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Abstract

We suggest here a new method of the estimation of missing entries in a gene ex-
pression matrix, which is done simultaneously— i.e., the estimation of one missing
entry influences the estimation of other entries. Our method is closely related to the
methods and techniques used for solving inverse eigenvalue problems.
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1 Introduction

In the last decade, molecular biologists have been using DNA microarrays as a tool for an-
alyzing information in gene expression data. During the laboratory process, some spots on
the array may be missing due to various factors (for example, machine error.) Because it is
often very costly or time consuming to repeat the experiment, molecular biologists, statisti-
cians, and computer scientists have made attempts to recover the missing gene expressions
by some ad-hoc and systematic methods.

More recently, microarray gene expression data have been formulated as a gene expres-
sion matrixE with n rows, which correspond to genes, andcolumns, which correspond
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to experiments. Typically. is much larger thamn. In this setting, the analysis of miss-
ing gene expressions on the array would translate to recovering missing entries in the gene
expression matrix values.

The most common methods for recovery are [12]:

(a) Zero replacement method;

(b) Row sum mean;

(c) Clustering analysis methods such as K-nearest neighbor clustering , hierarchical clus-
tering;

(d) SVD - Singular Value Decomposition (which is closely related to Principal Component
Analysis).

In these methods, the recovery of missing data is done independently, i.e., the estimation
of each missing entry does not influence the estimation of the other missing entries. The
iterative method using SVD suggested in [12] takes into account implicitly the influence of
the estimation of one entry on the other ones. See also [2].

We suggest a new method in which the estimation of missing entries is done simultane-
ously, i.e., the estimation of one missing entry influences the estimation of the other missing
entries. If the gene expression matfixhas missing data, we want to complete its entries
to obtain a matrixZ, such that the rank of is equal to (or does not exceed)whered is
taken to be the number of significant singular value& ofThe estimation of the entries of
E to a matrix with a prescribed rank is a variation of freblem of communalit{see[4,

p. 637].) We give an optimization algorithm for finditdgusing the techniques for inverse
eigenvalue problems discussed in [3].

We implemented our fixed rank approximation algorithm as a Matlab procedure and
ran simulations on the microarray d&accharomyces cerevisifl]. (This data set is the
benchmark for icroarray data for other methods of missing value estimations available in
the recent literature. It is available on the web address
http://genome-www.stanford.edu/SVD/htmls/spie.html, under the name Elutriation data set.)
We describe the results in Section 7.

We ran similar simulations on the full Cdc15 data set, available at the above web ad-
dress, and on subsets of this data set (using 4 columns). We also ran a couple of simulations
on one of the data sets included by [10]. The outcomes were similar to that using the Elutri-
ation data set, with the FRAA algorithm outperforming KNN on the matrices with a small
number of columns.

It is likely that our algorithm can be used to estimate missing entries in data sets other
than gene expression data. Such a data set should be represented>bysamatrix whose
rank is smaller thamin(m, n). To keep the paper focused we did not test our methods on
non-microarray data sets.

Since we wrote the first version of this paper in Fall 2003 we became aware of [10],
which uses Bayesian estimations, and a new paper [9], which use local least squares. Both
papers claim to have superior results than KNN. The relatives successes of KNN and these
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two methods over FRAA most likely is due to the fact that these three methods use only
closely related genes to impute the missing values in each microarray data set. We believe
that if we first apply FRAA to the corrupted set, then using this estimated data set, subdivide
the genes into clusters of genes with similar traits, and then once again apply FRAA to the
missing entries of genes in each cluster, we will obtain similar, or hopefully better results,
then the above three methods. We intend to carry out this algorithm in a future paper.

2 The Singular Value Decomposition

In this section, we recall some basic facts at®imgular Value DecompositiofiV’ D. Let

E be ann x m real-valued nonzero matrix. In this paper we assumerthatn. TheSV D

of E is a decomposition of into the product/X V' with certain properties. There are a
few variations of this definition, and we give the following one which is most suitable for
the applications in our context. We assume has n x m, ¥ ism x m, andV ism x m.

E=UxvT, UtU =v'V =1, ¥ =diag(o1,....,om), 01> ... > 0, > 0. (2.1)

The rankr of E is the number of positive singular values; the dimension of the row space,
and the dimension of the column spacerois alsor.

Remark. Singular value decomposition is related to principal component analysis
(PCA) in statistics. If we center each column in matfixthenETE = V2V 7T is pro-
portional to the covariance matrix of the columnsHfthe columns ol are the principal
components, and th{arg} are proportional to the variances of the principal components.

