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Abstract

We suggest here a new method of the estimation of missing entries in a gene ex-
pression matrix, which is done simultaneously— i.e., the estimation of one missing
entry influences the estimation of other entries. Our method is closely related to the
methods and techniques used for solving inverse eigenvalue problems.
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1 Introduction

In the last decade, molecular biologists have been using DNA microarrays as a tool for an-
alyzing information in gene expression data. During the laboratory process, some spots on
the array may be missing due to various factors (for example, machine error.) Because it is
often very costly or time consuming to repeat the experiment, molecular biologists, statisti-
cians, and computer scientists have made attempts to recover the missing gene expressions
by some ad-hoc and systematic methods.

More recently, microarray gene expression data have been formulated as a gene expres-
sion matrixE with n rows, which correspond to genes, andm columns, which correspond
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to experiments. Typicallyn is much larger thanm. In this setting, the analysis of miss-
ing gene expressions on the array would translate to recovering missing entries in the gene
expression matrix values.

The most common methods for recovery are [12]:
(a) Zero replacement method;
(b) Row sum mean;
(c) Clustering analysis methods such as K-nearest neighbor clustering , hierarchical clus-
tering;
(d) SVD - Singular Value Decomposition (which is closely related to Principal Component
Analysis).

In these methods, the recovery of missing data is done independently, i.e., the estimation
of each missing entry does not influence the estimation of the other missing entries. The
iterative method using SVD suggested in [12] takes into account implicitly the influence of
the estimation of one entry on the other ones. See also [2].

We suggest a new method in which the estimation of missing entries is done simultane-
ously, i.e., the estimation of one missing entry influences the estimation of the other missing
entries. If the gene expression matrixE has missing data, we want to complete its entries
to obtain a matrixÊ, such that the rank of̂E is equal to (or does not exceed)d, whered is
taken to be the number of significant singular values ofE. The estimation of the entries of
E to a matrix with a prescribed rank is a variation of theproblem of communality(see[4,
p. 637].) We give an optimization algorithm for findinĝE using the techniques for inverse
eigenvalue problems discussed in [3].

We implemented our fixed rank approximation algorithm as a Matlab procedure and
ran simulations on the microarray dataSaccharomyces cerevisiae[11]. (This data set is the
benchmark for icroarray data for other methods of missing value estimations available in
the recent literature. It is available on the web address
http://genome-www.stanford.edu/SVD/htmls/spie.html, under the name Elutriation data set.)
We describe the results in Section 7.

We ran similar simulations on the full Cdc15 data set, available at the above web ad-
dress, and on subsets of this data set (using 4 columns). We also ran a couple of simulations
on one of the data sets included by [10]. The outcomes were similar to that using the Elutri-
ation data set, with the FRAA algorithm outperforming KNN on the matrices with a small
number of columns.

It is likely that our algorithm can be used to estimate missing entries in data sets other
than gene expression data. Such a data set should be represented by ann×m matrix whose
rank is smaller thanmin(m,n). To keep the paper focused we did not test our methods on
non-microarray data sets.

Since we wrote the first version of this paper in Fall 2003 we became aware of [10],
which uses Bayesian estimations, and a new paper [9], which use local least squares. Both
papers claim to have superior results than KNN. The relatives successes of KNN and these

2



two methods over FRAA most likely is due to the fact that these three methods use only
closely related genes to impute the missing values in each microarray data set. We believe
that if we first apply FRAA to the corrupted set, then using this estimated data set, subdivide
the genes into clusters of genes with similar traits, and then once again apply FRAA to the
missing entries of genes in each cluster, we will obtain similar, or hopefully better results,
then the above three methods. We intend to carry out this algorithm in a future paper.

2 The Singular Value Decomposition

In this section, we recall some basic facts aboutSingular Value DecompositionSV D. Let
E be ann×m real-valued nonzero matrix. In this paper we assume thatn ≥ m. TheSV D
of E is a decomposition ofE into the productUΣV T with certain properties. There are a
few variations of this definition, and we give the following one which is most suitable for
the applications in our context. We assume thatU is n×m, Σ is m×m, andV is m×m.

E = UΣV T, UTU = V TV = Im, Σ = diag(σ1, ..., σm), σ1 ≥ ... ≥ σm ≥ 0. (2.1)

The rankr of E is the number of positive singular values; the dimension of the row space,
and the dimension of the column space ofE is alsor.

