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On the multiplicative ergodic theorem 
for uniquely ergodic systems 

Alex FURMAN 

ABSTRACT. - We consider the question of uniform convergence in the 
multiplicative ergodic theorem 

for continuous function A : X -+ GLd(R), where (X, T) is a 
uniquely ergodic system. We show that the inequality lim SII)~~-~, 71-l . 
log JJA(Tnwlz) ... A(x)11 < A(A) holds uniformly on X, but it may 
happen that for some exceptional zero measure set E c X of the second 
Baire category: lim inf,,, n -I . log IIA(T”-l:c) . . A(x)11 < A(A). We 
call such A a non-uniform function. 

We give sufficient conditions for A to be uniform, which turn out to be 
necessary in the two-dimensional case. More precisely, A is uniform iff 
either it has trivial Lyapunov exponents, or A is continuously cohomologous 
to a diagonal function. 

For equicontinuous system (X, T), such as irrational rotations, we identify 
the collection of non-uniform matrix functions as the set of discontinuity 
of the functional A on the space C(X, GL2(R)), thereby proving, that the 
set of all uniform matrix functions forms a dense Gn-set in C(X, GL,(IW)). 

It follows, that M. Herman’s construction of a non-uniform matrix 
function on an irrational rotation, gives an example of discontinuity of 
A on C(X,GL2(1W)). 

R&uM& - Nous considkrons la question de la convergence uniforme 
dans le thCor&me ergodique multiplicatif 

lim 1 . log (jA(T’“-lx) . ’ A(.~)11 = h(A) 
T!+CKJn. 
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798 A. FURMAN 

pour des fonctions continues A : X ---f GL,1(lR), oil (X, T) est un systeme 
uniquement ergodique. NOW montrons que l’inegalite lim sup,,,, 7l-l 
log J(A(T”-‘2) . . . A(s)/1 < A(A) a lieu uniformkment sur X, mais 
il peut arriver que pour des ensembles exceptionnels de mesure nulle 
E 2 X de la seconde categoric de Baire, nous ayons liminf,,, n-l . 
log jIA(T”-lx). . . A(x)ll < A(A). U ne telle fonction A est dite non- 
uniforme. 

Nous donnons des conditions suffisantes pour que A soit uniforme; 
ces conditions sont aussi necessaires dans le cas bidimensionnel. Plus 
precisement, A est uniforme ssi son exposant de Lyapunov est trivial, ou 
A est continuement cohomologue a une fonction diagonale. 

Pour les systemes Cquicontinus (X, T), comme les rotations 
irrationnelles, nous identifions la collection des fonctions matricielles 
uniformes a l’ensemble des discontinuites de la fonctionnelle A sur l’espace 
WC GL2(W P rouvant ainsi que l’ensemble des fonctions matricielles 
uniformes forme un ensemble Gb dense. 

11 s’ensuit que la construction de M. Herman d’une fonction matricielle 
non uniforme sur les rotations non rationnelles, donne un exemple de 
discontinuite de A sur C(X, GL2(IW)). 

1. INTRODUCTION 

Let (X, II, T) be an ergodic system, i.e. T is a measure preserving 
transformation of a probability space (X, cl) without nontrivial invariant 
measurable sets. The following theorem is a non-commutative generalization 
of the classical Pointwise Ergodic theorem of Birkhoff: 

MULTIPLICATIVE ERGODIC THEOREM (Furstenberg-Kesten, [2]). - Let A : 
X + GLd( W) be a measurable function, with both log 11 A(x) 11 and 
log llA-‘(x)ll in L1(p). Then there exists a constant A(A), s.t. 

lim 1 log IIA(T”-lx). . . A(z)11 = A(A) n+ccJn. 

for p-a.e. x E X and in L1(p). 
This result follows from the more general 

SUBADDITIVE ERGODIC THEOREM (Kingman, see [6], 151). - Let {fiL} 
be a sequence in Ll(X,p), f orming a subadditive cocycle, i.e. for p- 
ae. z E X: fn+m(z) 5 fTL(x) + f,(T”z) for n,m E N. Then there 
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exists a constant A(f) 2 -00, so that for p-almost all x and in Ll(p): 
lirri rL--tmn-l . f&z) = A(f). Th e constant n(f) satisjies: 

We shall consider the situation, where (X, p. T) is a uniquely ergodic 
system, i.e. X is a metric compact, T : X 4 X is a homeomorphism with 
h being the unique T-invariant probability measure on X. In this case for 
any continuous function f on X the convergence 

holds everywhere and uniformly on X, rather than jr-almost everywhere 
and in LP(p), as it is guaranteed by Birkhoff’s ergodic theorem. 

In this paper we consider the question of everywhere and unijorm 
convergence in the Multiplicative and Subadditive ergodic theorems, under 
the assumption that the system (X, p, T) is uniquely ergodic and all the 
functions involved are continuous. 

