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Abstract Let G = SLy(R) (or G = SQ(n, 1)) act ergodically on a probability space
(X,m). We consider the ergodic properties of the flow, m, {g,}), where{g;} is a
Cartan subgroup of;. The geodesic flow on a compact Riemann surface is an example
of such a flow; hereX = G/ T is a transitiveG-space,G = SLy(R) andI' C G is a
lattice. In this case the flow is Bernoullian.

For the general ergodiG-action, the flow(X, m, {g;}) is always aK-flow, however
there are examples in which it is not Bernoullian.

1. Introduction
Let G be a semisimple Lie group, acting measurably on a probability measure space
(X, B, n), where the measurg is G-invariant and ergodic. Le{g,},cr be some
one-parameter subgroup of a Cartan subgroug ofWe are interested in the ergodic
properties of the flow(X, B, i, {g;}). In this paper we shall consider rank-one groups
G = SO(n,1), n > 2, and, in particular, the case = SO(2, 1), which is essentially
SL,(R). In the latter case
(e 0
& = ( 0 o )

The most studied example of an ergodieaction is the action on the homogeneous
spaceG/T', wherel" C G is a lattice. In the case of a cocompact, torsion free laffice
in G = SLy(R), the space5/ I is naturally identified with the unit tangent bundiés

of a compact Riemann surfad4:

M =H/T = K\G/T,
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whereH is the hyperbolic space, and 8)= K C G is a maximal compact subgroup.
With these identifications, the action §f,} on G/ T" corresponds (up to time scaling) to
the geodesic flowon SM.

Now consider the group; = SO, 1) with a cocompact torsion free latticE,
maximal compact subgrouf = SQO(n), and a Cartan subgroug,}. Then the flow
(G/T, A, {g}) can be naturally identified with the geodesic flow on the frame bundle
FM to a compaci-dimensional manifold of constant negative curvatw

M =H"/I = K\G/T,

where H® = K\G denotes then-dimensional hyperbolic space. The grogp}
commutes with a compact subgroup @G- 1) = Ko € K = SO(n) (Ko preserves
the direction of the flow) and the flowko\G/ T, {g;}) is identified with the geodesic
flow on the unit tangent bundigM. In fact, the geodesic flow on any compact manifold
of a constantnegative curvature arises in this way.

Ergodic properties of the geodesic flow on negatively curved compact manifolds have
been extensively studied since the late 1930s, when Hgjparid Hedlund 7] proved
ergodicity of the geodesic flow. Gelfand and Fom# proved that the geodesic flow
has countable Lebesgue spectrum, and Sibdi ¢btained thek -property of the flow.
Ornstein and Weiss1B] have shown that the geodesic flow on a negatively curved
compact surface is Bernoullian, determining its measure theoretic properties uniquely (up
to time scaling). Using their technique, Dagj has proved the Bernoulli property for a
class of transformations on homogeneous spaces, including thé@se 1)/ T, {g,}).

In the more general setup of argodic rather than dransitive action ofG = SL,(R)
or G = SQ(n, 1) on a Lebesgue probability spa¢®, 5, 1), Howe—Moore’s theorem
on vanishing of matrix coefficient9] implies, that the flow(X, B, u, {g;}) is always
ergodic and mixing. It follows from the general result of Da#i that (X, B, u, {g}) is
always akK -flow. For completeness, we shall sketch the proof for the ¢aseSL,(R)
in §4.

Our goal is to exhibit a class of natural examples of ergodic actions-6fSL,(R) and
G = SQ(n, 1), for which the flow(X, B, u, {g/}) is not Bernoullian (though satisfies the
K-property). These examples arise naturally among induced actions: given an ergodic
measure preserving action of a lattifein a locally compact groug on a probability
space(Y, v), one constructs amducedG-action on the product spa¢&/T" x Y, A x v)

(see below). It is known that the inducédaction is ergodic if the action of the lattice
I is ergodic.