Remark. Singular value decomposition is related to principal component analysis
(PCA) in statistics. If we center each column in matrixE, thenET E = V Σ2V T is pro-
portional to the covariance matrix of the columns ofE, the columns ofV are the principal
components, and the{σ2

q} are proportional to the variances of the principal components.
Let Ur, Σr, Vr be matrices obtained fromU,Σ, V , respectively, as follows:Ur is an

n × r matrix obtained by deleting the lastm − r columns ofU , Vr is them × r matrix
obtained by deleting the lastm − r columns ofV , andΣr is obtained by deleting the last
m− r columns and rows ofΣ . Then

E = UrΣrV
T
r , UT

r Ur = V T
r Vr = Ir, Σr = diag(σ1, ..., σr), σ1 ≥ ... ≥ σr > 0. (2.2)

In this settingUr, Σr, Vr are all rankr matrices: the lastm − r columns ofU and the last
m − r rows of V T are arbitrary, up to the condition that the lastm − r columnsU and
lastm− r rows ofV T are orthonormal bases of the orthogonal complement of the column
space and the row space ofE respectively. Hence (2.2) is sometimes called areducedSVD
of E.

We now give another form of (2.2) which has a significant interpretation in microarray
data. Letu1, · · · ,um denote the columns ofU andv1, . . . ,vm denote the columns ofV .
Then (2.1) and (2.2) can be written as
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E =
m∑

q=1

σquqvT
q =

r∑

q=1

σquqvT
q . (2.3)

If σ1 > ... > σr thenuq andvq are determined up to the sign±1 for q = 1, ..., r.
Namelyuq andvq are length1 eigenvectors ofEET andETE, respectively, corresponding
to the common eigenvalueσ2

q . (Note the choice of a sign invq forces a unique choice of
the sign inuq.) The vectorsu1, . . . ,ur are calledeigengenes, the vectorsv1, . . . ,vr are
calledeigenarraysandσ1, . . . , σr are calledeigenexpressions. The rankr can be viewed
as the number of different biological functions ofn genes observed inm experiments. The
eigenarraysv1, . . . ,vr give the principler orthogonal directions inRm corresponding to
σ1, . . . , σr. The eigengenesu1, . . . ,ur give the principler orthogonal directions inRn

corresponding toσ1, . . . , σr. The eigenexpressions describe the relative significance of
each bio-function. From the data given in [1], one it seems that the number of significant
singular values never exceedsm

2 . See the discussion on the number of significant singular
values in the beginning of§3. The essence of the FRAA algorithm, suggested in this paper,
is based on this observation.

Computationally, one bringsE to upper bidiagonal formA using Householder matri-
ces. Then one applies implicitly the QR algorithm toATA to find the positive eigenvalues
σ2

1, ..., σ
2
r and the corresponding orthonormal eigenvectorsv1, ...,vr of the matrixETE

[5]. Next

uq :=
1
σq

Evq ⇐⇒ σquq = Evq, q = 1, ..., r. (2.4)

To compute the decomposition (2.3), it is enough to knowvq and σquq. If σq repeats
k > 1 times in the sequenceσ1 ≥ ... ≥ σr > 0, then the choice of the corresponding
k eigenvectorsvj is not unique: any choice of the orthonormal basis in the eigenspace of
ETE corresponding to the eigenvalueσ2

q is a legitimate choice.
We remark that in our applicationsm was relatively small:m ≤ 20. Thus we opted to

compute the “small” matrixETE directly, then use software to compute the positive eigen-
valuesσ2

1, . . . , σ
2
r and the corresponding orthonormal eigenvectorsv1, . . . ,vr of ETE.

Denote by||E||F the Frobenius (̀2) norm ofE. It is the Euclidean norm ofE viewed
as a vector withnm coordinates. Each termuqvT

q in (2.3) is a rank one matrix with
||uqvT

q ||F = 1. LetR(n,m, k) denote the set ofn×m matrices of at most rankk (m ≥ k).
Then for eachk, k ≤ r, the SVD ofE gives the solution to the following approximation
problem:

min
F∈R(n,m,k)

||E − F ||F = ||E −
k∑

q=1

σquqvT
q ||F =

√√√√
r∑

q=k+1

σ2
q . (2.5)
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If σk > σk+1 then
∑k

q=1 σquqvT
q is the unique solution to the above minima problem.

For the purposes of this paper, it will be convenient to assume thatσq = 0 for anyq > m.
In what follows we will use yet another equivalent definition of the singular values of

E. LetRn×m denote the space of all realn ×m matrices and letSm(R) denote the space
of all realm×m symmetric matrices. ForA ∈ Sm(R), we let

λ1(A) = λ1 ≥ ... ≥ λm(A) = λm, Azq = λqzq, zT
q zt = δqt, q, t = 1, ..., m, (2.6)

be the eigenvalues and corresponding eigenvectors ofA, where the eigenvalues are counted
with their multiplicities, and the eigenvectors form an orthonormal basis inRm.

Consider the following(n + m)× (n + m) real symmetric matrix:

Es :=
(

0 E
ET 0

)
. (2.7)

It is known [6,§7.3.7]

σq(E) := σq = λq(Es) = −λn+m+1−q(Es), for q = 1, ..., m, (2.8)

λq(Es) = 0 for q = m + 1, ..., n.

The Cauchy interlacing property forEs implies [6,§7.3.9]
Let [n] := {1, 2, . . . , n}, and letN ⊂ [n], M ⊂ [m] denote sets of cardinalities

n− n′, m−m′ ≥ 0 respectively.

