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Abstract

In a well-known paper by Bruna, Nagel and Wainger [BNW], Fourier transform
decay estimates were proved for smooth hypersurfaces of finite line type bounding
a convex domain. In this paper, we generalize their results in the following ways.
First, for a surface that is locally the graph of a convex real analytic function, we
show that a natural analogue holds even when the surface in question is not of finite
line type. Secondly, we show a result for a general surface that is locally the graph
of a convex C2 function, or a piece of such a surface defined through real analytic
equations, that implies an analogous Fourier transform decay theorem in situations
where the oscillatory index is less than 1. This result has implications for lattice point
discrepancy problems, which we describe.

1 Background and surface measure Fourier transform

theorem statements.

1.1 Introduction.

We consider Fourier transforms of hypersurface measures in Rn+1, n ≥ 1, where the surface
is locally the graph of a convex function. Specifically, we let S be a bounded C2 hypersurface
in Rn+1, such that for each x0 ∈ S, there is a composition of a translation and a rotation,
which we call Ax0 , such that Ax0(x0) = 0, the normal to S ′ = Ax0(S) at 0 is the vector
(0, ..., 0, 1), and there is a ball D = B(0, r0) centered at 0 such that above D the surface
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S ′ is the graph of a C2 convex function f(x1, ..., xn) on a neighborhood of the closure D̄.
We localize the problem by letting ϕ(x1, ..., xn) be a C1 real-valued function supported in
D and we look at the Fourier transform of the measure µ on S ′ where the surface measure
is localized by the cutoff function ϕ(x1, ..., xn) at the point on S ′ above (x1, ..., xn). To be
precise, we are looking at

µ̂(λ1, ..., λn+1) =

∫
Rn

e−iλ1x1−...−iλnxn−iλn+1f(x1,...,xn)ϕ(x1, ..., xn) dx1... dxn (1.1)

Note that Ax0 is such that f(0) = 0 and ∇f(0) = 0.

The goal here is to understand the decay of |µ̂(λ)| for large |λ|. For this, it is helpful
to consider µ̂(λ) for λ on rays r(v) = {tv : t ∈ R} for various directions v = (v1, ..., vn+1)
with |v| = 1. Since replacing v by −v just replaces the integrand of (1.1) by its complex
conjugate, it suffices to assume that vn+1 ≥ 0. If v is such that the angle between v and
the normal to the surface at every point in S ′ above D is at least some ϵ > 0, then by
repeated integrations by parts one has that |µ̂(λ)| ≤ Cϵ,N |λ|N for any N . Thus the focus is
on directions v that are either normal to the surface at some point above D or close to some
such direction.

A general heuristic when examining an oscillatory integral for large values of a pa-
rameter such as λ is that the magnitude of the oscillatory integral should be of the same
order of magnitude as the maximal measure of the points in the domain for which the phase
is within a single period. When this principle is applied to the analysis of the decay of |µ̂(λ)|
in a direction v perpendicular to the tangent plane Ty(S

′) for a point y on S ′ above the
closure D̄, this heuristic suggests the following. Let π denote the projection onto the first n
variables. For any v with |v| = 1 and vn+1 ≥ 0, we define s(v) to be the ”lowest” height in
the v direction achieved on the portion of S ′ above D̄. That is, we make the definition

s(v) = min{x · v : x ∈ S ′, π(x) ∈ D̄} (1.2)

Then in view of the convexity of f , if the disk D is small enough this maximal measure is
bounded by the following, where m denotes the surface measure on S.

m({x ∈ S ′ : π(x) ∈ D̄, s(v) ≤ x · v ≤ s(v) + |λ|−1}) (1.3)

Hence heuristically we expect (1.1) to be bounded by a constant times (1.3). In addition,
past experience leads one to expect that if ϕ is nonnegative and s(v) is achieved at at least
one point x where ϕ(π(x)) > 0, then (1.3) should give the correct order of magnitude for
µ̂(λ).