Let U,, X, V, be matrices obtained froi, 2, V, respectively, as followsU,. is an
n X r matrix obtained by deleting the last — r columns ofU, V. is them x r matrix
obtained by deleting the last — r columns ofl/, andX, is obtained by deleting the last
m — r columns and rows af. . Then

E=Ux%V,", U0, =V,'V, = I,, &, = diag(o1, ...,0,), 01 > ... 2 0, > 0. (2.2)

In this settingU,., 33,., V,. are all rankr matrices: the lasth — » columns ofU and the last
m — r rows of VT are arbitrary, up to the condition that the last— » columnsU and
lastm — r rows of V'T are orthonormal bases of the orthogonal complement of the column
space and the row spaceBfrespectively. Hence (2.2) is sometimes calledducedSVD
of E.

We now give another form of (2.2) which has a significant interpretation in microarray
data. Letuy,- - -, u,, denote the columns df andvy,...,v,, denote the columns df.
Then (2.1) and (2.2) can be written as



m (s
E= Z o'quqv;P = Z O'qquqT. (2.3)
q=1 q=1

If o1 > ... > o, thenu, andv, are determined up to the sigal for ¢ = 1,...,7.
Namelyu, andv,, are lengthl eigenvectors off ET andE™ E, respectively, corresponding
to the common eigenvaluxeg. (Note the choice of a sign in, forces a unique choice of
the sign inu,.) The vectorsuy, ..., u, are calledeigengenesthe vectorsvy, ..., v, are
calledeigenarraysandoy, .. ., o, are calledeigenexpressionsThe rankr can be viewed
as the number of different biological functionsrofjenes observed im experiments. The
eigenarraysry, . .., v, give the principler orthogonal directions ifR™ corresponding to
oi1,...,0.. The eigengeneay,...,u, give the principler orthogonal directions ifR"™
corresponding tary,...,0,.. The eigenexpressions describe the relative significance of
each bio-function. From the data given in [1], one it seems that the number of significant
singular values never exceeffs See the discussion on the number of significant singular
values in the beginning ¢f3. The essence of the FRAA algorithm, suggested in this paper,
is based on this observation.

Computationally, one bring&' to upper bidiagonal forrd using Householder matri-
ces. Then one applies implicitly the QR algorithm4d A to find the positive eigenvalues
o?,...,0% and the corresponding orthonormal eigenvectors.., v, of the matrix ETE
[5]. Next

u, = aiqu = ou,=FEvy, q=1,..,r (2.4)
q
To compute the decomposition (2.3), it is enough to kngwand o,u,. If o, repeats
k > 1 times in the sequence; > ... > o, > 0, then the choice of the corresponding
k eigenvectors; is not unique: any choice of the orthonormal basis in the eigenspace of
ETE corresponding to the eigenvalug is a legitimate choice.

We remark that in our applications was relatively smallm < 20. Thus we opted to
compute the “small” matri¥s™ E directly, then use software to compute the positive eigen-
valuess?, ..., 02 and the corresponding orthonormal eigenvectars.. ., v, of ETE.

Denote by||E||+ the Frobeniusé) norm of E. It is the Euclidean norm of viewed
as a vector withnm coordinates. Each '[ermqv;F in (2.3) is a rank one matrix with
lugvy || 7 = 1. LetR(n, m, k) denote the set of x m matrices of at most rank (m > k).
Then for eachk, k£ < r, the SVD of E' gives the solution to the following approximation
problem:

k
min _|[E— Fl[r = [|E - ZUqquqTHT =

2.5
FeR(n,m,k) ( )

g=1



If o > 011 thenz’gz1 aquqv;F is the unique solution to the above minima problem.
For the purposes of this paper, it will be convenient to assumerthat0 for anyq > m.

In what follows we will use yet another equivalent definition of the singular values of
E. LetR™*™ denote the space of all realx m matrices and le$,,(R) denote the space
of all realm x m symmetric matrices. Fod € S,,(R), we let

M(A) =M > o> Ap(A) = A, Azg = Mz, 2 7, = Ogt; ¢,t=1,....,m, (2.6)

q

be the eigenvalues and corresponding eigenvectofs where the eigenvalues are counted
with their multiplicities, and the eigenvectors form an orthonormal badi¥’in
Consider the followingn + m) x (n + m) real symmetric matrix:

fo <£T g) . 2.7)

It is known [6,57.3.7]

04(E) = 0q = MN(E®) = = Appms1-¢(E?), for g =1,...,m, (2.8)
N(E°)=0forg=m+1,...,n.

The Cauchy interlacing property f@* implies [6,57.3.9]
Let [n] := {1,2,...,n}, and let\' C [n], M C [m] denote sets of cardinalities
n —n',m —m’ > 0 respectively.