MAIN THEOREM. Let G = SLy(R) or SO(n,1), I' € G be a cocompact torsion free
lattice, andr : ' — Z be an epimorphism. L&, v, T) be an invertible ergodic system
with positive entropy, that igi(Y, T) > 0, and consider the ergodiE-action on(Y, v),
defined byy - y = T*™)y. Then the induced-action on(X, u) = (G/T x Y, A x v) is
ergodic, while the flowX, i, {g;}) is not Bernoullian.

Remark 11t is well known that any surface group C G = SL,(R) has epimorphisms
. — Z. ForG = SO(n, 1) with n > 2, there exist lattices which admit epimorphisms
ontoZ; and, in fact, all arithmetic lattices in S@, 1) with n £ 3, 7 have this property
(see L1)).
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Remark 2.There exists asmooth ergodic action ofG = SLy(R) or G = SO(n, 1)
on a compact manifold{ with a smooth measurg, so that the flom(X, u, {g;}) is
not Bernoullian (though it is & -flow). This follows from the Main Theorem, with
(Y, v, T) being asmoothsystem with positive entropy, and the fact that an induGed
action, constructed from a smooth action of a latlice G, can be realized in a smooth
form (see Remark 4).

One can consider ergodic actions of other simple gra@pand their one-parameter
subgroupdg,}, generated by a semi-simple element of a Cartan subgroup. The result of
Dani [2] applies to these cases too, so in any ergdglaction on(X, ), the flow{g,}
is a K-flow.

As for the Bernoulli property, it seems possible that examples like that in the Main
Theorem can also be constructed for(8lU). However, Sgr) and higher rank simple
Lie groups satisfy Kazhdan's property T, and thus do not have lattices which map
onto Z. On the other hand, property T implies, that the grdgp has very strong
mixing properties. It is possible that these mixing properties already imply{ghais
Bernoullian.

2. Preliminaries
2.1. Induced actions. In this section we briefly discuss the construction of group
actions, induced from lattice actions.

LetI" be a lattice in a locally compact grodp, and assume that acts ergodically on
a probability spacéY, v). Let @ C G be a measurable fundamental domain €T,
i.e. {Qy},er are disjoint, andl' = UVEr Qy is a conull set inG with respect to the
Haar measure ;. Let A be the restriction of.; to 2, normalized to 1. Ther$2, 1) is
a model forG/I", where theG-action onG/T' corresponds to the actign: w — g - x,
given by the following rule. Fog € G and a.ew € Q C G, considergw € G, and let
y € I' be the unique element, satisfying € Qy C G. Setg - w = gwy L.

Denoting the above by aq(g, w), we observe that the measurable functios: o, :
G x G/T — T' is a cocycle, i.e. givergy, g2 € G,

aq(g182, w) = aq(g1, 82 - w)ag(gr, w) forae w e Q. (1)

It is known (cf. [L8, Theorem B9, p. 200]) that such ag is a.e. equal to atrict cocycle,
i.e. a measurable function, satisfying oy all g1, g2 € G and allw from a conull set
Qo C Q. Therefore, one can define theduced G-action as the skew-product action on
Q x Y given by

g (w,y)=(g w,ag(g,wy), wef,yel.

This G-action preserves the probability measure v.

The construction depends on the choice of the fundamental dofaaitdowever,
different domains give rise to measurably cohomologous cocycles, and thus to measure-
theoretically isomorphig-actions.

There exists anothemmvariant construction of the induced action: consider the
action onG x Y, given byg(g’, y) = (g ¢’, ¥). This action preserves the infinite measure
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X x v, and commutes with th&-action, defined by - (g, y) = (gy %y - y). The
induced G-action is the quotientG x Y/T" of G x Y by this I'-action. Using this
description one can establish the following.

Remark 3The G-action induced from aergodicaction of a lattice inG is ergodic (see
[18, p. 75]).

Remark 4.Given a smooth action of a cocompact, torsion free latlicee G on a
compact manifoldr with a smooth measure, the inducedG-action can be realized as
a smooth action on a compact manifaldx Y/ I" with a smooth measure x v.