Proposition 2.1 LetE ∈ Rn×m and denote byE′ ∈ Rn′×m′
the matrix obtained from

E by deleting all rowsi ∈ N and all columnsj ∈M. Then

σq(E) ≥ σq(E′) for q = 1, ..., m, (2.9)

σq(E′) ≥ σq+n−n′+m−m′(E) for q = 1, ..., m′ + n′ − n.

The significance of this proposition is explained in§4 and§5.

3 The Gene Expression Matrix

In this section we will viewE ∈ Rn×m, with n ≥ m as the gene expression matrix:

E =




g11 g12 . . . g1m

g21 g22 . . . g2m
...

...
...

...
gj1 gj2 . . . gjm
...

...
...

...
gn1 gn2 . . . gnm




=




gT
1

gT
2
...

gT
j
...

gT
n




= [ c1 c2 . . . cm ], (3.1)
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gT
j := (gj1, gj2, ..., gjm), j = 1, ..., n, ci =




g1i

g2i
...

gji
...

gni




, i = 1, ...,m.

The row vectorgT
j corresponds to the (relative) expression levels of thejth gene inm

experiments. The column vectorci corresponds to the (relative) expression levels of then
genes in theith experiment.

Consider the SVD of the gene expression matrixE = UΣV T . In the terminology of
[1], the columns ofU are eigengenes, the columns ofV are eigenarrays, and the singular
values ofE are eigenexpression levels.

In many microarray data sets, researchers have found that only a few eigengenes are
needed to capture the overall gene expression pattern. (Here, by a “few” we mean less
than half of the number of experimentsm.) The number of thesesignificanteigengenes
is a fundamental problem in principal component analysis [7]. Let us mention explicitly
three methods to estimate the number of significant eigengenes. Thefraction criteria can
be stated simply as follows. Let

pq :=
σ2

q∑m
t=1 σ2

t

, q = 1, ..., m, p := (p1, ..., pm)T. (3.2)

Thuspq represents the fraction of the expression level contributed by theqth eigengene.
Then we choose thel eigengenes that contribute about70% − 90% of the total expression
level. Another method is to use scree plots for theσ2

q . (In principal component analysis, the
pq are proportional to the variances of the principal components, so we choose the principal
components of maximum variability [8].) According to [7], the most consistent estimates
of the number of significant eigengenes is achieved by the broken-stick model.

If E hasl significant eigenvalues, we viewσq to be effectively equal to zero forq > l.
We define the matrix

El :=
l∑

q=1

σquqvT
q (3.3)

as thefilteredpart ofE and considerE −El thenoisepart ofE.
Let

1 ≥ h(p) := − 1
log m

m∑

q=1

pq log pq ≥ 0. (3.4)
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Thenh(p) is the rescaled entropy of the probability vectorp. h(p) = 1 only whenpq =
1
m , q = 1, ..., m; in other words, all the eigengenes are equally expressed. On the other
hand,h(p) = 0 if and only if pq(1− pq) = 0, q = 1, ..., m and this corresponds tor = 1:
in other words, the gene expression is captured by a single eigengene (and eigenarray).

The following example points out a potential weakness of SVD theory in trying to detect
groups of genes with similar properties.

3.1 SVD and gene clusters

Suppose the set of genesgT
j , j ∈ [n] can be grouped intok + 1 disjoint subsets[n] =

∪k+1
q=1Gq with G1, ..., Gk nonempty andm ≥ k (usuallym > k). In particular, consider the

genes in each groupGq ( q = 1, ..., k) to have similar characteristics (in other words,Gq is
a cluster). Genes that have no similar characteristics are placed inGk+1. Denote by#Gq

the cardinality of the setGq for q = 1, ..., k + 1. Suppose that ourm experiments does not
distinguish between any two genes belonging to the same groupGq for q = 1, ..., k + 1.
More precisely we assume:

gji = aqi for each j ∈ Gq and q = 1, ..., k, i = 1, ..., m, (3.5)

gji = 0 for each j ∈ Gk+1 and i = 1, ..., m,

LetA = (aqi)
k,m
q,i=1 ∈ Rk×m be the correspondingk×m matrix with the rowsrT

1 , ..., rT
k :

A =




rT
1

rT
2
...

rT
k


 .

Then the rowrq appears exactly#Gq times inE for q = 1, ..., k. In additionE has#Gk+1

zero rows. Clearly the row space ofE is the row space ofA. Sok ≥ rankE = rankA.
Hence ifrankA = k then

σ1(E) ≥ ... ≥ σk(E) > σk+1(E) = ... = σm(E) = 0.

However, there is no simple formula relating the singular values ofE andA. It may hap-
pen that the rows ofA are linearly dependent which indicates that several groups out of
G1, ..., Gk are somehow related, and the number of the significant singular values ofE is
less thank.
Conclusion: The number of gene clusters is no less than the number of significant singular
values of gene expression matrix.

