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Abstract. Let G = SL2(R) (or G = SO(n,1)) act ergodically on a probability space
(X,m). We consider the ergodic properties of the flow(X,m, {gt }), where {gt } is a
Cartan subgroup ofG. The geodesic flow on a compact Riemann surface is an example
of such a flow; hereX = G/0 is a transitiveG-space,G = SL2(R) and0 ⊂ G is a
lattice. In this case the flow is Bernoullian.

For the general ergodicG-action, the flow(X,m, {gt }) is always aK-flow, however
there are examples in which it is not Bernoullian.

1. Introduction
Let G be a semisimple Lie group, acting measurably on a probability measure space
(X,B, µ), where the measureµ is G-invariant and ergodic. Let{gt }t∈R be some
one-parameter subgroup of a Cartan subgroup ofG. We are interested in the ergodic
properties of the flow(X,B, µ, {gt }). In this paper we shall consider rank-one groups
G = SO(n,1), n ≥ 2, and, in particular, the caseG = SO(2,1), which is essentially
SL2(R). In the latter case

gt =
(
et 0
0 e−t

)
.

The most studied example of an ergodicG-action is the action on the homogeneous
spaceG/0, where0 ⊂ G is a lattice. In the case of a cocompact, torsion free lattice0

in G = SL2(R), the spaceG/0 is naturally identified with the unit tangent bundleSM
of a compact Riemann surfaceM:

M = H/0 = K\G/0,
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whereH is the hyperbolic space, and SO(2) ∼= K ⊂ G is a maximal compact subgroup.
With these identifications, the action of{gt } onG/0 corresponds (up to time scaling) to
the geodesic flowon SM.

Now consider the groupG = SO(n,1) with a cocompact torsion free lattice0,
maximal compact subgroupK ∼= SO(n), and a Cartan subgroup{gt }. Then the flow
(G/0, λ, {gt }) can be naturally identified with the geodesic flow on the frame bundle
FM to a compactn-dimensional manifold of constant negative curvature−1:

M = H(n)/0 = K\G/0,
where H(n) = K\G denotes then-dimensional hyperbolic space. The group{gt }
commutes with a compact subgroup SO(n − 1) ∼= K0 ⊆ K ∼= SO(n) (K0 preserves
the direction of the flow) and the flow(K0\G/0, {gt }) is identified with the geodesic
flow on the unit tangent bundleSM. In fact, the geodesic flow on any compact manifold
of a constantnegative curvature arises in this way.

Ergodic properties of the geodesic flow on negatively curved compact manifolds have
been extensively studied since the late 1930s, when Hopf [8] and Hedlund [7] proved
ergodicity of the geodesic flow. Gelfand and Fomin [4] proved that the geodesic flow
has countable Lebesgue spectrum, and Sinai [17] obtained theK-property of the flow.
Ornstein and Weiss [13] have shown that the geodesic flow on a negatively curved
compact surface is Bernoullian, determining its measure theoretic properties uniquely (up
to time scaling). Using their technique, Dani [3] has proved the Bernoulli property for a
class of transformations on homogeneous spaces, including the case(SO(n,1)/0, {gt }).

In the more general setup of anergodic, rather than atransitive, action ofG = SL2(R)
or G = SO(n,1) on a Lebesgue probability space(X,B, µ), Howe–Moore’s theorem
on vanishing of matrix coefficients [9] implies, that the flow(X,B, µ, {gt }) is always
ergodic and mixing. It follows from the general result of Dani [2] that (X,B, µ, {gt }) is
always aK-flow. For completeness, we shall sketch the proof for the caseG = SL2(R)
in §4.

Our goal is to exhibit a class of natural examples of ergodic actions ofG = SL2(R) and
G = SO(n,1), for which the flow(X,B, µ, {gt }) is not Bernoullian (though satisfies the
K-property). These examples arise naturally among induced actions: given an ergodic
measure preserving action of a lattice0 in a locally compact groupG on a probability
space(Y, ν), one constructs aninducedG-action on the product space(G/0×Y, λ× ν)
(see below). It is known that the inducedG-action is ergodic if the action of the lattice
0 is ergodic.