2.2. Geometric construction of cocyclesandt o «. Now let us consider the case of
a cocompact, torsion free lattidein G = SL,(R) (or in G = SQ(n, 1)). We shall focus
on the cocyclexq, restricted to the one-parameter subgrégp. Removing some finite
collection of codimension 1 submanifolds from the compact maniféle- H™ /T, one
can obtain an open, connected, simply connected subssft M. Let D ¢ M = H®
be a connected homeomorphic preimagedofinder the natural projection : M — M.
Then D forms a fundamental domain fdi® /I". Fix some pointp € D ¢ M and
define a map

Bp :RxXSM — m1(M, p)

by the following rule. LetSp(z, (v, x)) be the homotopy class of the closed curve
[p,y] oy (v,x) o [x, p] on M, obtained by concatenating three paths: (d)/], some
path connecting with x within D; (2) y, (v, x), the geodesic of lengthemerging from

x in directionv (let y denote its endpoint); (3)p], y], some path connecting with p
within D. Observe thaBp(t, (v, x)) is defined as soon as, y € D, and sinceD is
simply connected, its value does not depend on the choice,of][and [x, p] in D.
One easily checks that givens for a.e.(v, x) € SM the mapgp satisfies the cocycle
equation, like (1), and thus coincides a.e. with a strict cocycle.

PROPOSITIONS. Let G = SO(n, 1) (or G = SLy(R)) and letT" ¢ G, M, D, D, Bp
be as above. Then takin@ = K - D C G as a fundamental domain fo6/T,
one hasaq(g;, Ko-) = Bp(t,-). More precisely, consider the natural isomorphism
jimi(M, p) — ' and letd : Q@ — SM correspond to the projectio&/I" — Ko\G/T.

Then
aq(g, ®) = jo Bp(t, 0(w)) (2)

fora.e.w € Q and a.er € R.

Proof. Fix + € R and consider a generi@ € Q as an element ofG, and let
h = gwe Qy, € G with y, € T andy, = aq(g,w) by definition of ag. Let
(v, x) = O(w) be the corresponding element 1. Thengp (¢, (v, x)) is well defined
with probability 1. Consider the closed curve

c=[p,yloyi(v,x)o]x, pl]
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on M, and its liting ¢ to the universal covering? = H™:

5 = [qy 5)‘] o j;t(vs je) o ['56, ﬁ]
Assume thatp € D, [%, p] projects onto f, p], 7:(v, %) onto y,(v, x), and [, §] onto
[v, p]. Denoteyg = j o Bp(t, (v, x)) € I'. We have to show that, = y;.

Observe thagy = pyg andy € Dyg, while X € D. On the other hand, under the
projectiond : G — SM, w € G is mapped onto the tangent vecter ) € SM starting
the geodesig, (v, X), while g, € G is mapped ontdu, y)—the end ofy, (v, ). Since
y € Dyg, we getg,w € K - Dyg = Qyp, and sinceg,w € Qy,, we concludey, = yz. O

The homomorphism o j : 71(M, p) — I — Z factors through the homology group
Hi(M) = my(M, p)/[7m1(M, p), m11(M, p)]. Any homomorphismHy(M) — Z can be
realized as an integration of some closed 1-fgron M. Thus, choosing the paths,[p]
and [y, p] in the definition of the cocycledp to be smooth, we obtain that fay € @
and (v, x) = 6(w),

coangeo) =tojoppt = [ e+ [ e+ &
[py] 7 (v,x) [x.p]
Introducing a functiony : K - D ¢ SM — R defined by

v, x) = ]%‘,

[x.p
we note that|y ||, < diam(D) - ||£ ]|, and obtain the following.

PROPOSITIONG. Let G, I, M,0 and 2 C G be as in Proposition 5. Then for any
homomorphisnt : ' — Z, there exists a closed 1-forn defined onM, so that the
cocycle

toag  {g}xG/ T >T —>Z

and the cocycl®: : R x SM — R, defined by

b (1, (v, X)) = f :,

7 (v,x)
are L*>°-cohomologous in the sense that there exjsts L*(SM) s.t.

T o (g w) = ¢: (1, 6(w)) + ¥ (0(w) — ¥ (g0(w)).