7



4 Missing Data in the Gene Expression Matrix

We now consider the problem of missing data in the gene expression matrixE. (Our anal-
ysis can be applied to any matrixE.) LetN ⊂ [n] denote the set of rows ofE that contain
at least one missing entry. Thus for eachj ∈ N c := [n]\N , the genegT

j has all of its
entries. Letn′ denote the size ofN c so that the size ofN is n − n′. We want to complete
the missing entries of eachgT

j , j ∈ N , under some assumptions.
We first describe the reconstruction of the missing data inE using SVD as given in [1].

4.1 Imputation using SVD

Let E′ be then′ ×m matrix containing the rowsgT
j , j ∈ N c of E which do not have any

missing entries, andl′ be the number of significant singular values ofE′. Let X ⊂ Rm

be the invariant subspace of the symmetric matrix(E′)TE′ corresponding to the eigen-
valuesσ1(E′)2, ..., σl′(E′)2. Let x1, ...,xl′ be the orthonormal eigenvectors of(E′)TE
corresponding to the eigenvaluesσ1(E′)2, ..., σl′(E′)2. Thenx1, ..xl′ is a basis ofX.

LetM⊂ [m] be a subset of cardinalitym−m′. Consider the projectionπM : Rm →
Rm′

by deleting all the coordinatesi ∈ M for any vectorx = (x1, ..., xm)T ∈ Rm. Then
πM(X) is spanned byπM(x1), ..., πM(xl′).

Fix j ∈ N and letM ⊂ [m] be the set of experiments (columns) where the genegT
j

has missing entries. Lety ∈ πM(X) be the least square approximation toπM(gj). Then
anygj ∈ π−1

M (y) is a completion ofgj . If πM|X is 1-1 thengj is unique. Otherwise one
can choosegj ∈ π−1

M (y) with the least norm. Note that to findy ∈ πM(X) one needs to
solve the least square problem for a subspaceπM(X). In principle, for eachj ∈ N one
solves a different least square problem. The crucial assumption of this method is

l = l′. (4.1)

That isthe completed matrixE and its submatrixE′ have the same number of significant
singular values. This follows from the observation that the completion of the rowgj , j ∈ N
lies in the subspaceX. Note that the inequalities (2.9) imply that the assumption (4.1) can
be a very restrictive assumption.

The significant singular values ofE′ and of the reconstructedE are joint functions
of all the rows (genes). By trying to reconstruct the missing data in each genegT

j , for
j ∈ N , separately, we ignore any correlation betweengT

j and the genesgT
q , q ∈ N ;

consequently, this will have an impact on the singular values ofE. In the following section
we suggest a different approach which treats the estimation problem of all the missing data
simultaneously.
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4.2 Reconsideration of 3.1

Let us reconsider Example 3.1. Assume thatrankA = k. Let j ∈ N and assume that the
genej is in the clusterGq. Then we can reconstruct all missing entries ofgT

j if Gq\N 6= ∅.
Indeed, if for some genep ∈ Gq we have the results ofm experiments, thengj = gp

and we reconstructed the missing entries forgj . In this example we can reconstruct all the
missing entries inE if E′ has the same rank asE. Equivalently, we can reconstruct all the
missing entries inE if the equality (4.1) holds, wherel and l′ are the ranks ofE andE′

respectively.

4.3 Iterative method using SVD

In the recent papers [12] and [2], the following iterative method using SVD to impute
missing values in a gene expression matrix is suggested. First, replace the missing values
with 0 or with values computed from another method. Call the estimated matrixEp, where
p = 0. Find thelp significant singular values ofEp, and letEp,lp be the filtered part ofEp

(3.3). Replace the missing values inE by the corresponding values inEp,lp to obtain the
matrix Ep+1. Continue this process untilEp converges to a fixed matrix (within a given
precision). This algorithm takes into account implicitly the influence of the estimation of
one entry on the other ones. But it is not clear if the algorithm converges, nor what are the
features of any fixed point(s) of this algorithm.

5 The Optimization Problem

We now show that the estimation problem discussed in the previous section can be cast as
the following optimization problem:

Problem 5.1 LetS be a given subset of[n]× [m]. (S is the set of uncorrupted entries
of the gene expression matrixE given by (3.1).) Lete(S) := {eji, (j, i) ∈ S} be a given
set of real numbers. (e(S) is the set of uncorrupted (known) values of the entries ofE.)
Let M(e(S)) ⊂ Rn×m be the affine subset of all matricesA = (aji) ∈ Rn×m such that
aji = eji for all (j, i) ∈ S. (M(e(S)) all possible choices forE.) Let` be a positive integer
not exceedingm. Find Ê ∈ M(e(S)) with the minimalσ`.