MAIN THEOREM. Let G = SL2(R) or SO(n,1), 0 ⊂ G be a cocompact torsion free
lattice, andτ : 0 → Z be an epimorphism. Let(Y, ν, T ) be an invertible ergodic system
with positive entropy, that is,h(Y, T ) > 0, and consider the ergodic0-action on(Y, ν),
defined byγ · y = T τ(γ )y. Then the inducedG-action on(X,µ) = (G/0 × Y, λ× ν) is
ergodic, while the flow(X,µ, {gt }) is not Bernoullian.

Remark 1.It is well known that any surface group0 ⊂ G = SL2(R) has epimorphisms
τ : 0 → Z. ForG = SO(n,1) with n > 2, there exist lattices which admit epimorphisms
onto Z; and, in fact, all arithmetic lattices in SO(n,1) with n 6= 3,7 have this property
(see [11]).
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Remark 2.There exists asmooth ergodic action ofG = SL2(R) or G = SO(n,1)
on a compact manifoldX with a smooth measureµ, so that the flow(X,µ, {gt }) is
not Bernoullian (though it is aK-flow). This follows from the Main Theorem, with
(Y, ν, T ) being asmoothsystem with positive entropy, and the fact that an inducedG-
action, constructed from a smooth action of a lattice0 ⊂ G, can be realized in a smooth
form (see Remark 4).

One can consider ergodic actions of other simple groupsG, and their one-parameter
subgroups{gt }, generated by a semi-simple element of a Cartan subgroup. The result of
Dani [2] applies to these cases too, so in any ergodicG-action on(X,µ), the flow {gt }
is aK-flow.

As for the Bernoulli property, it seems possible that examples like that in the Main
Theorem can also be constructed for SU(n,1). However, Sp(n) and higher rank simple
Lie groups satisfy Kazhdan’s property T, and thus do not have lattices which map
onto Z. On the other hand, property T implies, that the group{gt } has very strong
mixing properties. It is possible that these mixing properties already imply that{gt } is
Bernoullian.

2. Preliminaries
2.1. Induced actions. In this section we briefly discuss the construction of group
actions, induced from lattice actions.

Let 0 be a lattice in a locally compact groupG, and assume that0 acts ergodically on
a probability space(Y, ν). Let � ⊂ G be a measurable fundamental domain forG/0,
i.e. {�γ }γ∈0 are disjoint, and�0 = ⋃

γ∈0 �γ is a conull set inG with respect to the
Haar measureλG. Let λ be the restriction ofλG to �, normalized to 1. Then(�, λ) is
a model forG/0, where theG-action onG/0 corresponds to the actiong : ω 7→ g · x,
given by the following rule. Forg ∈ G and a.e.ω ∈ � ⊂ G, considergω ∈ G, and let
γ ∈ 0 be the unique element, satisfyinggω ∈ �γ ⊂ G. Setg · ω = gωγ−1.

Denoting the aboveγ by α�(g, ω), we observe that the measurable functionα = α� :
G×G/0 → 0 is a cocycle, i.e. giveng1, g2 ∈ G,

α�(g1g2, ω) = α�(g1, g2 · ω)α�(g2, ω) for a.e. ω ∈ �. (1)

It is known (cf. [18, Theorem B9, p. 200]) that such anα� is a.e. equal to astrict cocycle,
i.e. a measurable function, satisfying (1)for all g1, g2 ∈ G and allω from a conull set
�0 ⊂ �. Therefore, one can define theinducedG-action as the skew-product action on
�× Y given by

g · (ω, y) = (g · ω, α�(g, ω)y), ω ∈ �, y ∈ Y.
ThisG-action preserves the probability measureλ× ν.

The construction depends on the choice of the fundamental domain�. However,
different domains give rise to measurably cohomologous cocycles, and thus to measure-
theoretically isomorphicG-actions.