In what follows, we shall fix suctD, D, Q@ = K - D anda will refer to the cocycle
ago. We shall think of theG-action on(X, u) as a(r o «)-defined skew-product over
(2, 1). We shall also identify the measure spa@el” with Q and Ko\G/T" with SM,
and use either of the above notations according to the context.

2.3. Asymptotically Brownian processeslin the following we shall use some notions
from the theory of stochastic processes. [&tn, S) be an invertible ergodic system.
Given a measurable functiofi: Z — R, let us defineF : Z x Z — R by

fFQO+ S+ +f(8" ) n>0
Fn,z)=1 0 n=0 (3)
—f(8"2) = — f(S712) n < 0.
Then F is aZ-cocycle, i.e.F(n+m,z) = F(n,z) + F(m, S"z).
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Definition 1.A function f : Z — R is said to beasymptotically Browniaiif there exists
a joining of (Z, n, ) with a Brownian motionW (¢, -),t € R (i.e. W(s, -) and W (—s, -),

s > 0, are independent standard Brownian motions Witk0, -) = 0), and constants
o > 0,8 > 0, so that almost everywhere

Fn,)—oW(n,-) _o (@)

|nI|IE] o0 |n|Y/2-8
Theorem 7 below, proved by Phillips and Stod]} gives a sufficient condition for a
function to be asymptotically Brownian, using the following notions.

Definition 2. A measurable partition? of an ergodic system{Z, n, S) is said to be
exponentially mixingf there existC andi < 1, s.t. for anyn > 1, any A € \/‘ioo SiP
and anyB € \/.° S'P,

In(AN B) —n(A)n(B)| < CA".

Definition 3. Define a semi-metrielp : Z — R, on Z, associated with the process
(P, S), bydp(z, w) = inf, e, where the inf is taken over all indicas> 0, for whichz
andw belong to the same atom &', = \//__, S’ P. A measurable functioff : Z — R

is said to satisfy a&odlder conditionwith respect to the partitio® if there existsC and

k > 0 so that

[f@) = fw)] =C-dp(z, w)".

THEOREM 7. ([14]) Let (Z, n, S) be some ergodic system, afid Z — R a measurable

function, satisfying the following conditions:

(i) [, f@dn) =0

(i) f(z) is not anL?-coboundary, i.ef # g —go S, for g € L?(n);

(i) f satisfies a ldlder condition with respect to an exponentially mixing finite partition
P of Z.

Thenf : Z — R is asymptotically Brownian.

The main tool in the proof of the Main Theorem is the construction, due to Rudolph
[16], of non loosely Bernoulli skew-products. This construction was motivated by
Kalikow's solution of theT, T~ problem [L0].

THEOREM 8. ([16]) Let (Z, n, ) be an invertible ergodic system with an asymptotically
Brownian functionf : Z — Z, and let(Y, v, T) be an invertible ergodic system with
positive entropyh (Y, T) > 0. Then the skew-product

(Z x; Y, nxv,8) with S(z, y) = (Sz, T/@y)

is not a loosely Bernoulli system, i.e. it is not isomorphic to a Poiaaaoss-section of
a Bernoulli flow.

Remark 9lt is unclear whether the assumption thiats asymptotically Brownian cannot

be weakened. In particular, is it true that properties (i) and (ii) from Theorem 7 suffice
to show that a skew-producf x, Y, n x v, S) is notBernoullianfor any (Y, v, T') with
h(Y,T) > 0?
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3. Proof of the Main Theorem

Consider the induced@-action on(X, u) = (2 x Y, A x v). Since(Y, v, T) is ergodic,
andt : ' — Z is onto,I" acts ergodically onY, v), and hence, by Remark & acts
ergodically on(X, u).

Viewing the G-action on (X, u) as a skew-product extension of thig-action on
(2, 1), we observe that the relevant cocyclerise : G x @ — I' — Z, and the action
is given by

gw,y) = (g, TTE)y),

In particular, the flow(X, u, {g:}) is a (tr o «)-defined skew-product over the geodesic
flow (2, 2, {g/}), with (Y, v, T) being the fiber. From now on we shall focus on the
flow (22, 2, {g,}) and its extensiontX, u, {g.}).

