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ABSTRACT
Gene expression data matrices often contain missing expression
values. In this paper, we describe a new algorithm, namedimproved
fixed rank approximation algorithm(IFRAA), for missing values
estimations of the large gene expression data matrices. We compare
the present algorithm with the two existing and widely used
methods for reconstructing missing entries for DNA microarray
gene expression data: the Bayesian principal component analysis
(BPCA) and the local least squares imputation method (LLS).
The three algorithms were applied to four microarray data sets
and two synthetic low-rank data matrices. Certain percentages of
the elements of these data sets were randomly deleted, and the
three algorithms were used to recover them. In conclusion IFRAA
appears to be the most reliable and accurate approach for recovering
missing DNA microarray gene expression data, or any other noisy
data matrices that are effectively low rank.

Index Terms— Gene expression matrix, singular value de-
composition, principal component analysis, least squares, miss-
ing values imputation, Bayesian analysis, K-nearest neighbor.

I. INTRODUCTION
DNA microarrays are used as a tool for analyzing information

in gene expression data over a broad range of biological applica-
tions such as cancer classification [9], cancer prognosis [13] and
identifications of cell cycle-regulated genes of yeast [14]. During
the laboratory process, some spots on the array may be missing
due to various factors (for example, machine error.) Because it is
often very costly and time consuming to repeat the experiment,
molecular biologists, statisticians, and computer scientists have
made attempts to recover the missing gene expressions by some
ad-hoc or systematic methods.

Microarray gene expression data is often represented as a gene
expression matrixG = (gij)

n,m
i,j=1 with n rows, which correspond to

genes, andm columns, which correspond to experiments. Thusgij

is the expression of the genei in the j − th experiment. Typically
n is much larger thanm. In this setting, the analysis of missing
gene expressions on the array would translate to recoveringmissing
entries in the gene expression matrix values.

In the last six years there have been at least six published
papers in the literature discussing the problems of missinggene
expression data and algorithms to recover them: the Bayesian
principal component analysis (BPCA) [12]; the fixed rank approx-
imation algorithm (FRAA) [5]; the weighted K-nearest neighbors
(KNNimpute) [15]; the least squares principal (LSP) [2]; the local
least squares imputation method (LLS) [10]; the projectiononto
convex sets methods (POCS) [7].

The purpose of this paper is to introduce the improved fixed
rank approximation algorithm (IFRAA). We compare IFRAA with
BPCA and LLS, since the software programs for implementing

these methods are easily available. We have omitted comparison
with KNNimpute, since the simulations of [12] and [10] show that
BPCA and LLS are superior to KNNimpute.

KNNimpute and LLS are local methods, which use similarity
structure of the data to impute the missing values. KNNimpute uses
the weighted averages of theK-nearest uncorrupted neighbors. LLS
has two versions to find similar genes whose expressions are not
corrupted: theL2-norm and the Pearson’s correlation coefficients.
After a group of similar genesC are identified, the missing values
of the gene are obtained using least squares applied to the group
C. In these two methods, the recovery of missing data is done
independently, i.e. the estimation of each missing entry does not
influence the estimation of the other missing entries.

BPCA is a global method consisting of three components. First,
principal component regression, which is basically a low rank
approximation of the data set is performed. Second, Bayesian esti-
mation, which assumes that the residual error and the projection of
each gene on principal components behave as normal independent
random variables with unknown parameters, is carried out. Third,
Bayesian estimation follows by iterations based on the expectation-
maximization (EM) of the unknown Bayesian parameters.

IFRAA is a combination of FRAA, developed in [5], and a good
clustering algorithm. One first applies FRAA, whose description is
below, to complete the missing data. Then one applies a clustering
algorithm to group the data to a small number of clusters of data
with similar characteristics. In each cluster FRAA is applied again
to update the estimated values of missing entries in the cluster.

FRAA is a global method which finds the values of the missing
entries of the gene expression matrixG, such that the obtainedG
minimizes the objective functionfl(X). Herefl(X) is the sum of
the squares of all but the firstl singular values of ann×m matrix
X. The minimum offl(X) is considered on the setX , which is
the set of all possible choices of matricesX = (xij)

n,m

i,j=1, such
that xij = gij if the entrygij is known. The completion matrixG
is computed iteratively, by a local minimization offl(X) on X .