There exists another,invariant construction of the induced action: consider theG-
action onG×Y , given byg(g′, y) = (g g′, y). This action preserves the infinite measure
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λG × ν, and commutes with the0-action, defined byγ · (g, y) = (gγ−1, γ · y). The
inducedG-action is the quotientG × Y/0 of G × Y by this 0-action. Using this
description one can establish the following.

Remark 3.TheG-action induced from anergodicaction of a lattice inG is ergodic (see
[18, p. 75]).

Remark 4.Given a smooth action of a cocompact, torsion free lattice0 ⊂ G on a
compact manifoldY with a smooth measureν, the inducedG-action can be realized as
a smooth action on a compact manifoldG× Y/0 with a smooth measureλ× ν.

2.2. Geometric construction of cocyclesα andτ ◦ α. Now let us consider the case of
a cocompact, torsion free lattice0 in G = SL2(R) (or inG = SO(n,1)). We shall focus
on the cocycleα�, restricted to the one-parameter subgroup{gt }. Removing some finite
collection of codimension 1 submanifolds from the compact manifoldM = H(n)/0, one
can obtain an open, connected, simply connected subsetD of M. Let D̃ ⊂ M̃ = H(n)

be a connected homeomorphic preimage ofD under the natural projectionπ : M̃ → M.
Then D̃ forms a fundamental domain forH(n)/0. Fix some pointp ∈ D ⊂ M and
define a map

βD : R × SM → π1(M, p)

by the following rule. LetβD(t, (v, x)) be the homotopy class of the closed curve
[p, y] ◦ γt (v, x) ◦ [x, p] on M, obtained by concatenating three paths: (1) [x, p], some
path connectingp with x within D; (2) γt (v, x), the geodesic of lengtht emerging from
x in direction v (let y denote its endpoint); (3) [p, y], some path connectingy with p
within D. Observe thatβD(t, (v, x)) is defined as soon asx, y ∈ D, and sinceD is
simply connected, its value does not depend on the choice of [p, y] and [x, p] in D.
One easily checks that givent, s for a.e.(v, x) ∈ SM the mapβD satisfies the cocycle
equation, like (1), and thus coincides a.e. with a strict cocycle.

PROPOSITION5. Let G = SO(n,1) (or G = SL2(R)) and let 0 ⊂ G,M,D, D̃, βD

be as above. Then taking� = K · D̃ ⊂ G as a fundamental domain forG/0,
one hasα�(gt ,K0·) = βD(t, ·). More precisely, consider the natural isomorphism
j : π1(M, p) → 0 and letθ : � → SM correspond to the projectionG/0 → K0\G/0.
Then

α�(gt , ω) = j ◦ βD(t, θ(ω)) (2)

for a.e.ω ∈ � and a.e.t ∈ R.

Proof. Fix t ∈ R and consider a genericω ∈ � as an element ofG, and let
h = gtω ∈ �γα ⊆ G with γα ∈ 0 and γα = α�(gt , ω) by definition of α�. Let
(v, x) = θ(ω) be the corresponding element inSM. ThenβD(t, (v, x)) is well defined
with probability 1. Consider the closed curve

c = [p, y] ◦ γt (v, x) ◦ [x, p]
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onM, and its lifting c̃ to the universal covering̃M = H(n):

c̃ = [q̃, ỹ] ◦ γ̃t (v, x̃) ◦ [x̃, p̃].

Assume thatp̃ ∈ D̃, [x̃, p̃] projects onto [x, p], γ̃t (v, x̃) onto γt (v, x), and [̃y, q̃] onto
[y, p]. Denoteγβ = j ◦ βD(t, (v, x)) ∈ 0. We have to show thatγα = γβ .