Let E = (gji) denote the gene expression matrix with missing values. We choose the
S in Problem 5.1 to be the set of coordinates(j, i) for which the entrygji is not missing.
Recall thatN ⊂ [n] denotes the set of rows ofE, such that each rowj ∈ N contain
at least one missing entry. The cardinality ofN is n − n′. Thus the setS contains all
elements(j, 1), ...(j, m) for eachj ∈ N c. The complement ofS is the set of coordinates
Sc = {(j, i) | gji is missing} ⊂ N × [m] . Let o denote the total number of missing entries
in E. Theno ≥ n− n′.
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Let E′ be the matrix as in§4.1 with l′ significant singular values. Note that (2.9) yields
σq(E) ≥ σq(E′) for q = 1, ..., m. Thus if we want to completeE such that the resulting
matrix still has exactlyl′ significant singular values, we should consider Problem 5.1 with
` = l′ + 1.

A more general possibility is to assume that the number of significant singular values
of a possible estimation ofE is l = l′ + k wherek is a small integer, e.g.k = 1 or 2. That
is, the group of genesgT

j for j ∈ N contributes tol′ + 1, ..., l′ + k significant eigengenes of
E. Then one considers Problem 5.1 with` = l′ + k + 1.

We now consider a modification of Problem 5.1 which has a nice numerical algorithm.

Problem 5.2 LetS ⊂ [n]× [m] and denote bye(S) a given set of real numberseji for
(j, i) ∈ S. LetM(e(S)) ⊂ Rn×m be the affine subset of all matricesA = (aji) ∈ Rn×m

such thataji = eji for all (j, i) ∈ S. Let ` be a positive integer not exceedingm. Find
Ê ∈ M(e(S)) such that

∑m
q=` σ2

q is minimal.

Clearly, we can findE ∈ M(e(S)) with a “small” σ2
` (E) if and only if we can findE ∈

M(e(S)) with a “small”
∑m

q=` σ2
q (E).

6 Fixed Rank Approximation Algorithm

We now describe one of the standard algorithms to solve Problem 5.2. Mathematically it is
stated as follows:

Algorithm 6.1 Fixed Rank Approximation Algorithm (FRAA)
LetEp ∈ M(e(S)) be thepth approximation to a solution of Problem 5.2. LetAp := ET

p Ep

and find an orthonormal set of eigenvectors forAp, vp,1, ...,vp,m as in (2.6). ThenEp+1 is
a solution to the following minimum of a convex nonnegative quadratic function

min
E∈M(e(S))

m∑

q=`

(Evp,q)T(Evp,q). (6.1)

The flow chart of this algorithm can be given as:

Fixed Rank Approximation Algorithm (FRAA)
Input: integersm,n, L, iter, the locations of non-missing entriesS, initial approximation
E0 of n×m matrixE.
Output: an approximationEiter of E.
for p = 0 to iter − 1
- ComputeAp := ET

p Ep and find an orthonormal set of eigenvectors forAp, vp,1, ...,vp,m.
- Ep+1 is a solution to the minimum problem (6.1) with` = L.
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We now explain the algorithm and show that in each step, we decrease the value of the
function we minimize:

m∑

i=`

σ2
q (Ep) ≥

m∑

q=`

σ2
q (Ep+1). (6.2)

For any integerk ∈ [m], let Ωk denote the set of allk orthonormal vectors{y1, ...,yk}
in Rm. Let A be anm × m real symmetric matrix and assume (2.6). Then the minimal
principle (the Ky-Fan characterization for−A) is:

m∑

q=`

λq(A) =
m∑

q=`

zT
q Azq = min

{y`,...,ym}∈Ωm−`+1

m∑

q=`

yT
q Ayq. (6.3)

See for example [3].
Let E = Ep +X ∈ M(e(S)). ThenX = (xji)

n,m
j,i=1 wherexji = 0 if (j, i) ∈ S andxji

is a free variable if(j, i) 6∈ S.
Let x = (xj1i1 , xj2i2 , . . . , xjoio)T denote theo× 1 vector whose entries are indexed by

Sc, the coordinates of the missing values inE. Then there exists a uniqueo× o real valued
symmetric nonnegative definite matrixo× o matrixBp which satisfies the equality

xTBpx =
m∑

q=`

vT
p,qX

TXvp,q. (6.4)

Let F (j, i) be then × m matrix with 1 in the (j, i) entry and0 elsewhere. Then the
(s, t) entry ofBp is given by

bp(s, t) =
1
2

m∑

q=`

vT
p,q(F (js, is)TF (jt, it) + F (jt, it)TF (js, is))vp,q, (6.5)

s, t = 1, . . . o.

The proof of (6.5) is given in the Appendix. The crucial observation is thatBp can be
decomposed into the direct sum ofo symmetric nonnegative definite matrices indexed by
N .