The estimation of missing entries in FRAA is done simulta-
neously, i.e., the estimation of one missing entry influences the
estimation of the other missing entries.

II. MATHEMATICAL DESCRIPTIONS OF FRAA AND
IFRAA

Let G be then × m gene expression matrix, wheren ≥ m.
Assume first thatG does not have missing entries. Recall the
singular value decompositionof G := UΣV T, called SVD, [8].
Let σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 be the m singular values of
G, which are the nonnegative roots of the eigenvalues ofGTG.
Let u1, . . . ,um ∈ R

n and v1, . . . , vm ∈ R
m be the column

orthonormal eigenvectors ofGGT andGTG corresponding to the
eigenvaluesσ2

1 , . . . , σ2
m respectively.u1, . . . ,um andv1, . . . ,vm

are called the left and the right orthonormal singular column vectors



of G. Then U is n × m matrix, with the columnsu1, . . . um,
V is an m × m matrix, with columnsv1, . . . ,vm, and Σ is the
diagonalm × m matrix, with σ1, . . . , σm on the main diagonal.
Thus G =

Pm

i=1
σiuiv

T
i . u1, . . . ,um and v1, . . . ,vm are the

principal directions of the matricesGGT and GTG respectively.
The rankr of G is equal to the number of positive singular values
of G. For each1 ≤ l ≤ r, the matrixGl :=

Pl

i=1
σiuiv

T
i is the

bestn × m approximation matrix of rankl. That is if A is any
n × m matrix of rankl at most, than||G − A||F ≥ ||G − Gl||F .
(||G||F is the Euclidean norm ofG viewed as a vector withnm
coordinates.) An integerl ∈ [1, r] is called theeffective rankof
G, if l is the smallest integer for which

σl+1

σl

is much smaller than
1. ThenGl is called thefiltered G, andGl can be viewed as the
noise reduction ofG.

In microarray analysis of the gene expression matrixG, the
vectorsu1, . . . ,um are calledeigengenes, the vectorsv1, . . . ,vm

are calledeigenarraysandσ1, . . . , σm are calledeigenexpressions.
The effective rankl of G can be viewed as the number of different
biological functions ofn genes observed inm experiments. The
eigenarraysv1, . . . ,vl give the principall orthogonal directions
in R

m corresponding toσ1, . . . , σl. The eigengenesu1, . . . ,ul

give the principall orthogonal directions inRn corresponding to
σ1, . . . , σl. The eigen expressions describe the relative significance
of each bio-function. From the data given in [1], one concludes
that the number of significant singular values never exceedsm

2
.

The essence of the FRAA algorithm is based on this observation.
Computationally, one bringsG to an upper bidiagonal matrixA

using Householder matrices. Then one applies implicitly the QR
algorithm toATA to find the positive eigenvaluesσ2

1 , ..., σ2
r and

the corresponding orthonormal eigenvectorsv1, ..., vr of the matrix
GTG [8].

Assume now thatG is the gene expression matrix with missing
data. We can estimate the effective rank ofG by computing the
effective rank of the submatrix̂n × m, corresponding to all genes
with uncorrupted entries [5,§2 ]. Let l be our estimate for the
effective rank of the completed gene expression matrix. Denote
by X the set of alln × m matrices whose entries coincide with
the uncorrupted entries ofG. Thus X is the set of all possible
completion of the corrupted gene matrixG. FRAA completes the
missing values ofG by finding the minimum to the following
optimization problem:

min
X∈X

m
X

i=l+1

σi(X)2 =
m

X

i=l+1

σi(G
∗)2, whereG

∗ ∈ X . (II.1)

Ideally, G∗ is the completion of the gene matrix expression with
missing values. In practice, FRAA uses the following iterative
procedure:

Fixed Rank Approximation Algorithm: Let Gp ∈ X be the
pth approximation to a solution of optimization problem (II.1). Let
Ap := GT

p Gp and find an orthonormal set of eigenvectors forAp,
vp,1, ..., vp,m. ThenGp+1 is a solution to the following minimum
of a convex nonnegative quadratic functionminX∈X

Pm

q=l+1

(Xvp,q)
T(Xvp,q).