Consider a Poincarcross-sectiolZ, n, S) of the flow (2, A, {g;}) and let/(z) denote
the return time to the cross-secti@h ThenS z = g z, and the probability measure
on Z refers to the invariant probability measureon © by the formula

-1 I(z)
/ Fu, x)Mu, x) = </ l(z)zin(z)) // F(g z)drdn(z).
SM z zJo

Let us define a functiorf : Z — Z by

f@) =toalgie), 2) 5)

and form a skew-produatZ x; ¥,n x v, §) with S(z,y) = (Sz, T/@y). Note that
the system(Z x; Y, n x v, S) is a Poincag cross-section for the flowX, u, {g/}) =
(2 x Y, A xv,{g}). Indeed,l(z) is the return time forz, y) € Z x Y:

22, Y) = (8102, TT®0Dyy = (Sz, T/ @y) = §(z, y).

The idea of the proof is to show that for an appropriate choice of the cross-section
(Z,n, S) the functionf : Z — Z in (5) is asymptotically Brownian. As soon as this is
established, Theorem 8 implies that the transformation s Y, n x v, S) is notloosely
Bernoullianand, therefore, the flowX, u, {g;}) is not Bernoullian, proving the theorem.

We are left with the proof that for some Poineacross-section(Z, n, S) of
(2, A, {g:}), the functionf : Z — Z, given by (5), is asymptotically Brownian. In
the two-dimensional case Proposition 6 allows us to substitutex by ¢: on SM
which is isomorphic ta2, and thus, in this case, it is enough to show that the function
h : Z — R defined by

Mo =ot@.0 = [ (6)
Vi) (2)

is asymptotically Brownian. In the general case, wh&d is a factor of 2, we
shall assume that the cross-sectigh n, S) of (2, A, {g;}) arises from a cross-section
(Z', 7', S") of the geodesic flow o8M: Z = 6~1(Z’), and by Proposition 6 it is enough
to show that the functiok : Z’ — R, defined by (6) withz € Z’, is asymptotically
Brownian.

Since from now on we shall be dealing only with the geodesic flows dh (and not
with it's compact extension t@2), we shall, with some abuse of notation, denote by
(Z,n, S) the cross-section of the geodesic floga, 1, {g;}).
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Thus we shall prove thdt: Z ¢ SM — R given by (6) is asymptotically Brownian,
verifying conditions (i)—(iii) of Theorem 7. In fact, conditions (i) and (ii) are satisfied by
any cross-section of the geodesic flow. The following lemma appears essentidly in [

LEMMA 10. Let (Z, n, S) be a Poincae’ cross-section of the geodesic flow M, & a
closed 1-form oM, andh : Z — R be given by (6). Then

/h(z)dn(Z) —o.
Z

Proof. Denote byé (v, x) the value ofé on the tangent vectaw, x) € SM. Then

1(z)
/Zh(Z)dn(Z) =/ §(gz)dtdn(z) = (/ZI(Z)dn(Z)> : §(u, x)di(u, x).

ZJO SM
The invariant probability measuré(u,x) on SM is the product measure of the
normalized Riemann volume a¥f and the uniform distribution on the directions Thus
di(u, x) = dr(—u, x), while E(—u, x) = —&(u, x) for any fixedx € M. Therefore the
last integral has to be 0. d

LEMMA 11.Let (Z,n,S) be any Poincag” cross-section of the geodesic flow
(SM, X, {g/}). Then the functioh : Z — R, defined by (6), is not a coboundary,
i.e.h(z) # k — ko S for any measurablé : Z — R.