It follows from the classic paper [BNW] that for a smooth compact surface of finite
line type bounding a convex domain (finite line type means that no line is tangent to the
surface to infinite order), then for the t and v in question the function |µ̂(tv)| is in fact
bounded by a constant independent of v times (1.3) for λ = tv. In [BNW] they make use
of nonisotropic balls with a doubling property. Namely, if one defines K(x, r) = {x ∈ S ′ :
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π(x) ∈ D̄, s(v) ≤ x · v ≤ s(v)+ |λ|−1}, then the K(x, r) are the balls for a metric space with
a doubling property, which can be used to show various properties related to µ̂. (Actually
they define the balls globally, where the same principle applies.) In this paper, we will see
that although there are no families of balls here, one has estimates analogous to those of
[BNW] in several settings.

1.2 Surface measure Fourier transform results.

The first class of surfaces we consider are surfaces which are locally the graph of a convex
real analytic function, but which are not necessarily of finite line type. Canonical examples
of such surfaces are cones given by equations f( x1

xn+1
, x2

xn+1
, ..., xn

xn+1
) = 1, where the (x1, ..., xn)

for which f(x1, ..., xn) = 1 form a compact real analytic surface enclosing a convex domain
(this surface will necessarily be of finite line type). Other examples include developable
surfaces in three dimensions.

Our theorem in this situation is as follows.

Theorem 1.1. Suppose we are in the setting of (1.1), where ϕ(x) is Cn+1 and supported in
D, and f(x) is convex, real analytic, and not identically zero. Then for any v with |v| = 1
and vn+1 ≥ 0, and any t ̸= 0 we have an estimate

|µ̂(tv)| ≤ C m({x ∈ S ′ : π(x) ∈ D̄, s(v) ≤ x · v ≤ s(v) + |t|−1}) (1.4)

Here m denotes Euclidean surface measure and the constant C depends only on ϕ and f .

While (1.4) holds for all t, it is only of interest for large |t| since the result for |t| < B
for a fixed B will follow immediately simply by taking absolute values inside the integrand
and integrating. The same is true for the other theorems of this paper.

The natural geometric interpretation of the measure on the right-hand side of (1.4)
is the volume of the intersection of the portion of S ′ over D′ with the slab of width |t|−1

perpendicular to v whose lower side intersects this portion of S ′ at the lowest possible point
in the v direction. There are situations where for a given v this does not give the best
possible rate of decay, but when v is perpendicular to the tangent plane of S ′ at a point
above D it typically does.

In a sense, Lemmas 4.1 and 4.3 will provide a substitute for real analytic functions
for the finite type condition of [BNW], so that an analogous theorem can be proven. If one
has a compact real analytic surface S enclosing a convex domain (which will necessarily be
of finite line type), then one can recover the Fourier transform bounds of [BNW] for S by
using a partition of unity to write the surface measure Fourier transform as a finite sum of
integrals of the form (1.1), after appropriate translations and rotations. For a given piece,
one applies Theorem 1.1 in directions that are normal or nearly normal to the tangent planes
of the surface piece, and simply integrates by parts repeatedly in the oscillatory integral for
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directions that are not nearly normal to the surface piece. Adding the results will then give
the Fourier transform bounds of [BNW] for that surface.

Our second theorem holds for all surfaces that are graphs of convex functions that
are at least C2, and where ϕ is at least C1, as well as graphs of portions of such surfaces
carved out by real analytic functions. Specifically, we assume f(x) is C2 and convex, ϕ(x)
is C1, and g1(x), ..., gm(x) are real analytic functions defined on a neighborhood of D̄, none
identically zero. We define I(λ) to be the Fourier transform of a surface measure carved out
by the the gi on the surface over D whose graph is f(x). Specifically, we define

I(λ) =

∫
{x∈Rn: gi(x)< 0 for all i}

e−iλ1x1−...−iλnxn−iλn+1f(x1,...,xn)ϕ(x1, ..., xn) dx1... dxn (1.5)

Note that by choosing g2 = −g1 + 1, the case where there are no gi(x) is included in the
above. Our theorem for I(λ) is as follows.