The flow chart of this algorithm can be given as:

Fixed Rank Approximation Algorithm (FRAA)
Input: integersm, n, L, iter, the locations of non-missing
entriesS , initial approximationG0 of n × m matrix G.
Output: an approximationGiter of G.
for p = 0 to iter − 1
- ComputeAp := GT

p Gp and find an orthonormal set of
eigenvectors forAp, vp,1, ..., vp,m.
- Gp+1 is a solution to the minimum problem (II.1) with
L = l.

In each step of the algorithm we decrease the value offl(X):
fl(Gp) ≥ fl(Gp+1). Hence the sequenceGp, p = 1, . . . converges
to a critical pointG̃. Thus FRAA gives a good approximation of
G̃. In many simulations we had we confirmed thatG̃ = G∗.

Consider the following inverse eigenvalue problem (IEP):Find
the values of the missing entries ofG such that the nonnegative
definite matrixGTG will havem− l smallest eigenvalues equal to
zero.IEP appear often in engineering. See [6] for examples of IEP
and a number of good algorithms to solve these problems. In fact,
FRAA is based on one of the algorithms for the inverse eigenvalue
problems discussed in [6].

As pointed out in [5] FRAA is a robust algorithm which performs
good, but not as well as KNNimpute. The reason of the superiority
of KNNimpute lies in fact that it reconstruct the missing values of
each gene from similar genes. IFRAA discussed here overcomes
this disadvantage.

IFRAA works as follows. First we use FRAA to find a com-
pletion G. Then we use a cluster algorithm, (we used K-means by
repeating and refining the cluster size), to find a reasonablenumber
of clusters of similar genes. Presumably each cluster is a relatively
smaller matrix having an effective low rank. For each cluster of
genes we apply FRAA separately to recover the missing entries
in this cluster. It turns out that this modification results in a very
efficient algorithm for reconstructing the missing values of the gene
expression matrix.

We also note that IFRAA performs best in reconstructing missing
values ofn × m matrices, which have low effective ranks.These
results suggest that IFRAA has a potential for being an effective
algorithm to recover blurred spots in digital images.

III. RESULTS

For comparison of different imputation algorithms, six different
types of data sets were used, consisting of four microarray gene
expression data and two randomly generated synthetic data.Two
data sets of microarray were obtained from studies for the iden-
tification of cell-cycle regulated genes in yeast (Saccharomyces
cerevisiae) [14]. The first gene expression data set is a com-
plete matrix of 5986 genes and 14 experiments based on the
Elutriation data set in [14]. The second microarray data setis
based on Cdc15 data set in [14], which contains 5611 genes and
24 experiments. Two other yeast data sets obtained from ”http://
sgdlite.princeton.edudownloadyeastdatasets”. The Evolution data
set has been studied in [4] and Calcineurin data set has been studied
in [16]. Two synthetic data set was randomly generated matrices
of size2000 × 20 and ranks2 and8 respectively.

To assess the performance of missing value estimation methods,
we performed the following simulations. On the first two microar-
ray data sets and on the synthetic data we deleted randomly1%,
5%, 10%, 15% and20% of the entries from the complete matrixC.
Then we estimated the various completions of the missing values
by BPCA, IFRAA and LLS. We set the K-value parameter (number
of similar genes) such that there was no increase in performance
of the LLS by increasing k.

We used a normalized root mean square error (NRMSE) as a
metric for comparison. IfC represents the complete matrix andĈ
represents the completed matrix using an estimate to the corrupted
entries inC, then the root mean square error (RMSE) is‖D‖F√

N×M
,

whereD = C − Ĉ. We normalized the root mean square error by
dividing RMSE by the average value of the entries inC.

In IFRAA the parameterL, which is the number of significant
singular values plus1, was chosen by comparison of ratio of
two consequent singular values. We observed that this parameter
appeared to be equal to 2 or 3 depending on data set and may
differ for each small block of data (cluster). The initial guess for
the missing entries in each gene was chosen to be the row average
of its corresponding row.



Table I. Comparison of NRMSE for three methods: IFRAA, LLS
and BPCA for actual missing values distribution for three gene
expression data sets with different percentages of missingvalues.