Hence the function minimized in (6.1) is given by

m∑

q=`

vT
p,qE

TEvp,q =
m∑

q=`

vT
p,q(Ap + ET

p X + XTEp + XTX)vp,q =

xTBpx + 2wT
p x +

m∑

q=`

λq(Ap) =
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∑

i∈N
(xT

j Bp,jxj + 2wT
p,jxj) +

m∑

q=`

λq(Ap), (6.6)

wherewp := (wp,1, . . . , wp,o)T, and

wp,t =
m∑

q=`

vT
p,qE

T
p F (jt, it)vp,q, t = 1, ..., o.

Forj ∈ N the vectorxj ∈ Roj contains alloj missing entries ofE in the rowj of the form
xjit , it ∈ Oj for the corresponding setOj ⊂ [m] of cardinalityoj . (See Appendix.) Since
the expression in (6.1), and hence in (6.6), is always nonnegative, it follows thatwp is in
the column space ofBp. Hence the minimum of the function given in (6.6) is achieved at
the critical point

Bpxp+1 = −wp, (6.7)

and this system of equations is always solvable. (IfBp is not invertible, we find the least-
squares solution).

We now show (6.2). The vectorxp+1 contains the entries for the matrixXp+1. Then
Ep+1 := Ep + Xp+1. ¿From the definition ofAp+1 := ET

p+1Ep+1 and the minimality of
xp+1 we obtain

m∑

q=`

σq(Ep)2 =
m∑

q=`

vT
p,q(Ep + 0)T(Ep + 0)vp,q ≥

m∑

q=`

vT
p,q(Ep + Xp+1)T(Ep + Xp+1)vp,q =

m∑

q=`

vT
p,qAp+1vp,q ≥

m∑

q=`

λq(Ap+1) =
m∑

q=`

σq(Ep+1)2.

¤

In Appendix B, we give an algorithm to solve 6.7 efficiently. See Appendix C for the
Matlab code of the algorithm. We conclude this section by remarking that to solve Problem
5.1, one may use the methods of [4].

7 Simulation

We implemented the Fixed Rank Approximation Algorithm (FRAA) in Matlab and tested
it on the microarray dataSaccharomyces cerevisiae[11] as provided at
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http://genome-www.stanford.edu (the elutriation data set). The dimension of the complete
gene expression matrix is5981×14. We randomly deleted a set of entries and ran FRAA on
this “corrupted” matrix to obtain estimates for the deleted entries. The FRAA requires four
inputs: the matrixE with N rows andM columns with missing entries, an initial guess
for the missing entries, a parameterL–the number of significant singular values, and the
number of iterations. We set the initial guess to the missing data matrix with0’s replacing
the missing values, the number of significant values toL = 2, and ran the algorithm through
5 iterations. (There was no significant change in the estimates when we replacedL = 2
with L = 3.)

We compared our estimates to estimates obtained by three other methods: replacing
missing values with0’s (zeros method), row means (row means method), or the values
obtained by the KNNimpute program [12]. We used a normalized root mean square as the
metric for comparison: ifC represents the complete matrix andEp represents an estimate
to the corrupted matrixE, then the root mean square (RMS) of the differenceD = C −Ep

is ||D||F√
N

. We normalized the root mean square by dividing RMS by the average value of the
entries inC.

In simulations where1% − 20% of the entries were randomly deleted from the com-
plete matrixC, the FRAA performed slightly better than the row means method, and sig-
nificantly better than the zeros method. However, the KNNimpute algorithm (with param-
eters k= 15, d= 0) produced the most accurate estimates, with normalized RMS errors
that were smaller than the normalized RMS errors from the other three methods. Figure
7.1 displays the results of one set of experiments estimating the elutriation matrix when
each of1, 5, 10, 15, 20% of entries was removed: the normalized RMS errors are plotted
against percent missing. When 25 simulations of deleting and then estimating5% of the
the entries was conducted, we found the average normalized RMS to be approximately0.19
for KNNimpute and0.24 for FRAA, with standard deviation to be approximately0.02 for
both methods. Not surprisingly, normalized RMS’s increase with increasing percentage of
missing values.

13
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Fig. 7.1 Comparison of normalized RMS against percent missing for
threee methods: FRAA, KNNimpute, and row means methods. The
normalized RMS for the zeros method is not displayed, but the values
are0.397, 0.870, 1.24, 1.52, 1.76, for 1, 5, 10, 15, 20% percent missing,
respectively.

In [12], the authors caution against using KNNimpute for matrices with fewer than
6 columns. We randomly selected four columns from the elutriation data set to form a
truncated data set, then randomly deleted from1% − 20% of the entries from this newly
formed matrix. Figure 7.2 gives a comparison of the normalized RMS errors against percent
missing in one run of the simulation at each of the percentages. When25 simulations at
10% missing was run, we found the average normalized RMS to be approximately0.143
for FRAA and0.166 for KNNimpute, with standard deviations of approximately,0.001 and
0.003, respectively.
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Fig. 7.2 Four columns of the full elutriation matrix were randomly se-
lected. Entries were then randomly deleted from this truncated matrix.
Plot of normalized RMS against percent missing.