Observe that̃q = p̃γβ and ỹ ∈ D̃γβ , while x̃ ∈ D̃. On the other hand, under the
projectionθ̃ : G → SM̃, ω ∈ G is mapped onto the tangent vector(v, x̃) ∈ SM̃ starting
the geodesic̃γt (v, x̃), while gtω ∈ G is mapped onto(u, ỹ)—the end ofγ̃t (v, x̃). Since
ỹ ∈ D̃γβ , we getgtω ∈ K ·Dγβ = �γβ , and sincegtω ∈ �γα, we concludeγα = γβ . �

The homomorphismτ ◦ j : π1(M, p) → 0 → Z factors through the homology group
H1(M) ∼= π1(M, p)/[π1(M, p), π1(M, p)]. Any homomorphismH1(M) → Z can be
realized as an integration of some closed 1-formξ onM. Thus, choosing the paths [x, p]
and [y, p] in the definition of the cocycleβD to be smooth, we obtain that forω ∈ �

and(v, x) = θ(ω),

τ ◦ α�(gt , ω) = τ ◦ j ◦ βD(t, (v, x)) =
∫

[p,y]
ξ +

∫
γt (v,x)

ξ +
∫

[x,p]
ξ.

Introducing a functionψ : K ·D ⊂ SM → R defined by

ψ(v, x) =
∫

[x,p]
ξ,

we note that‖ψ‖∞ ≤ diam(D) · ‖ξ‖∞, and obtain the following.

PROPOSITION6. Let G,0,M, θ and � ⊂ G be as in Proposition 5. Then for any
homomorphismτ : 0 → Z, there exists a closed 1-formξ , defined onM, so that the
cocycle

τ ◦ α� : {gt } ×G/0 → 0 → Z

and the cocycleφξ : R × SM → R, defined by

φξ (t, (v, x)) =
∫
γt (v,x)

ξ,

areL∞-cohomologous in the sense that there existsψ ∈ L∞(SM) s.t.

τ ◦ α�(gt , ω) = φξ (t, θ(ω))+ ψ(θ(ω))− ψ(gtθ(ω)).

In what follows, we shall fix suchD, D̃,� = K · D̃ andα will refer to the cocycle
α�. We shall think of theG-action on(X,µ) as a(τ ◦ α)-defined skew-product over
(�, λ). We shall also identify the measure spaceG/0 with � andK0\G/0 with SM,
and use either of the above notations according to the context.

2.3. Asymptotically Brownian processes.In the following we shall use some notions
from the theory of stochastic processes. Let(Z, η, S) be an invertible ergodic system.
Given a measurable functionf : Z → R, let us defineF : Z × Z → R by

F(n, z) =


f (z)+ f (S z)+ · · · + f (Sn−1z) n > 0
0 n = 0
−f (Snz)− · · · − f (S−1z) n < 0.

(3)

ThenF is a Z-cocycle, i.e.F(n+m, z) = F(n, z)+ F(m, Snz).
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Definition 1.A function f : Z → R is said to beasymptotically Brownianif there exists
a joining of (Z, η, S) with a Brownian motionW(t, ·), t ∈ R (i.e.W(s, ·) andW(−s, ·),
s ≥ 0, are independent standard Brownian motions withW(0, ·) = 0), and constants
σ > 0, δ > 0, so that almost everywhere

lim
|n|→∞

F(n, ·)− σW(n, ·)
|n|1/2−δ = 0. (4)

Theorem 7 below, proved by Phillips and Stout [14], gives a sufficient condition for a
function to be asymptotically Brownian, using the following notions.

Definition 2. A measurable partitionP of an ergodic system(Z, η, S) is said to be
exponentially mixingif there existC andλ < 1, s.t. for anyn ≥ 1, anyA ∈ ∨0

−∞ S
iP

and anyB ∈ ∨∞
n S

iP ,
|η(A ∩ B)− η(A)η(B)| ≤ Cλn.

Definition 3. Define a semi-metricdP : Z → R+ on Z, associated with the process
(P, S), by dP (z,w) = infn e−n, where the inf is taken over all indicesn ≥ 0, for whichz
andw belong to the same atom ofPn−n = ∨n

i=−n S
iP . A measurable functionf : Z → R

is said to satisfy aHölder conditionwith respect to the partitionP if there existsC and
κ > 0 so that

|f (z)− f (w)| ≤ C · dP (z,w)κ .