Proposition 2.1 Let E € R™™ and denote by’ € R™ ™ the matrix obtained from
E by deleting all rows € A and all columng € M. Then

04(E) > o4(E) forq=1,...,m, (2.9)
Uq(E’) > Ogin—n'+m-m/(E) forg =1, .., m +n' —n.

The significance of this proposition is explainedthandss.

3 The Gene Expression Matrix

In this section we will viewF € R™ ™, with n > m as the gene expression matrix:

gin 912 ... Gim ng

T

921 G922 ... Qg2m 125
E = : : : : = : =[c1 c3 ...cnl, 3.1
gj1 952 --- Gjm g;-f [ ! 2 m] (3-1)

nl Gn2 .- Gnm g};



g1i
92i

g;[‘ = (gjl,nga ...,gjm), j = 1, ey 1, C;, = gﬂ s 1= 1, ey M.

9ni
The row vectorg]T corresponds to the (relative) expression levels of jfiftegene inm
experiments. The column vectey corresponds to the (relative) expression levels ofrithe
genes in theé'* experiment.

Consider the SVD of the gene expression maftix= ULV . In the terminology of
[1], the columns ofU are eigengenes, the columnsiofare eigenarrays, and the singular
values ofFE are eigenexpression levels.

In many microarray data sets, researchers have found that only a few eigengenes are
needed to capture the overall gene expression pattern. (Here, by a “few” we mean less
than half of the number of experiments.) The number of thessignificanteigengenes
is a fundamental problem in principal component analysis [7]. Let us mention explicitly

three methods to estimate the number of significant eigengenedratiien criteria can
be stated simply as follows. Let

2
Dq = ,:7'12, qg=1,...m, p:=(p1, ...,pm)T. (3.2)
Zt:l O

Thusp, represents the fraction of the expression level contributed by‘theigengene.
Then we choose theeigengenes that contribute ab@0t% — 90% of the total expression
level. Another method is to use scree plots fom@e(ln principal component analysis, the
pg are proportional to the variances of the principal components, so we choose the principal
components of maximum variability [8].) According to [7], the most consistent estimates
of the number of significant eigengenes is achieved by the broken-stick model.

If E has! significant eigenvalues, we view, to be effectively equal to zero far > [.
We define the matrix

!
By = Z aquqv;F (3.3)
qg=1
as thefiltered part of E and conside — E; thenoisepart of E.
Let
1 m
1> h(p) :=— 1 > 0. 3.4
> h(p) og ;pq ogpg = 0 (3.4)



Thenh(p) is the rescaled entropy of the probability vectori(p) = 1 only whenp, =

%, g = 1,...,m; in other words, all the eigengenes are equally expressed. On the other

hand,h(p) = 0 if and only if p,(1 — p,) = 0, ¢ = 1, ..., m and this corresponds to= 1:

in other words, the gene expression is captured by a single eigengene (and eigenarray).
The following example points out a potential weakness of SVD theory in trying to detect

groups of genes with similar properties.

3.1 SVD and gene clusters

Suppose the set of geng?, j € [n] can be grouped inté + 1 disjoint subset$n] =
U’;I%Gq with G1, ..., G, nonempty andn > k (usuallym > k). In particular, consider the
genes in each grou@, (¢ = 1, ..., k) to have similar characteristics (in other wordg, is

a cluster). Genes that have no similar characteristics are placgglin Denote by#G|,
the cardinality of the sef/, for ¢ = 1, ..., k + 1. Suppose that our. experiments does not
distinguish between any two genes belonging to the same grgupr ¢ = 1,...,k + 1.
More precisely we assume:

gji = ag; foreach j €e Ggand g =1,...,k, i =1,...,m, (3.5)
gji = 0 for each j € Gjy1 andi=1,...,m,

LetA = (aq)" | € R¥™ be the correspondirigxm matrix with the rows T, ..., r]:

T
ry

T
ry

A=
.
Then the rowr, appears exactly:G, times inE for ¢ = 1, ..., k. In additionE has#Gy, 41
zero rows. Clearly the row space Bfis the row space ofi. Sok > rank F = rank A.
Hence ifrank A = k then

o1(E) > ... > 0x(E) > o0p41(E) = ... = om(E) = 0.

However, there is no simple formula relating the singular values ahd A. It may hap-

pen that the rows ofl are linearly dependent which indicates that several groups out of
G4, ..., G, are somehow related, and the number of the significant singular valuessof

less thark.

Conclusiont The number of gene clusters is no less than the number of significant singular
values of gene expression matrix



4 Missing Data in the Gene Expression Matrix

We now consider the problem of missing data in the gene expression mat(@ur anal-
ysis can be applied to any matrx) Let A/ C [n] denote the set of rows @ that contain
at least one missing entry. Thus for egcle NV¢ := [n]\N, the genegjT has all of its
entries. Letn’ denote the size o/ so that the size alV isn — n’. We want to complete
the missing entries of ea@jf, j € N, under some assumptions.