This work was stimulated by the examples of M. Herman [4] and 
P. Walters [I 11, who have constructed continuous functions A : X - 
SL,(W) on a uniquely ergodic system (X, I/,; T), s.t. for some non-empty 
E c X with p(E) = 0: 

lim%f ; log IIA(T”-‘2:) . . . A(x)11 < A(A), b’:r E E. 

2. PRELIMINARIES 

In this section we summarize the assumptions and the notations which 
are used in the sequel. 

pd-l denotes the (d-1)-dimensional real projective space. The projective 
point defined by u E R” \ (0) is denoted by 9% Given A E GLd(R), we 
write iI for the corresponding projective transformation. For ii, E P”-‘, 
6, E Rd denotes either of the unit vectors in direction U; although Ir. is not 
unique, the norm (IA ~2 11 is well defined for any A E GLd ( W). The projective 
space pd-l is endowed with the angle metric 0, given by 

Q(G., w) = cos-l pi: G)l, 7%. 12 E P-l 
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800 A. FURMAN 

Any function A : X -+ GLd(R) uniquely defines a cocycle A(n, :I.), which 
is given by: 

. . . A(z) n>O 
n=O 

A-l(T”z) ... A-l(T?z) n < 0 

This formula gives a l-l correspondence between functions A : X -+ 
GLd(R) and GLd(W)- va ue cocycles, i.e. functions A : Z x X --+ GLd(W) 1 d 
satisfying 

A(n + m, z) = A(m, Tnz) . A(n, z), n, m E Z II: E X. 

Our main tool will be Oseledec theorem [lo], which describes the 
asymptotics of matrix products applied to vectors. The reader is referred to 
[lo] and [l] for the complete formulation and proofs. We shall be mostly 
interested in the two-dimensional case: 

OSELEDEC THEOREM ([lo]). - Let (X, p, T) be an ergodic system, and 
A : X + GLa(R) be a measurable function with both log 11 A(z) 11 and 
log \lA-‘(z)l/ in L1(p). Then there exists a T-invariant set X0 c X, with 
p(Xo) = 1, and constants X1 1 X2 with the properties: 

If X1 = X2 = X then for any IC E X0 and any u E R2 \ (0): 
lim n-+*m n-l . log 11 A(n, z)uII = X. 

If X1 > X2 then there exist measurable functions ~1, ~2 : X0 + P’, so 
that for u E R2 \ (0): 

u # u&IT) + lim n-l 
n++CC . log llA(n,z)ull = X1, 

fi # G&z) =+ lim n-’ . log llA(n, z)u[] = X2. 7L’--03 

The functions f&(z) sati@ A(z)&(z) = &(Tz) for z E X0, and the 
constants X; sati&: 

Xi = A(A) and Xi + AZ = 
s 

log ldet A(s) ( d,u. 
X 

REMARK 1. - It follows from the proof of the theorem (cf. Cl]), that at 
each 2 E X, for which both n-l . log llA(n, z)]] and n-l . log ldet A(n, z)I 
converge, the limit lim,,,n-’ . log IIA(n,z)ull exists for every u E 
ia2 \ (01. 
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From this point on (X, p, T) is assumed to be a uniquely ergodic 
system, i.e. T is a homeomorphism of a compact metric space X, and 
/L is the unique T-invariant probability measure on X. In some cases we 
shall assume also, that (X, T) is minimal. 

The space of continuous real valued functions with the max-norm is 
denoted by C(X). The space of all continuous functions X -+ GL;j(R) 
is denoted by C(X,GLd(W)). For matrices n/r,, iViz E GLd(W) we use 
the metric p(M1,Mz) = IlMi - iVz11 + I1Mi-l - lV1;lll. For functions 
A, B E C(X, GLd(R)) we use (with some abuse of notation) the metric 
p(A, B) = maxzEAy {p(A(:c), B(z))}, which makes it a complete metric 
space. 

Given a function A : X -+ GLd(R) we consider an il-defined skew- 
product (X x PdW1, T.A), given by 

- 
T&r:, a) = (Tz, A(x)u), z E x, u E p”-l. 

Note, that TJi(n:, U) = (Tlbx, A(n,x)ti) for 71 E Z. 
TWO functions A, B E C(X, GLd(R)) and the corresponding cocycles 

A(72, z), B(n, z) are said to be continuously (measurably) cohomologous, if 
there exists a continuous (measurable) function C : X --+ GL,r(R), so that 

A(z) = C-l(Tz) . B(z) . C(x) 

and thus 

A(n, z) = C-‘(T?) . B(n, x) C(x) 

Obviously, continuously cohomologous functions (cocycles) A, B have the 
same growth A(A) = A(B), and the same pointwise asymptotics for 
every z E X. Note also, that considering everywhere and/or uniform 
convergence in the Multiplicative Ergodic.Theorem, we can always reduce 
the discussion to the case ldet A(x)/ = 1, replacing A E C(X, GLd(R)) 
by A’(z) = ldet A(z ‘id . A(z). In this case TA, = TA. If A and B are 
continuously (measurably) cohomologous, then the systems (X x Pdel, T,A) 
and (X x Pdpl, TB) are continuously (measurably) isomorphic. 