Theorem 1.2. For any v = (v1, ..., vn+1) with |v| = 1 and vn+1 ≥ 0, and any t ̸= 0 we have
an estimate

|I(tv)| ≤ Cm({x ∈ S ′ : π(x) ∈ D̄, s(v) ≤ x · v ≤ s(v) + |t|−1})

+C
∞∑
j=1

2−j m({x ∈ S ′ : π(x) ∈ D̄, s(v) + 2j−1|t|−1 ≤ x · v ≤ s(v) + 2j|t|−1}) (1.6)

Here m denotes Euclidean surface measure and the constant C depends only on ϕ, f , and
the gi.

The terms in (1.6) can be interpreted as volumes of intersections of slabs perpendicular
to v with the portion of S ′ above D̄, similarly to Theorem 1.1. To help further understand
the meaning of Theorem 1.2, suppose we are in a situation where for some v with |v| = 1
and vn+1 ≥ 0, there is a 0 < α < 1 such that for all t ̸= 0 we have an estimate

m({x ∈ S ′ : π(x) ∈ D̄, s(v) ≤ x · v ≤ s(v) + |t|−1}) ≤ C|t|−α (1.7)

Then by adding this estimate over all j, (1.6) implies that |I(tv)| ≤ C ′|t|−α for all t. If the
estimate (1.7) holds for all t ̸= 0 and all directions v with vn+1 ≥ 0, then we will similarly
have a uniform estimate |I(tv)| ≤ C ′|t|−α for all such t and v. In this way if the optimal α
for which one has a uniform estimate (1.7) is in the range 0 < α < 1, one retains this rate
of decay in the surface measure Fourier transform I(λ). We record this fact in the following
theorem.

Theorem 1.3. Suppose we are in the setting of Theorem 1.2 and for some C > 0 and some
0 < α < 1 the estimate (1.7) holds for all t ̸= 0 and all v with |v| = 1 and vn+1 ≥ 0. Then
there exists a constant C ′ such that one has the estimate |I(λ)| ≤ C ′|λ|−α
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In the setting of Theorem 1.2, the surface may be flat to infinite order at some point
x. In a direction v perpendicular to Tx(S), the rate of decay of the left hand side of (1.6) may
be slower than any |t|−α for α > 0. Nonetheless, in some such scenarios one may still sum
the series in (1.6) and obtain a result bounded by a constant times the first term in (1.6). In
such a way, one can still bound |µ̂(tv)| in terms of this first term, much as in Theorem 1.1.

Theorem 1.3 can be readily globalized when there are no gi(x) as follows. Suppose S
is a compact C2 surface bounding a convex domain. Let ν denote Euclidean surface measure
on S and let ψ(x) be a C1 function defined on a neighborhood of S in Rn+1. Then one can

bound |ψ̂ν(λ)| by using a partition of unity and then applying Theorem 1.3 to each term.
Because one can get different s(v) corresponding to each term, in order to have a reasonable
theorem statement we proceed as follows. For a given direction v and t ̸= 0 we define a(v, t)
by

a(v, t) = sup
s∈R

m({x ∈ S : s ≤ x · v ≤ s+ |t|−1}) (1.8)

Thus a(v, t) is the maximal value of the measure of intersection of S with any ”slab” per-
pendicular to v of width |t|−1. Note that with any partition of unity, any term m({x ∈ S ′ :
π(x) ∈ D̄, s(v) ≤ x · v ≤ s(v) + |t|−1}) showing up from an application of Theorem 1.3 will
be bounded by a(v, t). Thus if we have the bound a(v, t) ≤ C|t|−α holding uniformly in v
for some 0 < α < 1, then the sum of all the terms in (1.6) will similarly be bounded by some
C ′|t|−α. In other words, by adding over terms of the partition of unity, Theorem 1.3 implies

that |ψ̂ν(λ)| ≤ C ′|λ|−α here. This leads to the following result.