We first describe the reconstruction of the missing datd irsing SVD as given in [1].

4.1 Imputation using SVD

Let £’ be then/ x m matrix containing the rongT, j € N°¢of E which do not have any
missing entries, andl be the number of significant singular values/t Let X c R™
be the invariant subspace of the symmetric matfiX)* £’ corresponding to the eigen-
valuesa (E')?, ...,op(E")?. Letxy,...,xy be the orthonormal eigenvectors @¢')TE
corresponding to the eigenvalueg E')?, ..., oy (E')2. Thenxy, ..xy is a basis oX.

Let M C [m] be a subset of cardinality, — m’. Consider the projectiony : R —
R™ by deleting all the coordinatese M for any vectorx = (x1, ..., )T € R™. Then
mm(X) is spanned byt (x1), ..., T (x7).

Fix j € N and letM C [m] be the set of experiments (columns) where the @e
has missing entries. Lgt € m((X) be the least square approximationtto(g;). Then
anyg; € w/(/[l(y) is a completion of;. If mo¢|X is 1-1 theng; is unique. Otherwise one
can choosg; € w]j(y) with the least norm. Note that to fingd € 7m(X) one needs to
solve the least square problem for a subspacgX). In principle, for eachj € N one
solves a different least square problem. The crucial assumption of this method is

1=1. (4.1)

That isthe completed matri¥’ and its submatrixz’ have the same number of significant
singular valuesThis follows from the observation that the completion of the ggwj € N/
lies in the subspacK. Note that the inequalities (2.9) imply that the assumption (4.1) can
be a very restrictive assumption.

The significant singular values d’ and of the reconstructeff are joint functions
of all the rows (genes). By trying to reconstruct the missing data in each gf&ntor
j € N, separately, we ignore any correlation betwg?nand the genequ, q € N;
consequently, this will have an impact on the singular valuds.dh the following section
we suggest a different approach which treats the estimation problem of all the missing data
simultaneously.



4.2 Reconsideration of 3.1

Let us reconsider Example 3.1. Assume thatk A = k. Letj € A and assume that the
genej is in the clusteG,. Then we can reconstruct all missing entriegﬁﬁf Gy\N # 0.
Indeed, if for some geng € G, we have the results of. experiments, theg; = g,
and we reconstructed the missing entriesgfarin this example we can reconstruct all the
missing entries ir’ if £’ has the same rank & Equivalently, we can reconstruct all the
missing entries inF if the equality (4.1) holds, wherkand!’ are the ranks of’ and E’
respectively.

4.3 Iterative method using SVD

In the recent papers [12] and [2], the following iterative method using SVD to impute
missing values in a gene expression matrix is suggested. First, replace the missing values
with 0 or with values computed from another method. Call the estimated nigjriwhere

p = 0. Find thel,, significant singular values df,, and lett,; be the filtered part ofz,

(3.3). Replace the missing valuesfhby the corresponding values i, ;, to obtain the

matrix E,;. Continue this process untl,, converges to a fixed matrix (within a given
precision). This algorithm takes into account implicitly the influence of the estimation of
one entry on the other ones. But it is not clear if the algorithm converges, nor what are the
features of any fixed point(s) of this algorithm.

5 The Optimization Problem

We now show that the estimation problem discussed in the previous section can be cast as
the following optimization problem:

Problem 5.1 LetS be a given subset ¢f] x [m]. (S is the set of uncorrupted entries
of the gene expression mattx given by (3.1).) Let(S) := {e;i, (j,i) € S} be a given
set of real numbers.e(S) is the set of uncorrupted (known) values of the entrieg §f
LetM(e(S)) € R™*™ be the affine subset of all matrices= (aj;) € R™™ such that
aj; = ey forall (j,7) € S. (M(e(S)) all possible choices foF.) Let/ be a positive integer
not exceeding. Find E € M(e(S)) with the minimalbs,.

Let £ = (g;;) denote the gene expression matrix with missing values. We choose the
S in Problem 5.1 to be the set of coordinatgsi) for which the entryg;; is not missing.
Recall that\' C [n] denotes the set of rows df, such that each roy € N contain
at least one missing entry. The cardinality&fis n — n’. Thus the sefS contains all
elementsj, 1), ...(j,m) for eachj € N¢. The complement of is the set of coordinates
S¢={(j,1) | g;i is missing C N x [m] . Leto denote the total number of missing entries
in E. Theno > n —n'.