THEOREM 7. ([14]) Let (Z, η, S) be some ergodic system, andf : Z → R a measurable
function, satisfying the following conditions:
(i)

∫
Z
f (z) dη(z) = 0;

(ii) f (z) is not anL2-coboundary, i.e.f 6= g − g ◦ S, for g ∈ L2(η);
(iii) f satisfies a H¨older condition with respect to an exponentially mixing finite partition

P of Z.
Thenf : Z → R is asymptotically Brownian.

The main tool in the proof of the Main Theorem is the construction, due to Rudolph
[16], of non loosely Bernoulli skew-products. This construction was motivated by
Kalikow’s solution of theT , T −1 problem [10].

THEOREM 8. ([16]) Let (Z, η, S) be an invertible ergodic system with an asymptotically
Brownian functionf : Z → Z, and let (Y, ν, T ) be an invertible ergodic system with
positive entropy:h(Y, T ) > 0. Then the skew-product

(Z ×f Y, η × ν, Ŝ) with Ŝ(z, y) = (S z, T f (z)y)

is not a loosely Bernoulli system, i.e. it is not isomorphic to a Poincar´e cross-section of
a Bernoulli flow.

Remark 9.It is unclear whether the assumption thatf is asymptotically Brownian cannot
be weakened. In particular, is it true that properties (i) and (ii) from Theorem 7 suffice
to show that a skew-product(Z×f Y, η× ν, Ŝ) is not Bernoullian for any (Y, ν, T ) with
h(Y, T ) > 0?
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3. Proof of the Main Theorem
Consider the inducedG-action on(X,µ) = (�× Y, λ× ν). Since(Y, ν, T ) is ergodic,
and τ : 0 → Z is onto,0 acts ergodically on(Y, ν), and hence, by Remark 3,G acts
ergodically on(X,µ).

Viewing the G-action on (X,µ) as a skew-product extension of theG-action on
(�, λ), we observe that the relevant cocycle isτ ◦ α : G×� → 0 → Z, and the action
is given by

g(ω, y) = (g · ω, T τ◦α(g,ω)y).
In particular, the flow(X,µ, {gt }) is a (τ ◦ α)-defined skew-product over the geodesic
flow (�, λ, {gt }), with (Y, ν, T ) being the fiber. From now on we shall focus on the
flow (�, λ, {gt }) and its extension(X,µ, {gt }).

Consider a Poincaré cross-section(Z, η, S) of the flow(�, λ, {gt }) and letl(z) denote
the return time to the cross-sectionZ. ThenS z = gl(z) z, and the probability measureη
on Z refers to the invariant probability measureλ on� by the formula

∫
SM

F(u, x)λ(u, x) =
( ∫

Z

l(z) dη(z)

)−1

·
∫
Z

∫ l(z)

0
F(gt z) dt dη(z).

Let us define a functionf : Z → Z by

f (z) = τ ◦ α(gl(z), z) (5)

and form a skew-product(Z ×f Y, η × ν, Ŝ) with Ŝ(z, y) = (S z, T f (z)y). Note that
the system(Z ×f Y, η × ν, Ŝ) is a Poincaŕe cross-section for the flow(X,µ, {gt }) =
(�× Y, λ× ν, {gt }). Indeed,l(z) is the return time for(z, y) ∈ Z × Y :

gl(z)(z, y) = (gl(z)z, T
τ◦α(gl(z),z)y) = (S z, T f (z)y) = Ŝ(z, y).

The idea of the proof is to show that for an appropriate choice of the cross-section
(Z, η, S) the functionf : Z → Z in (5) is asymptotically Brownian. As soon as this is
established, Theorem 8 implies that the transformation(Z ×f Y, η× ν, Ŝ) is not loosely
Bernoullianand, therefore, the flow(X,µ, {gt }) is not Bernoullian, proving the theorem.