Theorem 1.4. Let S be a compact C2 surface bounding a convex domain. Let ν denote
Euclidean surface measure on S and let ψ(x) be a C1 function defined on a neighborhood of
S in Rn+1. Suppose for some 0 < α < 1 and some C > 0 we have a(v, t) ≤ C|t|−α for all
directions v and all t ̸= 0. Then there is a constant C ′ depending on C, S, ψ, and α such
that |ψ̂ν(λ)| ≤ C ′|λ|−α for all λ.

It is worth pointing out that quantities related to a(v, t) have appeared in other
results connecting oscillatory integrals to sublevel set measures, such as the recent paper
[BaGuZhZo]. In addition, conditions somewhat resembling those of Theorems 1.3 and 1.4
have appeared in related contexts, such as [G2] and [ISa]. There also has been quite a bit
of other work on Fourier transforms of surface measures of surfaces that are locally graphs
of convex functions. We mention [BakMVW] [BrHoI] [CoDiMaMu] [Gr] [Gre] as examples
especially pertinent to the topic of this paper. We also mention the book [IL] which contains
many results in this area and further references.

2 Lattice point discrepancy.

Suppose S is a compact C2 surface bounding a convex domain S0 containing the origin. For
k > 0, let kS0 denote the dilated surface {kx : x ∈ S}, and let N(k) denote the number
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of lattice points on or inside kS0. Then one has N(k) ∼ kn+1m(S0) for large k, and a
straightforward geometric argument gives that for some constant C one also has an estimate
|N(k)− kn+1m(S0)| ≤ Ckn. If S0 were a polyhedron instead of having C2 boundary, then it
is not hard to show that the flatness of the sides of S0 ensures that the exponent n in Ckn

is best possible.

It turns out that when S is curved enough for Theorem 1.4 to hold for some α > 0
then one gets a better exponent than n. Specifically, there are well known methods (see
p.383-384 of [ShS]) that give the following. Suppose A is a smooth compact surface in Rn+1

bounding an open set V such that there exist positive constants c and ϵ0 such that if ϵ < ϵ0,
whenever x ∈ V and |y| < ϵ one has x + y ∈ (1 + cϵ)V . Then if the Euclidean surface
measure on A, which we denote by ρ, satisfies |ρ̂(ξ)| ≤ C|ξ|−β for some β, C > 0, then the

lattice point discrepancy corresponding to V satisfies |N(k)− kn+1m(V )| ≤ C ′kn−
β

n+1−β for
some constant C ′.

When the conditions of Theorem 1.4 hold, the surfaces S at hand satisfy the above
conditions with β = α; the fact that S0 is convex with C2 boundary ensures that the requisite
condition on S0 holds. Thus Theorem 1.4 immediately leads to the following consequence.

Theorem 2.1. Suppose S is a compact C2 surface bounding a convex domain S0 containing
the origin. Suppose for some 0 < α < 1 and some C > 0 we have |a(v, t)| ≤ C|t|−α for all
directions v and all t ̸= 0. Then for some constant C ′ one has the lattice point discrepancy
bound |N(k)− kn+1m(S0)| ≤ C ′kn−

α
n+1−α

Finding the optimal exponent for the lattice discrepancy for a given domain can be
very difficult in general. The famous unsolved Gauss circle problem is to show that for the
disk in two dimensions one has the bound N(k) − πk2 = O(k

1
2
+ϵ) for any ϵ > 0; it was

shown by Hardy in [H1] [H2] that one does not have an O(k
1
2 ) bound. The surface Fourier

transform method used above gives an exponent of 2
3
. The current best known exponent is

517
834

, due to Bourgain and Watt [BoWa], where modern techniques such as decoupling are
used.

For spheres, the problem becomes less difficult as the dimension increases. While the
best possible exponent is unknown for spheres in three dimensions, if n ≥ 3 one can show
that N(k)− kn+1m(V ) = O(sn−1) and the exponent n− 1 is best possible. We refer to [Kr]
for more information about lattice point discrepancy for spheres.