Let E’ be the matrix as i§4.1 with!’ significant singular values. Note that (2.9) yields
04(E) > 04(E’) for ¢ = 1,...,m. Thus if we want to complet& such that the resulting
matrix still has exactly’ significant singular values, we should consider Problem 5.1 with
=1 +1.

A more general possibility is to assume that the number of significant singular values
of a possible estimation df isi = I’ + k wherek is a small integer, e.gc = 1 or 2. That
is, the group of genegjT for j € N contributes td’ + 1, ..., I’ + k significant eigengenes of
E. Then one considers Problem 5.1 with- I’ + k + 1.

We now consider a modification of Problem 5.1 which has a nice numerical algorithm.

Problem 5.2 LetS C [n] x [m] and denote by(S) a given set of real numbets; for
(4,1) € S. LetM(e(S)) € R™™ be the affine subset of all matricéls= (aj;) € R™*™
such thataj; = ej; for all (j,7) € S. Let/ be a positive integer not exceeding Find
E € M(e(S)) such thaty~" , o2 is minimal.

Clearly, we can findZ € M(e(S)) with a “small” o2 (E) if and only if we can findE €
M(e(S)) with a“small” 7", o7 (E).

6 Fixed Rank Approximation Algorithm

We now describe one of the standard algorithms to solve Problem 5.2. Mathematically it is
stated as follows:

Algorithm 6.1 Fixed Rank  Approximation Algorithm (FRAA)
Let £, € M(e(S)) be thep' approximation to a solution of Problem 5.2. Lé} := Eng
and find an orthonormal set of eigenvectors foy, v, 1, ..., vy, @S in (2.6). Therty, 1 is
a solution to the following minimum of a convex nonnegative quadratic function

min Ev, ) (Ev,,). 6.1
EGMW»;( pa) " (BVp) (6.1)

The flow chart of this algorithm can be given as:

Fixed Rank Approximation Algorithm (FRAA)
Input: integersm, n, L, iter, the locations of non-missing entri&s initial approximation
Ey of n x m matrix E.

Output: an approximatiorf;;., of E.

for p = 0toiter — 1

- ComputeA,, := E] E, and find an orthonormal set of eigenvectorsAgr v, 1, ..., vy m.
- E,4+1 is a solution to the minimum problem (6.1) with= L.

10



We now explain the algorithm and show that in each step, we decrease the value of the
function we minimize:

m

D 0a(Bp) = Y og(Bpsa). (6.2)

i=0 q=0

For any integef: € [m], let Q; denote the set of alt orthonormal vectorgyy, ...,y }
in R™, Let A be anm x m real symmetric matrix and assume (2.6). Then the minimal
principle (the Ky-Fan characterization fetA) is:

Z A (A) = Z z;FAzq = min Z ququ. (6.3)

q:Z qu {yév aym}eﬂrn 2+1 :Z

See for example [3].

Let E = E,+ X € M(e(S)). ThenX = (z;;)};", wherez;; = 0if (j,7) € S andz;;
is afree vanable ifj,7) ¢ S.

Letx = (Tjyi1, Tjnins - - - » Tjoi,) - dENOtE the x 1 vector whose entries are indexed by
S¢, the coordinates of the missing valuesgin Then there exists a uniguex o real valued
symmetric nonnegative definite matrx< o matrix B, which satisfies the equality

m
xTBpx = Z v;qXTXvnq. (6.4)
q={

Let F'(j,7) be then x m matrix with 1 in the (j,4) entry and0 elsewhere. Then the
(s,t) entry of B, is given by

bp(svt) = ) ng:q(F(JS7ZS)TF(.7t7'Lt) + F(]t72t>TF(]SaZs))Vp,Q7 (6.5)
g=t
s,t=1,...0

The proof of (6.5) is given in the Appendix. The crucial observation is B)atan be
decomposed into the direct sum@Eymmetric nonnegative definite matrices indexed by
N.

Hence the function minimized in (6.1) is given by

m m
Y Vo ETEvpg =Y Vi (A + By X + XTEy + X ' X)vp g =
q=/{ q={
m
x'Byx + 2W;fx + Z A (4p) =
q={
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Z(X;Bp,jxj + 2W£jxj) + Z Aq(4p), (6.6)
1EN q=
Wherewp = (Wp1,. -, Wpo) T, and

E qu p F(ji,it)vpg, t=1,...,0.

Forj € N the vectorx; € R% contains alb; missing entries of in the row; of the form
zji,, 9 € Oj; for the corresponding s€d; C [m] of cardinalityo;. (See Appendix.) Since
the expression in (6.1), and hence in (6.6), is always nonnegative, it followsvthitin
the column space aB,. Hence the minimum of the function given in (6.6) is achieved at
the critical point

Bpxpi1 = —wy, (6.7)

and this system of equations is always solvable 5fis not invertible, we find the least-
squares solution).