REMARK 2. - All the statements and proofs in the sequel hold when 
the space C(X, GLd(R)) of continuous functions A : X --f GLd(R) is 
replaced by continuous SLd ( W)-valued functions, or continuous functions 
satisfying ldet A(z)1 E 1. 
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802 A. FURMAN 

3. ON THE SUBADDITIVE ERGODIC THEOREM 

THEOREM 1. - Let {fTt} b e a continuous subadditive cocycle on a uniquely 
ergodic system (X, p, T), i.e. .fn E C(X) and fn+m(z) < fil(x)+fm(Tnx) 
for all 5 E X. Then for every x E X and uniformly on X: 

limsup Ifn(:r) I: R(f). 
n+o= n (1) 

However, for any F, set E with p(E) = 0, there exists a continuous 
subadditive cocycle {fn}, such that 

limsw +fn(x) -c A(f), x E E. 

ProoJ - We follow the elegant proof of Kingman’s theorem, given by 
Katznelson and Weiss [5]. Let us fix some t > 0. For x E X, define 
n(x) = inf{ 12 E N 1 fn((5) < n . (R(f) + E) }. For a fixed N, consider 
the open set 

AN = {x E XI n(x) 2 N} = G ( x E X 1 &(x) < n . (h(f) + E) }. 

By Kingman’s theorem limn+ca ,u(A,) = 1. Choose N so that I > 
1 - E. 

Now let US fix some x E X, and define a sequence of indexes {nj } 
and points {zj} by the following rule. Let z1 = x, nl = n(x), and for 
j > 1 let nj = n(xj) if x E A N, and set ni = 1 otherwise. Always set 
xj+l = Tn,xj. Note that 1 5 nj 5 N. 

Consider index M > N.l]fi]loo/e, and letp > 1 satisfy nr+. . .+nPel < 
M < nl + . . . np. Denote K = M - (nl + . . . + np-l) 5 N. Now, using 
subadditivity, we have 

By the definition of nj: 

fn, (xj> I nj . (A(f) + ~1 . 1~~ (xj) + II.f~ll~ . ~x\A, (xj). 

Thus, estimating from above, we obtain 

~&J(X) 2 (A(f) + E) + tlfillcc . $ 5 lX\A,(Tix). + llflIIcc. ;. 
1 
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We claim that for M large, the second summand is uniformly bounded 
by O(E). Indeed, the set X \ A N is closed and has small measure: 
/1(X \ AN) < t. By Urison’s Lemma, there exists a continuous function 
g : X -+ [0, l] with g]zy\AN z 1 and 

Therefor for 1\/1 sufficiently large, uniformly on X: 

Thus for sufficiently large 1M, for all n: E X: l/n . ,fii (x) < A(f) + O(r) 
for all n > M. This proves (1). 

For (2), let E = U Ek c X, where each Ek is closed and 
p(Elc) = 0. There exist continuous functions gk : X --+ [0, l] with 
gk ]E,, E 1 and p(gk) 5 2Zkm2. Define continuous functions { fn}, by 
f&) = - c;:; c;=,‘gk(TcLg. 0 ne can check that { fn } is a subadditive 
cocycle, with 

But for any 2 E E, limsup,,, n-i . fn (z) < - 1. This completes the 
proof of the Theorem. 0 

COROLLARY 2. - Let (X, p, T) be a uniquely ergodic system, and let 
A : X -+ GLd( R) be a continuous function, then for every .?: E X and 
uniformly on X: 

limsup I log llA(n~x)jI < h(A). 
n-oo n 

Proof: - Take fn(z) = log ljA(n, z)]], and apply Theorem 1. 0 

4. ON THE MULTIPLICATIVE ERGODIC THEOREM 

DEFINITION. - A function A E C(X, GLd(R)) (and the corresponding 
cocycle A(n,x)) is said to be: 

0 uniform if lim,,,,n- l .log llA(n: z)]] = A(A) holds for every :I’ E X 
and uniformly on X. 
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l positive if for all all the entries of A(z) are positive: A,,j(x;) > 0 
for all x E X. 

l eventually positive if for some p E N the function A(p, x) is positive. 
l continuously diagonalizible if it is continuously cohomologous to a 

diagonal function: A(z) = C-l(Tz) . diag(ebl(“), . . , ebd(,‘)) . C(z) 
for some C E C(X,GLd(lW)) and br,. . . , b,l E C(X). 

Continuously diagonalizable cocycles with X1 > Ad are usually referred 
to as uniformly hyperbolic. We do not use this term. 