There has been a lot of work on lattice point discrepancy problems for more general
convex domains. If the boundary of the domain V has nonzero Gaussian curvature and
is sufficiently smooth, then the Fourier transform method described above gives the bound

N(k) − kn+1m(V ) = O(kn−1+ 2
n+2 ), as was proven by Hlawka [Hl1] [Hl2]. Various improve-

ments have been made to this bound over time. There have also been various papers where
the Gaussian curvature condition or the smoothness condition has been relaxed, such as the
references [BrIT] [ISaSe1] [ISaSe2] [ISaSe3] [R1] [R2]. These papers use harmonic analysis
techniques in the proofs.
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3 Some examples.

Examples where Theorem 1.1 applies but which are not covered by [BNW] include conic
surfaces given by equations f( x1

xn+1
, x2

xn+1
, ..., xn

xn+1
) = 1, where the points (x1, ..., xn) for which

f(x1, ..., xn) = 1 form a compact real analytic surface enclosing a convex domain (this surface
will necessarily be of finite line type). While one can analyze this example directly, it is also
a good illustration of the statement of Theorem 1.1. Let ρ be the Euclidean surface measure
corresponding to such a surface, and let ψ(x) be a Cn+1 function on Rn+1 supported in the
set 1 < xn+1 < 2. Then the measure ψ(x)ρ falls under the hypotheses of Theorem 1.1;
one can use a partition of unity to reduce the situation to pieces which, after a suitable
translation and rotation, become of the form (1.1).

We examine what Theorem 1.1 says in this situation. If v makes an angle less than
π
8
with the xn+1 axis, one can get arbitrarily fast decay rate for the integral (1.1) simply by

repeated integrations by parts in directions parallel to S. On the other hand, if v makes
an angle π

8
or more with the xn+1 axis, one may look at the slab given by Theorem 1.1 of

width |t|−1 perpendicular to the v direction and look at the intersection of this slab with the
cross section of S at a given height xn+1 = c. The intersection of this n+1 dimensional slab
with this cross section of S is the intersection of a n-dimensional slab of {x : xn+1 = c} with
this cross section of S, again with width comparable to |t|−1. Thus if one wants an overall

decay rate of the form |ψ̂(x)ρ(λ)| ≤ C|λ|−α, one can seek an α for which (1.7) holds for all
t and v for the surface f(x1, ..., xn) = 1, since the same exponent will work for each surface
f(x1

c
, ..., xn

c
) = 1. Then one will get |ρ̂(tv)| ≤ C|t|−α for all t and all v making an angle π

8
or

more with the xn axis. Combining with the case of the angle being less than π
8
, we see that

overall one has a Fourier transform decay rate of |ρ̂(λ)| ≤ C|λ|−α. So for example, if we are
looking at the cone x21 + ...+ x2n = x2n+1, then the exponent α = n−1

2
works.

We move to Theorem 1.2 and 1.3. Let S1, ..., Sk be distinct compact real analytic
surfaces enclosing convex regions V1, ..., Vk respectively. Let V = ∪k

i=1Vi and let S be the
boundary of V . Then S the finite union of pieces of different Si, each of which falls under
Theorem 1.2. Let σ be the Euclidean surface measure on S and σi the Euclidean surface
measure on Si. Suppose α > 0 is such that for each i, Theorem 1.3 gives a bound of
σ̂i(λ) ≤ C ′|λ|−α. Then Theorem 1.3 implies one has the same bound of C ′|λ|−α for the
Fourier transform of the surface measure of the piece of S deriving from Si. Adding this up
over all i, we see that |σ̂(λ)| ≤ C|λ|−α as well.

Note that the above argument will also work for an S that is the boundary of a finite
intersections of Vi, or more generally finite unions of finite intersections of such Vi. One can
sometimes improve the estimates obtained by examining the piece of Si occurring in a given
S; one only needs the best exponent for a neighborhood in Si of this piece.