We are left with the proof that for some Poincaré cross-section(Z, η, S) of
(�, λ, {gt }), the functionf : Z → Z, given by (5), is asymptotically Brownian. In
the two-dimensional case Proposition 6 allows us to substituteτ ◦ α by φξ on SM
which is isomorphic to�, and thus, in this case, it is enough to show that the function
h : Z → R defined by

h(z) = φξ (l(z), z) =
∫
γl(z)(z)

ξ (6)

is asymptotically Brownian. In the general case, whereSM is a factor of�, we
shall assume that the cross-section(Z, η, S) of (�, λ, {gt }) arises from a cross-section
(Z′, η′, S ′) of the geodesic flow onSM: Z = θ−1(Z′), and by Proposition 6 it is enough
to show that the functionh : Z′ → R, defined by (6) withz ∈ Z′, is asymptotically
Brownian.

Since from now on we shall be dealing only with the geodesic flow onSM (and not
with it’s compact extension to�), we shall, with some abuse of notation, denote by
(Z, η, S) the cross-section of the geodesic flow(SM, λ, {gt }).
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Thus we shall prove thath : Z ⊂ SM → R given by (6) is asymptotically Brownian,
verifying conditions (i)–(iii) of Theorem 7. In fact, conditions (i) and (ii) are satisfied by
any cross-section of the geodesic flow. The following lemma appears essentially in [5].

LEMMA 10. Let (Z, η, S) be a Poincaré cross-section of the geodesic flow onSM, ξ a
closed 1-form onM, andh : Z → R be given by (6). Then∫

Z

h(z) dη(z) = 0.

Proof. Denote byξ(v, x) the value ofξ on the tangent vector(v, x) ∈ SM. Then∫
Z

h(z) dη(z) =
∫
Z

∫ l(z)

0
ξ(gt z) dt dη(z) =

( ∫
Z

l(z) dη(z)

)
·
∫
SM

ξ(u, x) dλ(u, x).

The invariant probability measureλ(u, x) on SM is the product measure of the
normalized Riemann volume onM and the uniform distribution on the directionsu. Thus
dλ(u, x) = dλ(−u, x), while ξ(−u, x) = −ξ(u, x) for any fixedx ∈ M. Therefore the
last integral has to be 0. �

LEMMA 11. Let (Z, η, S) be any Poincar´e cross-section of the geodesic flow
(SM, λ, {gt }). Then the functionh : Z → R, defined by (6), is not a coboundary,
i.e. h(z) 6= k − k ◦ S for any measurablek : Z → R.

Proof. Supposeh is a coboundary, then so isf . One easily concludes that thef -defined
skew-product(Z×f Y, η× ν, Ŝ) is not ergodic, and thus the flow(X,µ, {gt }) is also not
ergodic. Therefore, by Moore’s theorem [12], theG-action on(X,µ) = (G/0×Y, λ×ν)
induced from the0-action on(Y, ν) is not ergodic. But that is a contradiction, since
(Y, ν, T ) was ergodic andτ : 0 → Z is an epimorphism. �

To show thath satisfies condition (iii) of Theorem 7, we useMarkov partitions, which
can be constructed for general Anosov flows (see [15] for details). A Markov partition
for the flow (SM, λ, {gt }) consists of a Poincaré cross-section(Z, η, S), and a finite
measurable partitionP of (Z, η, S), so that(P, S) is a topological Markov chain, and
the probability measureν on Z is a Gibbs measure (with respect to the return time
function l). The return time functionl : Z → R+ is bounded: 0< l0 ≤ l(z) ≤ l1 < ∞,
and Ḧolder continuous (see [15, Theorem 1]). Moreover, Markov partitions of arbitrarily
small size can be constructed, where size of the partition is defined to be

max{diam(P1), . . . ,diam(Pp), ‖l‖∞}.
For a Markov partition the process(P, S) is exponentially mixing with respect toη.