THEOREM 3. - Let (X, p, T) be a uniquely ergodic system, then each one 
of the following conditions implies that A E C(X, GLd(lW)) is uniform: 

1. A is continuously diagonalizable. 
2. A has trivial Lyapunov$ltration, i.e. Xr = . . . = Ad. 
3. A is continuously cohomologous to an eventually positive function. 

In dimension d = 2 these conditions are necessary, as the following 
Theorem shows: 

THEOREM 4. - Let (X, p, T) be a uniquely ergodic and minimal system. 
If A E C(X, GLz(R)) d oes not satisfy l-3 of Theorem 3, then there exists a 
dense set E c X of second Baire category, s. t. for all z E E: 

lim’,“f k log llA(n,z)I\ < limsup 1 log ljA(~,z)II 5 A(A). 
n+cc n (3) 

Moreover, if A has a non-trivial Lyapunov filtration (i.e. X1 > X2), then 
A is continuously diagonalizable iff it is continuously cohomologous to an 
eventually positive function. 

In the proof of Theorem 4 we shall need the following Lemma, which 
is essentially due to M. R. Herman (see [4]): 

LEMMA 3. - Let (Y, S) be a minimal system and let 4 E C(Y) be a 
continuous function. Then the ergodic averages n-l .Cz-’ 4( Siy) converge 
for every y E Y iff all S-invariant probability measures v on Y assign the 
same value to 4. More precisely: 

1. Zfu($) = c for all S-’ mvariant probability measures u, then 

&IJ; . ne +(Tiy) - c[I, = 0 
0 

(4) 

2. If there exist S-invariant probability measures ~1, ~2 with VI(~) = ~1 < 
c2 = z4(45), then there exists a dense Gg-set E c Y, s. t. for any y E E: 

n-1 

lirrizf k C 4(Siy) 5 cl < c2 2 limsup 1 ae $(9y). 
0 n+cc 7% o 
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Proofi - Case 1. We claim that (4 - c) belongs to the 1) . I/,-closure of 
the space V = {II, - @OS 1 $ E C(Y)}. Indeed, otherwise by Hahn-Banach 
theorem there would exist a functional v E C(Y)*, with V c Ker(v) and 
~(4 - c) # 0. But S-invariant probability measures span all V, annihilating 
V, and we get a contradiction to the assumption in 1. Therefore, given 
t > 0, there exists II, E C(Y) with jj(@ - c) - ($ - (i, o S)ljoc < c, and 
for large n,: 

II - 71 1 n-1 C$ osi-c 
0 II 

5 
cc 

$ - 7) 0 S"(I + f < 2f. 

This proves (4). 
Case 2. Replacing, if necessary, vi by extremal S-invariant points ILL, we 

obtain S-ergo&c measures bl, pf2 with pi($) 5 cl < c2 < /~a (4). Given 
F > 0 and N > 1, let: 

These sets are closed, and we claim that W,(N, F) have empty interior. 
Indeed, assume Wi (N, E) contains an open non-empty set U, and take a /L~ - 
generic point yl. Then for sufficiently large M the ergodic averages satisfy: 
M-l . -yJy’ qqSiy1) < ci + t. By minimality, some iterate S”y, E 6’ 
and, for sufficiently large M: 

Xl-1 nr-n-1 

(A4 - my. c f+qSiyl) = (A4 - rn-1. c qqs Y'y1) 

7" 0 

is less than cl + t, contradicting the assumption U C IV1 (N, 6). The same 
argument applies to W2 (N, E). We conclude that E = Y \ U,, WI ('I). 71~ ' ) pi 

kt$(n,‘d) d is a ense G&-set in Y, as required. 

LEMMA 4. - Let (X, ,LL, T) be a uniquely ergodic invertible system, and 
suppose A : X + GLa(5I) satisfies X,(A) > x,(A). Then the system 
(2, S) = (X x P’, T4) h as exactly two ergodic probability measures ~1 I. /I,:! 
qf the form: 

I F(z, a) dpLi(z, ii) = s F(x, Ui(Z)) dp(x), F E C(X x P’). 
* .I- x P ’ x 

where ,ii,; : x 4 Pl, i = 1,2 is the Oseledec jiltration (1). 
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ProoJ: - Since p-a.e. ti;(Tz) = il(z)U,;(z), the measures /L, are S- 
invariant, and thus are S-ergodic. Suppose now that 11 # ,~a is an S-ergodic 
measure. We claim that v = 1~~. The projection of 7) on X is T-invariant, 
and hence coincides with p. Let {vz}, o: E X be the disintegration of v 
with respect to p, i.e. v = s V, &(:I;). Then vrr = A(:c)v, and, since 
71 I ~4, 71&(~)) = 0 for CL-a.e. :I; E X. We claim that for any .‘): E X0, 
the graph of any function u # %1,2(:1:) “converges to” the graph of Gsl (z) 
under T<;, namely: 

(5) 

Define the sets V$ = {( 5,~) ( B(ti,&(z)) < 6) and I$, = 2 \ r/;,h for 
1: = 1,2. Then, using (5) and the fact that lirn~+c u(V2:,) = 1, we get 
lim+a linlrL--tm v(T;(V&) n VI,*) = 1 and, therefore, 7/{ (2, U1(x)) 1 :c E 

X} = 1, so that v = v1 q . 