Next, we consider some curves in the plane with infinitely flat points. First we look

at the curve e−
1
x2 + y2 = c, where c > 0 is small enough to ensure that the curve encloses
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a convex domain. Let τ denote the Euclidean surface measure corresponding to this curve.
We can localize and use Theorem 1.2 here to analyze τ̂(λ). If v is a direction not parallel

to the y axis, by adding (1.6) over all j we have the estimate |τ̂(tv)| ≤ Cv|t|−
1
2 for all t. If

v is parallel to the y axis, then we can still add (1.6) over all j to get for say |t| > 2 that

|τ̂(tv)| ≤ Cm({x : e−
1
x2 ≤ |t|−1}), which translates into |τ̂(tv)| ≤ C(ln |t|) 1

2 .

If on the other hand we are looking at the surface e−
1
x2 + e

− 1
y2 = c in Rn+1 for small

c, in directions v parallel to one of the coordinate axes, one would similarly get estimates
|τ̂(tv)| ≤ C(ln |t|) 1

2 for large |t|, where again we denote the surface measure by τ , while
in other directions, applying Theorem 1.2 and adding (1.6) over all j would give estimates

|τ̂(tv)| ≤ Cv|t|−
1
2 .

4 Proofs of Theorems 1.1 and 1.2.

4.1 Some lemmas used in the proof of Theorem 1.1.

In this section, we will make use of a couple of results from [G1] about real analytic functions
(which are closely related to some results in [Mi]). They are as follows.

Lemma 4.1. (Theorem 2.1 of [G1].) Suppose g(x1, ..., xn) is a real analytic function defined
on a neighborhood of the origin, not identically zero. Then there is an n−1-dimensional ball
Bn−1(0, η) and a k ≥ 0 such that for each (x1, ..., xn−1) in Bn−1(0, η) either g(x1, ..., xn) = 0
for all |xn| < η or there is a 0 ≤ l ≤ k, which may depend on (x1, ..., xn−1), such that for all
|xn| < η one has

0 <
1

2
|∂lxn

g(x1, ..., xn−1, 0)| < |∂lxn
g(x1, ..., xn)| < 2|∂lxn

g(x1, ..., xn−1, 0)| (4.1)

The set of (x1, ..., xn−1) for which g(x1, ..., xn) = 0 for all |xn| < η has measure zero.

Lemma 4.2. (Corollary 2.1.2 of [G1].) Suppose f1(x1, ..., xn),...,fl(x1, ..., xn) are real ana-
lytic functions on a neighborhood of the origin, none identically zero. Then there is an n− 1
dimensional ball Bn−1(0, η) and a positive integer p such that for each s1, ..., sl and each
(x1, ..., xn−1) ∈ Bn−1(0, η), the set {xn : |xn| < η and fi(x1, ..., xn) < si for each i} consists
of at most p intervals.

Lemma 4.1 will be used in the proof of Theorem 1.1 in conjunction with the following
result from [PS].

Lemma 4.3. (Lemma 1 of [PS].) Suppose F ∈ CN [α, β], with N ≥ 1, such that for a
constant C ≥ 0 one has

sup
α≤x≤β

|F (N)(x)| ≤ C inf
α≤x≤β

|F (N)(x)| (4.2)
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Then if I is any subinterval of [α, β] of length δ and I∗ denotes its concentric double (as a
subset of [α, β]), we have

sup
x∈I∗

|F (x)| ≤ a sup
x∈I

|F (x)| (4.3a)

sup
x∈I∗

|F ′(x)| ≤ aδ−1 sup
x∈I

|F (x)| (4.3b)

Here the constant a depends only on N and C.

We now proceed to the proofs of Theorem 1.1 and 1.2, starting with Theorem 1.1.