Proof. Supposé: is a coboundary, then so & One easily concludes that thfedefined
skew-product{(Z x; Y, n x v, $) is not ergodic, and thus the flogX, u, {g,}) is also not
ergodic. Therefore, by Moore’s theored?], the G-action on(X, u) = (G/T'x Y, A xv)
induced from thel'-action on(Y, v) is not ergodic. But that is a contradiction, since
(Y, v, T) was ergodic and : ' — Z is an epimorphism. O

To show that: satisfies condition (iii) of Theorem 7, we ubtarkov partitions which
can be constructed for general Anosov flows (sEg for details). A Markov partition
for the flow (SM, %, {g,}) consists of a Poincéarcross-sectionZ, n, S), and a finite
measurable partitio® of (Z, n, S), so that(P, S) is a topological Markov chain, and
the probability measure on Z is a Gibbs measure (with respect to the return time
function/). The return time functiod : Z — R, is bounded: O< [y < i(z) < < o0,
and Holder continuous (se€lp, Theorem 1]). Moreover, Markov partitions of arbitrarily
small size can be constructed, where size of the partition is defined to be

maxdiam(Py), .. ., diam(P,), [[/]ls}.

For a Markov partition the proces®, S) is exponentially mixing with respect tp.
In fact, Gibbs measures satisfy an even stronger mixing property {Peetere exists
A <1,stforanys > 1, anyA € \/°_ S'P and anyB € \/ §' P,

In(AN B) —n(A)n(B)| < n(A)-n(B)- A"

To show the Hlder property of the functiom with respect to(P, S), we shall use
a general property of Markov partitions of an Anosov flow: the Riemannian metric on
Z C SM induced from the metric o§M is Holder continuous with respect to the metric
dp on Z. (In fact,dp and p are Holder equivalent.) We shall prove this in our special
setup.
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LEMMA 12. Let (Z, n, S) with a finite partition P be a Markov partition of the geodesic
flow (SM, A, {g;}) on a compact manifold/ with a constant negative curvature. Lét
denote the metric o as in Definition 3, and lep denote the Riemannian metric, induced
from SM. Assume that the Markov partition is sufficiently small. Therestricted to an
open dense subsgy C Z of full n-measure, is ldider continuous with respect tfp, i.e.
there existC andk > 0, s.t.

Vz,w € Zo, p(z,w) <C-dp(z, w)".

Proof. We have to show that there exigt and A < 1 so that any two points
z,w € Z C SM, with the property that for anyi| < n both pointsSiz, S‘w belong to
the sameP-atom P;,, satisfy the estimatiop (z, w) < C - A".

Consider the covering mapM — SM. First we shall show that the geodesigsz}
and{g, w} can be lifted toSM, so that they stay close for| < ¢ - n.

If the Markov partition is sufficiently small, we can assume that the preimage of each
of the (connected) sets

P = U{g,x|0§tsl(x)}CSM, P CZ,

XEP;

is a disjoint union of connected sef% - y c SM with y € T', each of which is
homeomorphically projected ont®;. Let us define time¢t;}”,, {s;}", by

to=s50=0, tip1=1+1(8z2), sip1=s+I1Sw), —-n<i<n.
From the assumption on w, we conclude that
QL gweE P, fors, <t <tia,si <s<si1,-n<i<n.

Choose preimages andw of z, w, lying in the same connecteﬂ_,~0 - Y0, Which maps
homeomorphically ont@;,. Then lifting P;, to SM, one by one starting from= 0, we
obtain connected homeomorphic preimaggs y; C SM, with y; € T, so that

82, &W € ﬁj,- Vi, fore <t <tip1,8 <s <sip1,—n <i<n.

Leta denote the size of the partitidh. Thenp(g,Z, g, W) < a in SM, where|s;| > |i|-Ip
and|s;| > |i| - lo, for all |i| < n. Since{g,}-orbits are global geodesics W, we have
lt; — s;| < a, for |i] <n, and hence, denotin§ = n - [p, we obtain

p(giz, gw) < 3a for | <T. (7)

The hyperbolic structure ofSM implies that any two geodesic lines diverge
exponentially fast in (at least) one of the two directions. More precisely, there exist
C, andk > 0 so that (7) implies that there existswith |7| < 3a, s.t. for|t| < T — 3a,

0(8r4107, W) < C1-e ¥ -min{p1, pp} < C1-3a - e 0", (8)

wherepy = p(g7r44,2, grw) and p; = p(g_r4+4,2, g—rw). In other words, the geodesic
lines{g;z} and{g,w} in SM (and hencdg,z} and{g,w} in SM) areexponentiallyclose
as setsin terms ofn. We claim that, in fact, thgointsz, w are exponentially close.
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By the construction of Markov partitions (sed5]), the setsP; have a special
description as unions of leaves of contracting (or expanding) foliations. In the case of a
constant negative curvature, each of the ggtss a compact subset of a codimension 1
smoothsubmanifold inSM, and P; is the closure of its relative interior If;. We take
Zy to be the union of all InP;.