LEMMA 5. - Let A, E GLd(R) b e a sequence of positive matrices, 
bounded in the sense that there exists some 6 > 0, s.t. 6 < (ArL)i,j < 6-l 
for all n 2 1 and 1 5 i, j 2 d. Let a c Rd be the simplex 

and & the corresponding set in I”‘-‘. Then there exists a unique point 
ti E pd-1. 

{ii} = fi A, ‘. . il,n 

Proo$ - The sets a and a are naturally identified. With this identification 
& are projective transformations of the affine space {w, E R” I C: U, = l}, 
which preserve the four points cross ratios 

provided that U, w, UI, z lie on the same line. Now let K = n K,, where 
K, = AI . . . &d form a descending sequence of convex compacts. 
Assume that K is not a single point, and let u # w be two extremal points of 
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K. Let w,! 2, be the intersection of the line (11, V) with the boundary i3K,, 
Let w;, z:, J u:&, VI E & be the preimages of %u,, ,z,: U, u under A, . . A,, . 
Then TN;,; zk E ad, but z&, VA E &+I a. The S-boundness of JI,,+~ 
implies that A ,+I& are uniformly separated from a&. Thus the cross ratio 
[ui, : 7(, : ’ UI.~,: ziL] is bounded from 0 (and cc). On the other hand w,, -+ 71 
and z,, 3 II implies [u; U; IU,,; x.,] --+ 0, causing the contradiction. q 

Proof of Theorem 3. - Case I follows from the classical one-dimensional 
(commutative) case. 

Case 2. Reducing to the case ]det A(x)/ E 1, we observe that the 
assumption is A(A) = X1 = . . . = Ad = 0. Obviously for every :c E Ax 
and n. E Z: log (jA(n,, x)/I 2 0, so Corollary 2 implies that A is uniform. In 
this case the result can also be deduced from Case 1 of Lemma 3. Indeed. 
considering the function 4 E C(X x I”) defined by 

4(x;, u) = log IIA(:~)fi,jj ((j) 

we observe that for any TA-invariant probability measure V: 7/($) = 0 

(indeed, such D projects onto CL, hence the projection of the set of I/- 

generic points intersects the set X0 of regular points in Oseledec theorem). 
Therefore we deduce that n-l . log ([A(~L: n:)G]] -+ 0 uniformly on X x PI. 

Case 3. Obviously, it is enough to consider the case, that il is 
actually positive, i.e. A(z)i;j > 0 for all D’ E X. Let A C BB” be as 
in Lemma 5. Then T-4(X x A) c (X x A), and we claim that the 
compact set Q = fl,“=, TAT(X x A) is a graph of some continuous function 
u : x 3 a c P-l, which is called in the sequel the posirive core of 
A(z). indeed, for any fixed 5 E X the fiber Q, of Q above :I: is given by 

and, by Lemma 5, Q, consists of a single point ‘11(z). Since Q = { (:c. G(:~J)) 1 
II: E X} is closed, the function G(Z) is continuous, and Td.I-invariance of Q 
implies ti(Tz) = A(z)zl(z). The measure ,5 = ,/ 6,(,,, dl~(:c) is the unique 
Tz4-invariant on Q, hence the sequence 

converges uniformly on X. But the uniform positivity of A(z) and U(Z) 
implies that for some c > 0: llA(n, x)/I 2 c. I(A(71, :zz)ii(x)jl < c. ((A(n. :~-)li, 
and therefore A is uniform. 0 
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Proof of Theorem 4. - Assume X1( A) > X2(A). By Lemma 4, there exist 
two TA-invariant measures pl, pz on 2 = X x P’. Consider the topological 
structure of (2, TA). We claim that there are two alternatives: 

(i) There is a unique T-A-minimal set Y c 2, supporting both pl and 
~2, or 

(ii) There exist two Z’A-minimal sets YI, Y2 c 2, supporting pl, ~2 
respectively. Moreover, the measurable functions { 21; (z)}, defining the 
Oseledec filtration, are continuous in this case, and Y, have the form 
Yi = { (z, Gi(Z)) ( n: E x }, i = 1,2. 