For one simulation in which we randomly deleted and then estimated10% (4200) of the
entries from the full elutriation matrix,we compared the raw errors (true value - estimated
value) for each of the4200 imputed entries obtained using either KNNimpute or FRAA.
Figure 7.3 shows a scatter plot of the raw errors from the estimate using KNNimpute against
the raw errors from the estimate using FRAA. This plot seem to suggest that the algorithms
KNNimpute and FRAA are rather consistent in how they are estimating the missing values.
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FRAA: raw errors
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Fig. 7.3 Scatter plot of the raw errors (true - estimate) of each of the4200 imputed entries
in one simulation using KNNimpute and FRAA. The correlation between the two sets of
raw errors is.84.

We ran similar simulations on the Cdc15 data set available on the web, ( http://genome-
www.stanford.edu/SVD/htmls/spie.html), and on subsets of this data set (using 4 columns).
We also ran a couple of simulations on one of the data sets included by [10]. The outcomes
were similar to that using the Elutriation data set, with the FRAA algorithm outperforming
KNN on the matrices with a small number of columns.

8 Discussion

The Fixed Rank Approximation Algorithm uses singular value decomposition to obtain
estimates of missing values in a gene expression matrix. It uses all the known information
in the matrix to simultaneously estimate all missing entries. Preliminary tests indicate that,
under a normalized root mean square metric, FRAA is more accurate than replacing missing
values with0’s or with row means. The KNNimpute algorithm was more accurate when
estimating missing entries deleted from the full elutriation matrix, but FRAA might be a
feasible alternative in cases when the number of columns is small.

FRAA is another option, in addition to KNN, Bayesian estimations or local least squares
imputations, for estimating missing values in gene expression data. FRAA by itself is very
useful tool for gene data analysis without using clustering methods. Experimental results on
various data sets shows that FRAA is robust. FRAA has been used by several computational
biologists, who confirmed the accessibility of the algorithm.

To improve the results given by FRAA one needs to combine it with an algorithm for
gene clustering. A possible implementation is as follows: First, apply FRAA to the cor-
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rupted data set; next, using this estimated data set, subdivide the genes into clusters of
genes with similar traits; now apply FRAA again to the missing entries of genes in each
cluster. We intend to apply these steps in a future paper.

Our final remark is that the biology of the data should guide the researcher in determin-
ing the best method to use for imputing missing values in these data sets.
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Appendix

A Proof of (6.5)

LetN ⊂ [n]. Let S(j) denote the set of coordinates in rowj with known values inE so
thatS(j)c denotes the set of coordinates of the missing values in rowj.

Sc = ∪j∈NS(j)c, S(j)c = {(j, i(j, 1)), ..., (j, i(j, oj))}, (A.1)

m ≥ i(j, oj) > ... > i(j, 1) ≥ 1 for j ∈ N ,

o :=
∑

j∈N
oj . (A.2)

Note that the setOj described just after (6.6) is given byOj := {i(j, 1), ..., i(j, oj)}.
Theorem A.1 Theo × o symmetric nonnegative definite matrixBp given by (6.4) de-

composes into a direct sum of#N = n − n′ symmetric nonnegative definite matrices
indexed by the setN :

Bp = ⊕j∈NBp,j , Bp,j = (bp,j(q, r))
oj

q,r=1) is oj × oj for j ∈ N , (A.3)

and
xTBpx =

∑

i∈N
xT

j Bp,jxj . (A.4)

More precisely, letvp,k = (vp,k,1, ..., vp,k,m)T, k = 1, ...,m be given as in Algorithm 6.1.
Then

bp,j(q, r) =
m∑

k=`

vp,k,i(j,q)vp,k,i(j,r), q, r = 1, ..., oj . (A.5)

Equivalently, letWp be the followingm×m idempotent symmetric matrix (W 2
p = Wp) of

rankm− l + 1:

Wp =
m∑

k=`

vp,kvT
p,k = TpT

T
p , Tp = [vp,`, ...,vp,M ] ∈ Rm×(m−`+1). (A.6)

ThenBp,j is the submatrix ofWp of orderoj with respect to the rows and columns in the
setOj for j ∈ N . In particular, if in each row ofE there is at most one missing entry then
Bp is a diagonal matrix.

Proof. View the rows and the columns ofBp as indexed by(s, i(s, q)) and(t, i(t, r))
respectively, wheres, t ∈ N andq = 1, ..., os, r = 1, ..., ot. (For the purposes of this
proof, the notation here is slightly different from that in the body of the paper.) SoBp =
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(bp((s, i(s, q)), (t, i(t, r)))). LetF (j, i) be then×m matrix which has1 on the(j, i) place
and all other entries are equal to zero. Then

bp((s, i(s, q)), (t, i(t, r))) =

1
2

m∑

k=`

vT
p,k(F (s, i(s, q))TF (t, i(t, r)) + F (t, i(t, r))TF (s, i(s, q)))vp,k, (A.7)

s, t ∈ N , q = 1, ..., os, r = 1, ..., ot.