We now show (6.2). The vector,;; contains the entries for the matriX, ;. Then
Epi1 := E, + Xpy1. ¢From the definition of, 1 := E +1Ep+1 and the minimality of
Xp+1 We obtain

m m
Z Jq(Ep)2 = Z Vg,q(Ep + O)T(Ep +0)vpq >
— q=0

vaq p+l) (Ep + Xpt1)Vpg = vaqu+1qu>
q=Y{
m
Z)‘ Api1) Zaq(Ep+1)2'
q={

O

In Appendix B, we give an algorithm to solve 6.7 efficiently. See Appendix C for the
Matlab code of the algorithm. We conclude this section by remarking that to solve Problem
5.1, one may use the methods of [4].

7 Simulation

We implemented the Fixed Rank Approximation Algorithm (FRAA) in Matlab and tested
it on the microarray dat8accharomyces cerevisiffel ] as provided at
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http://genome-www.stanford.edu (the elutriation data set). The dimension of the complete
gene expression matrixi®81 x 14. We randomly deleted a set of entries and ran FRAA on
this “corrupted” matrix to obtain estimates for the deleted entries. The FRAA requires four
inputs: the matrixE’ with N rows andM columns with missing entries, an initial guess

for the missing entries, a parametierthe number of significant singular values, and the
number of iterations. We set the initial guess to the missing data matrixXsitieplacing

the missing values, the number of significant valuek te 2, and ran the algorithm through

5 iterations. (There was no significant change in the estimates when we replace?l

with L = 3.)

We compared our estimates to estimates obtained by three other methods: replacing
missing values witl)'s (zeros method), row means (row means method), or the values
obtained by the KNNimpute program [12]. We used a normalized root mean square as the
metric for comparison: it”' represents the complete matrix afgl represents an estimate
to the corrupted matri, then the root mean square (RMS) of the differefce- C — E,

is %. We normalized the root mean square by dividing RMS by the average value of the
entries inC.

In simulations wherd % — 20% of the entries were randomly deleted from the com-
plete matrixC, the FRAA performed slightly better than the row means method, and sig-
nificantly better than the zeros method. However, the KNNimpute algorithm (with param-
eters k= 15, d= 0) produced the most accurate estimates, with normalized RMS errors
that were smaller than the normalized RMS errors from the other three methods. Figure
7.1 displays the results of one set of experiments estimating the elutriation matrix when
each ofl, 5,10, 15,20% of entries was removed: the normalized RMS errors are plotted
against percent missing. When 25 simulations of deleting and then estiniétiad the
the entries was conducted, we found the average normalized RMS to be approxinigely
for KNNimpute and0.24 for FRAA, with standard deviation to be approximatélg2 for
both methods. Not surprisingly, normalized RMS’s increase with increasing percentage of
missing values.
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Elutriation

= FRAA [

o KNNimpute
® Row means

normalized RMS error

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

T T T T T
1 5 10 15 20

Percent missing
Fig. 7.1 Comparison of normalized RMS against percent missing for
threee methods: FRAA, KNNimpute, and row means methods. The
normalized RMS for the zeros method is not displayed, but the values
are0.397,0.870,1.24,1.52,1.76, for 1,5, 10, 15, 20% percent missing,
respectively.

In [12], the authors caution against using KNNimpute for matrices with fewer than
6 columns. We randomly selected four columns from the elutriation data set to form a
truncated data set, then randomly deleted fidih— 20% of the entries from this newly
formed matrix. Figure 7.2 gives a comparison of the normalized RMS errors against percent
missing in one run of the simulation at each of the percentages. \&hseimulations at
10% missing was run, we found the average normalized RMS to be approxintatefy
for FRAA and0.166 for KNNimpute, with standard deviations of approximat@lyj01 and
0.003, respectively.
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Elutriation: 4 columns

= FRAA
o KNNimpute
® Row means

0.250

0.150 0.200

normalized RMS error
0.100

0.050

0.000

T T T T T
1 5 10 15 20

Percent missing
Fig. 7.2 Four columns of the full elutriation matrix were randomly se-

lected. Entries were then randomly deleted from this truncated matrix.
Plot of normalized RMS against percent missing.