In fact, Gibbs measures satisfy an even stronger mixing property (see [1]): there exists
λ < 1, s.t. for anyn ≥ 1, anyA ∈ ∨0

−∞ S
iP and anyB ∈ ∨∞

n S
iP ,

|η(A ∩ B)− η(A)η(B)| < η(A) · η(B) · λn.
To show the Ḧolder property of the functionh with respect to(P, S), we shall use

a general property of Markov partitions of an Anosov flow: the Riemannian metric on
Z ⊂ SM induced from the metric onSM is Hölder continuous with respect to the metric
dP on Z. (In fact, dP andρ are Ḧolder equivalent.) We shall prove this in our special
setup.
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LEMMA 12. Let (Z, η, S) with a finite partitionP be a Markov partition of the geodesic
flow (SM, λ, {gt }) on a compact manifoldM with a constant negative curvature. LetdP
denote the metric onZ as in Definition 3, and letρ denote the Riemannian metric, induced
fromSM. Assume that the Markov partition is sufficiently small. Thenρ, restricted to an
open dense subsetZ0 ⊂ Z of full η-measure, is H¨older continuous with respect todP , i.e.
there existC andκ > 0, s.t.

∀z,w ∈ Z0, ρ(z,w) ≤ C · dP (z,w)κ .

Proof. We have to show that there existC and λ < 1 so that any two points
z,w ∈ Z ⊂ SM, with the property that for any|i| ≤ n both pointsSiz, Siw belong to
the sameP -atomPji , satisfy the estimationρ(z,w) ≤ C · λn.

Consider the covering mapSM̃ → SM. First we shall show that the geodesics{gt z}
and{gt w} can be lifted toSM̃, so that they stay close for|t | ≤ c · n.

If the Markov partition is sufficiently small, we can assume that the preimage of each
of the (connected) sets

P̂j =
⋃
x∈Pj

{gtx | 0 ≤ t ≤ l(x)} ⊂ SM, Pj ⊂ Z,

is a disjoint union of connected sets̃Pj · γ ⊂ SM̃ with γ ∈ 0, each of which is
homeomorphically projected ontôPj . Let us define times{ti}n−n, {si}n−n by

t0 = s0 = 0, ti+1 = ti + l(Siz), si+1 = si + l(Siw), −n ≤ i < n.

From the assumption onz,w, we conclude that

gtz, gsw ∈ P̂ji for ti ≤ t ≤ ti+1, si ≤ s ≤ si+1,−n ≤ i < n.

Choose preimages̃z and w̃ of z, w, lying in the same connected̃Pj0 · γ0, which maps
homeomorphically ontoP̂j0. Then lifting P̂ji to SM̃, one by one starting fromi = 0, we
obtain connected homeomorphic preimagesP̃ji · γi ⊂ SM̃, with γi ∈ 0, so that

gt z̃, gsw̃ ∈ P̃ji · γi, for ti ≤ t ≤ ti+1, si ≤ s ≤ si+1,−n ≤ i < n.

Let a denote the size of the partitionP . Thenρ(gti z̃, gsi w̃) < a in SM̃, where|ti | ≥ |i|·l0
and |si | ≥ |i| · l0, for all |i| ≤ n. Since{gt }-orbits are global geodesics inSM̃, we have
|ti − si | < a, for |i| ≤ n, and hence, denotingT = n · l0, we obtain

ρ(gt z̃, gt w̃) < 3a for |t | ≤ T . (7)

The hyperbolic structure ofSM̃ implies that any two geodesic lines diverge
exponentially fast in (at least) one of the two directions. More precisely, there exist
C1 andk > 0 so that (7) implies that there existst0 with |t0| ≤ 3a, s.t. for |t | ≤ T − 3a,

ρ(gt+t0 z̃, gt w̃) ≤ C1 · e−kT · min{ρ1, ρ2} ≤ C1 · 3a · e−kl0n, (8)

whereρ1 = ρ(gT+t0 z̃, gT w̃) andρ2 = ρ(g−T+t0 z̃, g−T w̃). In other words, the geodesic
lines {gt z̃} and{gt w̃} in SM̃ (and hence{gtz} and{gtw} in SM) areexponentiallyclose
as setsin terms ofn. We claim that, in fact, thepointsz,w are exponentially close.
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By the construction of Markov partitions (see [15]), the setsPj have a special
description as unions of leaves of contracting (or expanding) foliations. In the case of a
constant negative curvature, each of the setsPj is a compact subset of a codimension 1
smoothsubmanifold inSM, andPj is the closure of its relative interior IntPj . We take
Z0 to be the union of all IntPj .