It is straightforward to show thatF (s, i(s, q))TF (t, i(t, r)) = 0 if s 6= t. Furthermore, for
s = t the matrixF (s, i(s, q))TF (t, i(t, r)) + F (t, i(t, r))TF (s, i(s, q)) has1 in the places
(i(s, q), i(t, r)) and (i(t, r), i(s, q)) for r 6= q, and has2 in the place(i(s, q), i(s, q)) if
r = q and zero in all other positions. Hence
bp((s, i(s, q)), (t, i(t, q))) = 0 unlesss = t. If s = t then a straightforward calculation
yields (A.5). Other claims of the theorem follow straightforward from the equality (A.5).
¤

B Algorithm for (6.7)

From Theorem A.1, the system of equationsBpx = −wp in o unknowns is equivalent to
n− n′ smaller systems

Bp,jxp+1,j = −wp,j j ∈ N . (B.1)

Thus the big system of equations ino unknowns, the coordinates ofxp+1, given (6.7) splits
to n−n′ independent systems given in (B.1). That is, in the iterative update of the unknown
entries ofE given by the matrixEp+1, the values in the rowj ∈ N in the placesS(j)c

are determined by the values of the entries ofEp in the placesS(j)c and the eigenvectors
vp,`, ...,vp,m of ET

p Ep.
We now show how to efficiently solve the system (6.7).

Algorithm B.1 For j ∈ N letTp,j is theoj×(m−`+1) matrix obtained fromTp, given
by (A.6), by deleting all rows except the rowsi(j, 1), ..., i(j, oj). Then (B.1) is equivalent to

Tp,jT
T
p,jxp+1,j = −wp,j , i ∈ N , (B.2)

which can be solved efficiently by theQR algorithm as follows. WriteTp,j asQp,jRp,jPp,j ,
whereQp,j is anoj×dp,j matrix withdp,j orthonormal columns,Rp,j is an upper triangular
dp,j × oj matrix of rankdp,j nonzero rows, where the rankVp,j = dp,j , and Pp,j is a
permutation matrix. (The columns ofQp,j are obtained from the columns ofVp,j using
Gram-Schmidt process.) Then

QT
p,jxp+1,j = −(Rp,jR

T
p,j)

−1QT
p,jwp,j
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and
xp+1,j = −Qp,j(Rp,jR

T
p,j)

−1QT
p,jwp,j , j ∈ N (B.3)

is the least square solution forxp+1,j .

C Matlab code

function Ep1 = fraa(E,Ep,L,iter)
%Fixed rank algorithm -- estimate missing values
%Usage: fraa(E,Ep,L,iter)
%E: matrix with missing values
%Ep: initial solution
%L: parameter (number of significant singular values + 1)
%iter: number of iterations to perform
%Note: Any rows with all missing values must be removed
%%%%%%%%%% THIS IS THE SET-UP
%Get size of E

[N,M]=size(E);
if (L > M)

error(’need L<=#columns of E ’)
end;

%get index of missing values
missing=find(isnan(E));
%Number of missing values

m=length(missing);
m2=m*m;

%%%%%%%%%%% NOW WE WORK WITH THE ALGORITHM
Xp1=zeros(N,M);

track=iter;
while(iter > 0)

A=Ep’*Ep;
%Find singular value decomposition of A
[U,S,V]=svd(A);
%Singular values of Ep
sigma2=S(S˜=0);
singular=sqrt(sigma2);
partial_sig2=sum(sigma2(L:M));
total_sig2=sum(sigma2(1:M));
fprintf(’\n iteration %3.0f \n’, track-iter+1)
fraction=partial_sig2/total_sig2;
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fprintf(’ partial sum/total sum of sq. singular values
\n %1.8f’, fraction)

fprintf(’\n’)
%Construct B=Bp

B=sparse(m,m); %pre-allocate space
[is,js]=ind2sub([N,M],missing(1:m));

for s=1:m
for t=s:m

if (i(s)==i(t))
B(s,t)=sum(U(js(s),L:M)*U(js(t),L:M)’);
B(t,s)=B(s,t); %B is symmetric

end %end if
end %end For t

end %end for s
%%%NOW CONSTRUCT THE VECTOR Wp
W=sparse(m,1); %pre-allocate space

for t=1:m
K=sparse(N,M);
K(missing(t))=1;
W(t)=sum(diag(U(:,L:M)’*Ep’*K*U(:,L:M)));

end %end for
%Solve Bx_(p+1)= -W

xp1=-B\W;
%Create matrix B_{p+1}

Xp1(missing)=xp1;
%Update solution

Ep=Ep+Xp1;
%set counter

iter=iter-1;
end %End while

fprintf(’\n’)
fprintf(’ singular values (final iteration):\n’)
fprintf(’%16.6f’,singular)
Ep1=Ep;

For the Matlab m file or a version of this algorithm for R, see
http://people.carleton.edu/˜lchihara/LMCProf.html
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