For one simulation in which we randomly deleted and then estimiaX#d4200) of the
entries from the full elutriation matrix,we compared the raw errors (true value - estimated
value) for each of th@200 imputed entries obtained using either KNNimpute or FRAA.
Figure 7.3 shows a scatter plot of the raw errors from the estimate using KNNimpute against
the raw errors from the estimate using FRAA. This plot seem to suggest that the algorithms
KNNimpute and FRAA are rather consistent in how they are estimating the missing values.
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Scatter plot of raw errors 10% missing

KNNimpute: raw errors

FRAA: raw errors

Fig. 7.3 Scatter plot of the raw errors (true - estimate) of each of2he imputed entries
in one simulation using KNNimpute and FRAA. The correlation between the two sets of
raw errors is84.

We ran similar simulations on the Cdc15 data set available on the web, ( http://genome-
www.stanford.edu/SVD/htmls/spie.html), and on subsets of this data set (using 4 columns).
We also ran a couple of simulations on one of the data sets included by [10]. The outcomes
were similar to that using the Elutriation data set, with the FRAA algorithm outperforming
KNN on the matrices with a small number of columns.

8 Discussion

The Fixed Rank Approximation Algorithm uses singular value decomposition to obtain
estimates of missing values in a gene expression matrix. It uses all the known information
in the matrix to simultaneously estimate all missing entries. Preliminary tests indicate that,
under a normalized root mean square metric, FRAA is more accurate than replacing missing
values with0’s or with row means. The KNNimpute algorithm was more accurate when
estimating missing entries deleted from the full elutriation matrix, but FRAA might be a
feasible alternative in cases when the number of columns is small.

FRAA is another option, in addition to KNN, Bayesian estimations or local least squares
imputations, for estimating missing values in gene expression data. FRAA by itself is very
useful tool for gene data analysis without using clustering methods. Experimental results on
various data sets shows that FRAA is robust. FRAA has been used by several computational
biologists, who confirmed the accessibility of the algorithm.

To improve the results given by FRAA one needs to combine it with an algorithm for
gene clustering. A possible implementation is as follows: First, apply FRAA to the cor-
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rupted data set; next, using this estimated data set, subdivide the genes into clusters of
genes with similar traits; now apply FRAA again to the missing entries of genes in each

cluster. We intend to apply these steps in a future paper.
Our final remark is that the biology of the data should guide the researcher in determin-
ing the best method to use for imputing missing values in these data sets.
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Appendix

A Proof of (6.5)

Let A C [n]. LetS(j) denote the set of coordinates in rgwvith known values inE' so
thatS ()¢ denotes the set of coordinates of the missing values injrow

S¢= UjGN'S(j)c? S(])C = {(]7107 1))7 ooy (j7i(j7 Oj))}7 (Al)
m >i(j,05) > ... >i(j,1) >1 forjeN,

0:= Z 0j. (A.2)

Note that the seD; described just after (6.6) is given 6y, := {i(j,1),...,(j, 0j) }.

Theorem A.1 Theo x o symmetric nonnegative definite matiy, given by (6.4) de-
composes into a direct sum ¢fA" = n — n’ symmetric nonnegative definite matrices
indexed by the seV:

Bp = ®jenBpj,  Bpj = (bpj(q,7));,—1) is 0j x 0j for j € N, (A-3)
and
XTBpX = Z x;»erij. (A.4)
ieN

More precisely, lev, , = (vpk1, - Vpkm) s k = 1,...,m be given as in Algorithm 6.1.
Then

m
bPJ (Q7 T) = Z Up,k,i(j,q)”p,k,i(j,r)) q,T = 17 ceey 05 (AS)
k=¢

Equivalently, leti?, be the followingn x m idempotent symmetric matrii(/l(u2 = W) of
rankm — [ + 1:

m
Wy =Y Vpuvpr =TT, Ty = [Vpe, ., Vpar] € RTPEED, (A.6)
k=¢

ThenB, ; is the submatrix ofV,, of ordero; with respect to the rows and columns in the

setO; for j € N. In particular, if in each row ofE there is at most one missing entry then
B, is a diagonal matrix.

Proof. View the rows and the columns @f, as indexed by(s, i(s, ¢)) and (¢, i(t, 7))
respectively, where,t €¢ N andqg = 1,...,05, 7 = 1,...,0;. (For the purposes of this
proof, the notation here is slightly different from that in the body of the paper.3Se-

18



(bp((s,i(s,q)), (t,i(t,7)))). Let F'(j,) be then x m matrix which had on the(j, i) place
and all other entries are equal to zero. Then

bp((87 i(s, Q)>7 (t, i(t, 7“))) =

1™

5ZV;k(F(S,’L’(S,q))TF(t,i(t, T‘)) +F(tvi(tvr))TF(S’i(SaQ)))vp,kv (A7)
k=t

s,teN,qg=1,...,05,7=1,....0

It is straightforward to show that (s, i(s, q)) T F(t,i(t,7)) = 0 if s # t. Furthermore, for

s = t the matrixF (s, i(s,q)) Y F(t,i(t,r)) + F(t,i(t,r)) " F(s,i(s, q)) hasl in the places
(i(s,q),i(t,r)) and (i(t,r),i(s,q)) for r # ¢, and ha2 in the place(i(s, q),i(s,q)) if

r = g and zero in all other positions. Hence

by((s,i(s,q)), (t,i(t,q))) = O unlesss = ¢t. If s = t then a straightforward calculation
yields (A.5). Other claims of the theorem follow straightforward from the equality (A.5).
O