Let Y be a TA-minimal subset in 2. If (Y, TA) is not uniquely ergodic, 
then by Lemma 4, (Y, TA) supports both ~1 and ~2. The function 
4 E C(Y), defined by (6), satisfies PI(&) = X1 > X2 = /Lo. Thus, 
by Lemma 3, there exists a dense Gs-set E c Y of points, where 
l/n c$(Ti(z,ti)) = l/n . log j[A(n~x)CIj diverges. By Remark 1, for 
any II E X in the projection of E to X, the sequence l/71, . log ((A(n, %)\I 
diverges and, using Corollary 2 we deduce (3). 

Now assume, that (Y, 7’~) is uniquely ergodic, and therefore supports 
either ~1 or ~2. We can assume ldet Al = 1, and thus X = X1 > X2 = -X. 
Considering, if necessary T-l instead of T, we can assume that (Y; !&) 
supports pl. 

We claim that Y is a graph of a continuous function X --f I”. Suppose 
yr, ya E Y have the same X-coordinate ZO, i.e. yi = (~a, v;). Then for 
any n > 0: 

Since pL1 (4) = X1 > 0 and (Y, TA) is uniquely ergodic, we deduce that 
the right hand side converges uniformly to 0, and therefore 1/l = ‘~2. This 
shows that Y is a graph of a function X + P1 (note that by minimality 
of (X, T), Y projects onto X). This function has to be continuous for its 
graph - Y - is a closed set. Since the graph of the function Ur(z) (defineda 
by (1)) is contained in Y, we conclude that ti,l : X --+ P1 is continuous, 
and thus Y = { (z,7L1(z)) ( IC E X }. 

We claim now that ~2 is also supported on a graph of a continuous 
function. Let fi : X --) P1 be any continuous function with V(Z) # ?&(z) 
for all z E X. Then there exists continuous C : X -+ GL2(R) with 
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J&t C(z)/ E 1, s.t. C(x) takes {~i(x),11(:r:)} to the directions of the 
standard basis {ei, Ez}, so that 

where (I, b E C(X) with ,u(u) = Xi > 0. We claim that the T.;“-image of 
the graph of G(Z), namely the set 

T,-” {(:L.,21(z)) 1 1: E X} = {(x, ?i,,(:r)) / 3 E X}. 

converges uniformly to the graph of am, which is thereby continuous. 
Indeed 

and, more precisely, V,(x) is spanned by the vector C-‘(x) w,, (3:) 
( 1 

l _ 

where 

Since (X, ,u, 7’) is uniquely ergodic, and u(x) is continuous with /l,(n) > 0, 
we deduce that w,(x) converges uniformly to a continuous function 

111 : X -+ R, and the continuous function U(Z) = C-‘(x) ?U(:c) 

( ) 
1 satisfies 

A(:r:)G(x) = ti(Tz) and a(z) # Ui(.x). The graph of ~(2;) is !&-invariant, 
and has to support ti2, so U*(Z) = U(Z) is continuous. Therefore alternative 
(ii) holds, in which case A is continuously diagonalizable and, hence, is 
uniform. 

We are left with the last assertion. If A is eventually positive and has 
positive growth (i.e. X1 > A,), then by Theorem 3, A is uniform, and thereby 
continuously diagonalizable. We shall prove now the other implication. 
We can assume ldet A(z)1 z 1, and A(z) = dia,g(e”(,“, e-“(,r)) with 
a E C(X) and /L(U) = A(A) > 0. Let 

V,)(Z) E e1 + e2 and ‘11, (2) = A ( R . T -” :c)u~, (:r ) 

wo(2) E el - e2 and w,(x) = .4(n, ~-“z)~ua(.l:) 

then &(x) + el and G,(Z) --+ ~1 uniformly on X, and therefore, for 
sufficiently large p and for all 2 E X: ~(u,(z).c~) < B(?io(x),ei) and 
S(zi&(x). El) < I~(w,J(z). ~1). Changing the coordinates C : (el + e2) t-+ ei 
and C : (cl - e2) H e2, one easily checks that C . A(p. .I:) . C-l becomes 
positive. 0 
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5. CONTINUITY OF THE UPPER LYAPUNOV EXPONENT 

In this section we consider the question of continuity of the functional 
A : C(X,GLd(R)) -+ R and connect it with uniform functions in 
C(X, GLd(R)). More precisely: 

THEOREM 5. - Let (X, p, T) be a uniquely ergodic system. Thefinctional 
A is continuous at each uniform A E C(X, GLz(R)). 

If {T”} are equicontinuous on X, then the functional h is discontinuous 
at each non-uniform A E C(X, GLd(R)), d > 2. Moreover, if such non- 
uniform A takes values in a locally closed submanifold L 2 GLd(R) then 
the restriction of A to C(X, L) is discontinuous at A. 

Therefore, the example of non-uniform function A E C(X, GL@)) on 
an irrational rotation, constructed by M. Herman [4], gives the following 
negative answer to the question on continuity of A on C(X, GLd(W)) 
arised in 1’71: 

COROLLARY 6. - There exists an irrational rotation (X,T), s.t. the 
functional A is discontinuous on C(X, GLz(W)). 