Data sets IFRAA LLS BPCA
Cdc15 data set %0.81 missing 0.0175 0.0200 0.0216

Evolution data set %9.16 0.0703 0.0969 0.1247
Calcineurin data set %3.68 0.0421 0.0445 0.0453

Figure 1 depicts the comparison of BPCA, IFRAA and LLS for
Elutriation data set in [14]. We break the whole gene expression
matrix by clustering the data into groups of genes, which form
matrices with effective low ranks. We applied FRAA on each group.
The graph is the average over 25 runs, and as can be seen for this
data set IFRAA performed the best, BPCA and LLS have very
close performance with significant gap with IFRAA.

Figure 2 depicts the comparison of BPCA, and LLS for Cdc15
data set in [14] which contains 5611 genes and 24 experiments.
In this case IFRAA again performed the best and LLSimpute
performed slightly better than BPCA.

The performance of the BCPA, IFRAA and LLS algorithms
depends on the unknown distribution of missing position of the
entries. To study this issue we applied all methods on the original
data sets containing missing values. Since NRMS error couldnot
be calculated for these actual missing values, we transferred the
missing value positions from the original data to corresponding
positions in the complete data derived from the original data set
before applying the algorithm. By doing this the distribution of
missing value positions in complete data set is almost unchanged
from the actual distribution. The result is illustrated in Table I
for three data sets including the original data set of Cdc15 which
contains%0.7 missing values (%0.81 missing in complete data),
Evolution data set [4] which contains%8.457 missing values (%9.1
missing in complete data) and Calcineurin data set [16] which
contains%3.2 missing values (%3.68 missing in complete data).
This result again confirms the superiority of the IFRAA for the
actual microarray data missing value estimation.

The random matrices of order2000× 20 and of ranksk = 2, 8
appearing in Figures 3 and 4 were generated as follows. One gener-
ates2k random column vectorsx1, . . . ,xk ∈ R

2000,y1, . . . ,yk ∈
R

20, where the entries of these vectors are chosen according to an
uniform distribution. ThenC =

Pk

i=1
xiy

T
i .

Figure 3 represents the comparisons of BPCA, IFRAA and
LLS for 2000 × 20 random matrix of rank2. The performance
of the three algorithms is excellent for1% of missing data.
The performance of LLS constantly deteriorates with the increase
percentage of missing data. The performance of BPCA deteriorated
with the increase percentage of missing data, but less than LLS.
IFRAA performed outstandingly.

Figure 4 represents the comparisons of BPCA, IFRAA and LLS
for 2000 × 20 random matrix of rank8. The performance of LLS
is the same as in Figure 3. BPCA and IFRAA performed extremely
well. IFRAA slightly outperformed BPCA in particular in thecase
with 20% of missing data.

IV. CONCLUSIONS

This paper describes the improved fixed rank approximation
algorithm (IFRAA), a local-global algorithm which exploits the
local similarity in data. We compared IFRAA to the Bayesian
principal component analysis (BPCA) and the local least squares
imputation method (LLS). We applied the three algorithms to
several data sets. We corrupted, at random, certain percentages of
these data sets and let the three algorithms BPCA, IFRAA and
LLS recover them. We also applied the three algorithms on real
gene expression data sets while keeping the distribution ofmissing
values unchanged.

We found that IFRAA performed better than BPCA and LLS for
actual microarray missing value estimation. In addition weobserved
that for microarray data sets LLS performed slightly betterthan
BPCA.

We also applied three algorithms on synthetic data sets, which
were random2000 × 20 matrices of ranks2 and 8. We again
corrupted at random certain percentages of these data sets.IFRAA
and BPCA were able to recover the data quite well, where IFRAA
slightly outperformed BPCA, in particular in the case with of higher
percentage of missing data. The performance of LLS deteriorated
gradually with increasing percentage of missing entries.

In conclusion IFRAA appears to be the most reliable method for
recovering missing values in DNA microarray gene expression data.
IFRAA was also the best to recover missing values in synthetic
data, corresponding to a data matrix with an effectively low-rank.
These results suggest that IFRAA has a potential for being an
effective algorithm to recover blurred spots in digital images.
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