Sincez,w are points of intersection of the geodesics{gtz} and{gtw} with IntPj0, and
since the geodesic flow is uniformly transversal toPj0, we conclude from (8) that for
someC2,

ρ(z,w) ≤ C2 · e−kl0n = C2 · λn, whereλ = e−kl0 < 1,

completing the proof of the lemma. �

Remark 13.The above argument also shows that the return time functionl : Z0 → R+
is Hölder continuous with respect todP . Indeed, l(z) and l(w) are the lengths of
two exponentially close geodesic segments, cut by transvere smooth sets IntPj0, IntPj1.
Finally, we remark that in the case of generalC2-smooth Anosov flows, the setsPj are
not necessarily smooth, but are still Hölder.

We can now complete the proof of the theorem. The functionh : Z → R is given by

h(z) =
∫ l(z)

0
ξ(gtz) dt,

where the functionξ(·) is Lipschitz onSM and bounded, whilel(z) is Hölder. We
conclude thath is Hölder with respect to the Riemann metric, and therefore, by
Lemma 12,h satisfies the Ḧolder condition with respect to(P, S). This completes
the proof of the Main Theorem. �

Remark 14.Guivarc’h in [6] describes a method for exhibitingK-flows that are not
Bernoullian that is somewhat different from that of [16]. He also follows the proof of
[10], but avoids the machinery of asymptotically Brownian processes. One can also carry
out a proof of our result based on his approach, but we preferred to base ours on the
more explicit statements in [16].

4. The K-property
The following theorem is a special, but typical, case of a result due to Dani [2].

THEOREM 16. LetG = SL2(R) act ergodically on the probability space(X,B, µ). Then
the flow(X,µ, {gt }) is a K-flow.

Proof. We will show that for everyt0 6= 0, the transformationT = gt0 is a K-
automorphism of(X,µ). It is enough to construct an increasing sequence of finite
measurable partitionsP (n) of (X,B, µ), s.t.B = ∨

n P
(n), but all theP (n) have a trivial

tail, that is any measurable set in

P (n)∞ =
∞∧
k=1

∞∨
i=k
T iP (n)



On the ergodic properties of Cartan flows 1381

hasµ-measure 0 or 1. PartitionsP (n) are constructed using the horocyclic flow

hs =
(

1 s

0 1

)
. (9)

By the classical theorem of Ambrose–Kakutani, the flow(X,µ, {hs}) can be represented
as a special flow under a functionl : X0 → R+, with a base(X0,B0, µ0, T0). Let Q(n)

be some increasing sequence of finite measurable partitions ofX0, generatingB0. Points

(x, s), (x ′, s ′) ∈ {(x, s) | x ∈ X0,0 ≤ s < l(x)} = X

are defined to belong to the same atom ofP (n) if x, x ′ lie in the same atom ofQ(n), and
k2−n ≤ s, s ′ < (k + 1)2−n.

We claim that forµ-a.e.x ∈ X, the pair of pointsx andh1x is not separated byP (n)∞ .
This will complete the proof, since by Moore’s theorem [12] h1 is ergodic on(X,B, µ),
implying that the measurable partitionP (n)∞ is trivial.

The relationg−t hsgt = he−2t s in SL2(R) implies that

T j (h1x) = hλj (T
jx) with λ = e−2t0 < 1,

and thus:
(i) the pointsT jx, T j (h1x) belong to the same{hs} orbit for all j ; and
(ii) the {hs}-distance betweenT jx andT j (h1x) decays exponentially withj ≥ 0.
Therefore, the Borel–Cantelli lemma implies that for anyx0 ∈ X0 and a.e. 0≤ s < l(x)

the pointx = hsx0 has the property that the pair of pointsT jx, T j (h1x) lies in the same
atom ofP (n) for all, but finitely many,j ≥ 0. Sincedµ = dµ0 ds, we conclude that for
µ-a.e.x ∈ X the pointsx andh1x are not separated byP (n)∞ . �
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