,i is an upper
triangular dp,i×k(i) matrix of rank dp,i nonzero rows, where the rank Vp,i = dp,i, and
Pp,i is a permutation matrix. (The columns of Qp,i are obtained from the columns
of Vp,i using Gram-Schmidt process.) Then

QT
p,ixp+1,i = −(Rp,iR

T
p,i)

−1QT
p,iwp,i

14

and
xp+1,i = −Qp,i(Rp,iR

T
p,i)

−1QT
p,iwp,i, i ∈ N (B.3)

is the least square solution for xp+1,i.

C Matlab code

function Ep1 = fraa(E,Ep,L,iter)

%Fixed rank algorithm -- estimate missing values

%Usage: fraa(E,Ep,L,iter)

%E: matrix with missing values

%Ep: initial solution

%L: parameter (number of significant values)

%iter: number of iterations to perform

%Note: Any rows with all missing values must be removed

%%%%%%%%%% THIS IS THE SET-UP

%Get size of E

[N,M]=size(E);

if (L > M)

error(’L must be less than or equal to the number of columns of E’)

end;

%get index of missing values

missing=find(isnan(E));

%Number of missing values

m=length(missing);

m2=m*m;

%%%%%%%%%%% NOW WE WORK WITH THE ALGORITHM

Xp1=zeros(N,M);

track=iter;

while(iter > 0)

A=Ep’*Ep;

%Find singular value decomposition of A

[U,S,V]=svd(A);

%Singular values of Ep

sigma2=S(S~=0);

singular=sqrt(sigma2);

partial_sig2=sum(sigma2(L:M));

total_sig2=sum(sigma2(1:M));

fprintf(’\n iteration %3.0f \n’, track-iter+1)

fraction=partial_sig2/total_sig2;

15

fprintf(’ partial sum/total sum of sq. singular values \n %1.8f’, fraction)

fprintf(’\n’)

%Construct B=Bp

B=sparse(m,m); %pre-allocate space

[is,js]=ind2sub([N,M],missing(1:m));

for s=1:m

for t=s:m

if (i(s)==i(t))

B(s,t)=sum(U(j(s),L:M)*U(j(t),L:M)’);

B(t,s)=B(s,t); %B is symmetric

end %end if

end %end For t

end %end for s

%%%NOW CONSTRUCT THE VECTOR Wp

W=sparse(m,1); %pre-allocate space

for t=1:m

K=sparse(N,M);

K(missing(t))=1;

W(t)=sum(diag(U(:,L:M)’*Ep’*K*U(:,L:M)));

end %end for

%Solve Bx_(p+1)= -W

xp1=-B\W;

%Create matrix B_{p+1}

Xp1(missing)=xp1;

%Update solution

Ep=Ep+Xp1;

%set counter

iter=iter-1;

end %End while

fprintf(’\n’)

fprintf(’ singular values (final iteration):\n’)

fprintf(’%16.6f’,singular)

Ep1=Ep;

For the Matlab m file or a version of this algorithm for R, see
http://www.carleton.edu/˜faculty/lchihara

16

References

[1] O. Alter, P.O. Brown and D. Botstein, Processing and modelling gene expres-
sion expression data using singular decomposition, Proceedings SPIE, vol. 4266
(2001), 171-186.

[2] H. Chipman, T.J. Hastie and R. Tibshirani, Clustering micrarray data in:
T. Speed, (Ed.), Statistical Analysis of Gene Expression Microarray Data, ,
Chapman & Hall/CRC, 2003 pp. 159-200.

[3] S. Friedland, Inverse eigenvalue problems, Linear Algebra Appl., 17 (1977),
15-51.

[4] S. Friedland, J. Nocedal and M. Overton, The formulation and analysis of
numerical methods for inverse eigenvalue problems, SIAM J. Numer. Anal. 24
(1987), 634-667.

[5] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge Univ. Press, 1987.

[6] R.A. Johnson, D. W. Wichern, Applied Multivariate Statistical Analysis, Pren-
tice Hall, New Jersey, 4th edition (1998).

[7] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen,
P.O. Brown, D. Botstein and B. Futcher, Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hy-
bridization, Mol. Biol. Cell, 9 (1998), 3273-3297.

[8] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,
D. Botstein and R. Altman, Missing value estimatation for DNA microarrays,
Bioinformatics 17 (2001), 1-6.

17

Figure captions:

7.1 Comparison of normalized RMS against percent missing for threee meth-
ods: FRAA, KNNimpute, and row means methods. The normalized RMS for
the zeros method is not displayed, but the values are .397, .870, 1.24, 1.52, 1.76, for
1, 5, 10, 15, 20% percent missing, respectively.

7.2 Four columns of the full elutriation matrix. Entries were then randomly
deleted. (a) Plot of normalized RMS against percent missing. (b) Distribution of
the raw errors (true - estimate) in one run of a simulation with 10% missing.

7.3 Scatter plot of the raw errors from the KNNimpute and FRAA estimates of
the truncated elutriation matrix with 10% entries missing. The correlation between
the two sets of raw errors is .76.

18

F
ig.

7.1

P
ercent m

issing

normalized RMS error

1
5

10
15

20

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

FR
A

A
K

N
N

im
pute

R
ow

 m
eans

E
lutriation

19

Fig. 7.2(a)

Percent missing

no
rm

al
iz

ed
 R

M
S

 e
rr

or

1 5 10 15 20

0.
00

0
0.

05
0

0.
10

0
0.

15
0

0.
20

0
0.

25
0 FRAA

KNNimpute
Row means

Elutriation: 4 columns

20

Fig. 7.2(b)

FRAA KNNimpute Row means

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Distribution of raw errors (10% missing)

21

Fig. 7.3

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

FRAA raw errors

K
N

N
im

pu
te

 ra
w

 e
rr

or
s

Scatter plot of raw errors (10% missing)

22