Sincez, w are points of intersection of the geodesfgs:} and{g,w} with Int P;;, and
since the geodesic flow is uniformly transversalRg, we conclude from (8) that for

someCy,
pz,w) < Co-e ™ =Cp- 1", wherer =e 0 <1,

completing the proof of the lemma. O

Remark 13The above argument also shows that the return time funétiafi, — R,
is Holder continuous with respect tdp. Indeed,/(z) and l(w) are the lengths of
two exponentially close geodesic segments, cut by transvere smooth se{s It P;, .
Finally, we remark that in the case of gene€fsmooth Anosov flows, the sefy are
not necessarily smooth, but are stilbider.

We can now complete the proof of the theorem. The functior¥ — R is given by

1)
h(z) = A £(8:2) dt,

where the functioré(-) is Lipschitz onSM and bounded, whild(z) is Holder. We
conclude thath is Holder with respect to the Riemann metric, and therefore, by
Lemma 12,k satisfies the Hider condition with respect tgP, S). This completes
the proof of the Main Theorem. O

Remark 14.Guivarc’h in [6] describes a method for exhibiting -flows that are not
Bernoullian that is somewhat different from that df6]. He also follows the proof of

[10], but avoids the machinery of asymptotically Brownian processes. One can also carry
out a proof of our result based on his approach, but we preferred to base ours on the
more explicit statements irlf).

4. The K-property
The following theorem is a special, but typical, case of a result due to 2ni [

THEOREM 16. Let G = SL,(R) act ergodically on the probability spad&, 5, 1). Then
the flow(X, u, {g/}) is a K-flow.

Proof. We will show that for everyry # 0O, the transformationrl’ = g, is a K-
automorphism of(X, ©). It is enough to construct an increasing sequence of finite
measurable partition® ™ of (X, B, u), s.t. B=\/, P™, but all the P™ have a trivial
tail, that is any measurable set in

oo 00 )
PO = N\\/T'P"

k=1i=k
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hasu-measure 0 or 1. PartitionB™ are constructed using the horocyclic flow

1 s
n=(5 1) ©

By the classical theorem of Ambrose—Kakutani, the flotv ., {#,}) can be represented
as a special flow under a functién Xo — R, with a base(Xq, Bo, 1o, To). Let Q™
be some increasing sequence of finite measurable partitiokis, @fenerating3o. Points

(x,5), (X', e{(x,s) | x € Xp,0<s <I(x)})=X

are defined to belong to the same atomPdP if x, x’ lie in the same atom o™, and
k27" <s,5 < (k+ 127",

We claim that foru-a.e.x € X, the pair of pointst andhix is not separated by’
This will complete the proof, since by Moore’s theoret®] /; is ergodic on(X, 5, ),
implying that the measurable partitidi’éé’) is trivial.

The relationg_,hyg;, = h.-=, in SLp(R) implies that

(n)

TI (hlx) = h)L/(Tlx) Wlth )\, = e_ztD < 1’

and thus:

()

the pointsT/x, T/ (h1x) belong to the samé,} orbit for all j; and

(i) the {h,}-distance betweefi/x and T/ (h1x) decays exponentially with > 0.
Therefore, the Borel-Cantelli lemma implies that for agye Xo and a.e. O< s < [(x)
the pointx = h,xo has the property that the pair of poiftéx, 77/ (h,x) lies in the same
atom of P for all, but finitely many,j > 0. Sincedu = duods, we conclude that for
p-a.e.x € X the pointsx andiyx are not separated b§. O
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