B Algorithm for (6.7)

From Theorem A.1, the system of equatidBsx = —w,, in o unknowns is equivalent to
n — n/ smaller systems
BpjXpt15=—Wp; JEN. (B.1)

Thus the big system of equationsdmnknowns, the coordinates ®f., 1, given (6.7) splits
ton —n’ independent systems given in (B.1). Thatis, in the iterative update of the unknown
entries of E given by the matrixE, ., the values in the roy € N in the placesS(j)°
are determined by the values of the entriedipfin the placesS(;j)¢ and the eigenvectors
V. 0y -y Vpm Of Eng.

We now show how to efficiently solve the system (6.7).

Algorithm B.1 For j € N letT, ; is theo; x (m—¢+1) matrix obtained fronT,, given
by (A.6), by deleting all rows except the rowg, 1), ..., i(j, 0;). Then (B.1) is equivalent to

T .
TpJTp,jxp-i-Lj =—Wpj, 1E€ N, (BZ)

which can be solved efficiently by tger algorithm as follows. Writd}, ; as@,,; R, ; Py, ;,

whereQ),, ; is ano; xd,, ; matrix withd,, ; orthonormal columnskz, ; is an upper triangular
d,; x o; matrix of rankd, ; nonzero rows, where the rarik,; = d,;, and P, ; is a
permutation matrix. (The columns &f, ; are obtained from the columns &f, ; using
Gram-Schmidt process.) Then

T T \—1T
Qp,jXpHJ = _(RPJRp,j) Qp,jwp,j
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and
T \-1HT :
Xpt1,j = —Qpj(Rp iRy )" Qp Wy, G EN (B.3)
is the least square solution fet, 1 ;.

C Matlab code

function Epl = fraa(E,Ep,L,iter)
%Fixed rank algorithm -- estimate missing values
%Usage: fraa(E,Ep,L,iter)
%E: matrix with missing values
%Ep: initial solution
%L: parameter (number of significant singular values + 1)
%iter: number of iterations to perform
%Note: Any rows with all missing values must be removed
%%%%%%%%%% THIS IS THE SET-UP
%Get size of E
[N,M]=size(E);
if (L > M)
error('need L<=#columns of E )
end;
%get index of missing values
missing=find(isnan(E));
%Number of missing values
m=length(missing);
m2=m*m;
%%%%%%%%%%% NOW WE WORK WITH THE ALGORITHM
Xpl=zeros(N,M);
track=iter;
while(iter > 0)
A=Ep*Ep;
%Find singular value decomposition of A
[U,S,V]=svd(A);
%Singular values of Ep
sigma2=S(5™=0);
singular=sqrt(sigma2);
partial_sig2=sum(sigma2(L:M));
total_sig2=sum(sigma2(1:M));
fprintf(\n iteration %3.0f \n’, track-iter+1)
fraction=partial_sig2/total_sig2;
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fprintf( partial sum/total sum of sqg. singular values
\n %1.8f", fraction)
fprintf(\n’)
%Construct B=Bp
B=sparse(m,m); %pre-allocate space
[is,js]=ind2sub([N,M],missing(1:m));

for s=1:m
for t=s:m
if (i(s)==i(t))
B(s,t)=sum(U(js(s),L:M)*U(js(t),L:M)’);
B(t,s)=B(s,1); %B is symmetric

end %end if
end %end For t
end %end for s
%%%NOW CONSTRUCT THE VECTOR Wp
W=sparse(m,1); %pre-allocate space

for t=1:m

K=sparse(N,M);

K(missing(t))=1;

W(t)=sum(diag(U(;,L:M)*Ep*K*U(:,L:M)));
end %end for
%Solve Bx_(p+1l)= -W
xXpl=-B\W;
%Create matrix B_{p+1}
Xpl(missing)=xpl;
%Update solution
Ep=Ep+Xpl;
%set counter
iter=iter-1;
end %End while
fprintf('\n")
fprintf(C singular values (final iteration):\n’)
fprintf('%16.6f',singular)
Epl=Ep;

For the Matlab m file or a version of this algorithm for R, see
http://people.carleton.edu/ Ichihara/LMCProf.html
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