COROLLARY 7. - For equicontinuous uniquely ergodic system (X,T), 
the set of all uniform functions in C(X,GLd(R)), d >_ 2 is a dense Gs- 
set in C(X, GLd(R)) and in C(X, L) f or any locally closed submanifold 
L C GL@). 

Proof. - The functional A is a pointwise limit of continuous functionals 
A, on C(X, L), defined by 

Since A, are continuous on C(X, L) with respect to the metric p, the 
non-uniform functions, which are points of discontinuity for A, form a set 
of the first Baire category. 0 

Proof of Theorem 5. - Let A be a uniform function in C(X, GLz(R)), 
and take Al, -+ A. By Theorem 4, either A has trivial Lyapunov filtration 
(Xl = X,), or A is continuously cohomologous to an eventually positive 
function. 

Suppose A satisfies X1 = X 2, and assume that Idet AJ s ldet AkJ z 1. 
Then A(A) = 0, and (det Akl 3 1 gives A,(Ak) >_ 0. On the other hand, 
since A(Ak) = inf,A,(Ak) and A, are continuous, A is always lower 
semi-continuous, i.e. 

lim p(Ak, A) = 0 + 
k+cc 

lim sup A(Ak) 2 A(A). 
k+cc 
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Therefore ‘4 is continuous at A. 

Now assume that B(p, z) = C(Pz) . A(p, :E) . C-‘(z) is positive, for 
some continuous C : X --+ GLd(R) and p 2 1. Then for large k, the 
functions Bk(z) = C(Trc) . Am . C-l(z) are close to B(z), and thus 
B&I, z) are positive. Moreover, the positive core a?‘(.~), corresponding 
to Bk, become arbitrarily close to the positive core of B, which is 
1~1(z). Therefore, considering the functions &(z, U) = log ((Bk(x)iill and 
$(z,ti) = log/B(x)&II, we have & -+ 4 uniformly as k --+ cc, and 
therefore 

A(Bk) = c&(x, $‘(x))dp(z) -+ 
.I .I 

qb(z, ?il(rc)) d/~(x) = A(B). 

This proves the first assertion. 
Now assume that (2’“) are equicontinuous on X. Let A E C(X, L), 

L C GLd(R), d 2 2 be a non-uniform function. Corollary 2 implies that 
there exists a point 20, and a constant X’ < A(A), so that 

(7) 

Given any 6 > 0, we shall construct a continuous B : X -+ L with 
p(A. B) < F and A(B) < X’ < A(A). 

The idea of the proof is to construct such B on a large Rohlin-Kakutani 
tower, using values of A at segments of the x0 trajectory. This ensures that 
B is close to A, and at the same time has smaller growth. 

il is continuous on X, so there exists S1 = 01(f) > 0 s.t. 
~M444) < P F rovided d(zl, :r2) < S1. The assumption that (2’” } 
are equicontinuous, implies that there exists 62 = &(S,), so that 

Observe that if .ZO satisfies (7), then so does any point T~Lz~~ on its orbit, 
and the minimality of (X, T) implies, that there exists some (finite) set 
Q C {T”zo} C X which is &-dense in X, and such that for each Q E Q 
there exists an integer n(q) 2 1, satisfying: 

-!-- log II&(s>~ dll < A’. n(q) 
Let NO = max,EQ{n(q)}, and A” = n=,E~{ll4q).log IIA(n(qL q)llI < 
A’. Denote 
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Choose very small rl > 0, and very large integers N2 >> Nr B No, so that 

2 . No 

NI 
. M + $ . M + Q . M < A’ - A”. (9) 

Finally, construct an (NZ, v)-Rohlin-Kakutani tower in (X, p, 7’): k = 
Up-’ T”K c X, where {TnK}~~;l are disjoint sets and CL(~) > 1 - 71. 
Let us consider a partition of the base K into elements K; of sufficiently 
small size, so that K = U: K, and for each 0 5 n < NZ and 1 2 i 5 k:: 

diam(T’“K;) < Sr/2. (10) 

Without 10s~ of generality, we can assume that K and all Ki are closed 
sets. Let us choose a point p; in each of K;. 

We shall start by defining the values of B at the points {T”pi ) 0 5 n < 
Nz, 1 5 i 5 k}. We shall choose points qn,i which are Sr/2-close to T”yi, 
and will define B(T”p;) = A(q,,i). Fix some 1 < i 5 k, choose a point 
qa,i E Q which is 6 z-close to pi, denote 7~ = TZ(~~,~), and set qn.i = T”qo,; 
for all 0 5 n < nr. Now choose qnr ,i E Q to be &-close to T”lp;, denote 
n2 = n(qTal,i) and define qn,i = T”-“1 qn,,i for all nl 5 n < n2. Continue 
this procedure till n = N2 - 1, and do the same for each of 1 2 i 5 t?. 

We observe, that by (8) and the choice of qn,,i, we have d(T”pi, qlr,i) < 
61/2 for 0 < n < Nz - 1. Moreover with this definition of B, the products 
of B along each of the segments of length Nr has sufficiently small norm. 
More precisely, for each 1 5 i 5 Ic and 0 5 n < N2 - Nl: 

= &log JIB(TP’-lTnp;). . . B(T”p;))l 5 A” + 2$ . M. (11) 

Indeed,fixiandn,letjand1bes.t.nj-1<n,FnjandnlIn+N1<nl. 
Denote 7~’ = nJ - 7~ < No, n” = n + Nl - nl < No, then: 

log IP(Nl, R4ll 
l-l 

Now let us extend the definition of B from {T”pi} to K, letting B(z) 
to be equal to B(T”pi) for all 2 E T”&. Using (lo), and the way qn,; 
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were chosen, we observe, that for any 1c E K there exists 1: = i(z), so that 
T”x and qn,i are &-close, so that our definition B(T’“z) = A(q,.;) implies 
p(B(Fz), A(T”z)) < E. for all z E K and 0 2 n < N2. Hence 

(12) 

Viewing A and B as two continuous functions from X and I? C X to 
a locally closed submanifold L 2 GLd(W), we note that using Urison’s 
lemma the definition of B can be expanded to the whole space X, so 
that the inequality 

~(4 B) = yEatp(A(41 B(z)) < 6 

still holds. In particular we will have the bound log ~~B(,~~:)~~ < M for all 
:u E X. Now using (9) and (1 l), we obtain 

2 . No 
< A” + - 

NI 
.M+$M+yM < X’. 

as required. 

6. DISCUSSION 

As we have mentioned, examples of non-uniform functions were 
constructed by M. R. Herman (see [4]) and by P. Walters ([l I]). These 
examples are two dimensional, and in M. Herman’s example the base 
(X, T) is an irrational rotation of the circle. The following question of 
P. Walters remains open: 
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QUESTION. - Does there exist u non-uniform matrix function on every 
non-atomic uniquely ergodic system (X, p, T) ? 

The following remarks summarize some of the (unsuccessful) attempts 
to answer positively this question: 

l An existence of non-uniform functions in C(X, GL2 (W)) will follow 
from discontinuity of A on C(X, GL2(R)) (Theorem 5). It was shown 
by 0. Knill [7], that for aperiodic (X, p, T) the functional A is 
discontinuous on L” (X, SLa CR)). However, this construction does 
not seem to apply (at least not directly) to C(X, SLa(R)). 

l It follows from the proof of Theorem 4, that A E C(X, SLa( R)) with 
A(A) > 0 and such, that TA is minimal on X x P’, is non-uniform. 
E. Glasner and B. Weiss [33 have constructed minimal extensions TA 
for any minimal (X, T). They have shown that the set 

{A E C(X,SLz(R)) ( TA is minimal} 

forms a dense Gn-set in the closure of coboundaries: 

B = {B-l(Tz)B(z) 1 B E C(X,SL+))}. 

However they also proved, that a dense Gh-set of such functions 
A gives rise to a uniquely ergodic skew-product TA, and thus, by 
Lemma 4, satisfies X1 = X2. So it remains unclear, whether there 
always exists a minimal T,J with XI > X2. 

l It follows from Theorem 4, that if A E C(X, SLa(R)) has the 
form A(z) = C-l(Tx) . diag(e”(“), e-a(x)) . C(Z) with measurable 
C : X --+ SLa(R) and o(x), logI(C(z)(\ E L1(p) and /J(Q) > 0, 
but A cannot be represented in the above form with o(x) and C(X) 
being continuous, then A is non-uniform. 

We conclude by some remarks and open questions: 
1. Motivated by the proof of Theorem 5, we can ask whether every 

non-uniform function A (on an irrational rotation) is a limit of 
coboundaries? 

2. Another question is, whether every function A : X + SLa(W) with 
A(A) = 0 is a limit of coboundaries? 

3. Does the set of A : X -+ SL,(W) with A(A) > 0 form a dense 
Gh-set in C(X, SL:!(W))? 0. Knill [8] has constructed a dense 
subset in L” (X, SLa(R)) with A > 0. This method seems to apply 
also to C(X,GL#)). W e h ave ‘recently learned that N. Nerurkar 
[9] had proved a sharper statement: positive Lyapunov exponents 
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occur on a dense set of C(X, L) for all submanifolds L C_ SLz(W) 
satisfying certain mild condition. So the question is, whether the set 
{A E SLa(R) 1 A(A) > 0) forms a G&-set? 

4. Note, that an affirmative answer to the previous question for 
an irrational rotation, will imply that the set of continuously 
diagonalizable SLa(R)- cot c es y 1 forms a dense Ga-set (in fact, 
contains a dense open set) in C(X, SL,(Iw)). 
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