4.2 The proof of Theorem 1.1.

In equation (1.1), we write v = λ
|λ| and P (x1, ..., xn) = (x1, ..., xn, f(x1, ..., xn)). Then (1.1)

can be rewritten as

µ̂(λ) =

∫
Rn

e−i|λ|P (x)·vϕ(x) dx (4.4)

Since |I(λ)| = |I(−λ)|, without loss of generality we may assume v = (v1, ..., vn+1) satisfies
vn+1 ≥ 0 as in the statement of the theorem. For such a v, one has s(v) = minx∈D̄(P (x) · v).
Choose any x0 such that s(v) = P (x0) · v. Then (4.4) gives

|µ̂(λ)| =
∣∣∣∣ ∫

Rn

e−i|λ|(P (x)·v−P (x0)·v) ϕ(x) dx

∣∣∣∣ (4.5)

We integrate the integral of (4.5) in a polar coordinate system centered at x0. Namely we
rewrite this integral as

µ̂(λ) = cn

∫
Sn−1

∫ ∞

0

e−i|λ|(P (x0+rω)·v−P (x0)·v) rn−1ϕ(x0 + rω) dr dω (4.6)

Let ψ(x) be a nonnegative smooth bump function on R supported on [−1, 1] with ψ(x) = 1
on [−1

2
, 1
2
]. Let ψ1(x) = 1− ψ(x). We write (4.6) as I1 + I2, where

I1 = cn

∫
Sn−1

∫ ∞

0

e−i|λ|(P (x0+rω)·v−P (x0)·v) rn−1ϕ(x0+rω)ψ(|λ|(P (x0+rω) ·v−P (x0) ·v)) dr dω

(4.7a)

I2 = cn

∫
Sn−1

∫ ∞

0

e−i|λ|(P (x0+rω)·v−P (x0)·v) rn−1ϕ(x0+rω)ψ1(|λ|(P (x0+rω)·v−P (x0)·v)) dr dω

(4.7b)
Note that by simply taking absolute values in the integral (4.7a), integrating, and then going
back into rectangular coordinates, one sees that (4.7a) is bounded by the right-hand side of
(1.4). Thus our concern here is bounding (4.7b).
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To simplify notation we let Px0,ω,v(r) = P (x0 + rω) · v − P (x0) · v, so that the inside
integral of (4.7b) can be just written as∫ ∞

0

e−i|λ|Px0,ω,v(r) rn−1ϕ(x0 + rω)ψ1(|λPx0,ω,v(r)|) dr (4.8)

We examine (4.8). Since x0 was chosen so that P (x0) ·v achieves the minimal possible
value of P (x) ·v for x ∈ D̄, one has that Px0,ω,v(0) = 0 and ∂rPx0,ω,v(0) ≥ 0 (at least for ω for
which there is a nonzero r integral.) Since f is convex, we also have that ∂rrPx0,ω,v(r) ≥ 0
for all r in (4.8), so that ∂rPx0,ω,v(r) ≥ ∂rPx0,ω,v(0) ≥ 0 for all r. Furthermore, since f is
real analytic here, either ∂rPx0,ω,v(r) is identically zero in r (in which case Px0,ω,v(r) is also
identically zero in r), or ∂rPx0,ω,v(r) > 0 for all r > 0. Because of the ψ1(|λPx0,ω,v(r)|) factor
in (4.8), in the former situations (4.8) is just zero, so for the purposes of our analysis we may
exclude such cases and work under the assumption that ∂rPx0,ω,v(r) > 0 for all r > 0, which
in turn implies Px0,ω,v(r) > 0 for all r > 0.

Also, since ∂rrPx0,ω,v(r) ≥ 0, and therefore ∂rPx0,ω,v(s) is increasing, we have

Px0,ω,v(r) =

∫ r

0

∂rPx0,ω,v(s) ds

≤ r∂rPx0,ω,v(r)

We will normally use this in the form

1

|λr ∂rPx0,ω,v(r)|
≤ 1

|λPx0,ω,v(r)|
(4.9)

Next, we apply Lemma 4.1 to ∂n+2
r Px0,ω,v(r), where one treats r as the xn variable in the

statement of the lemma, and the x0, ω, and v variables as the remaining n − 1 variables.
While Lemma 4.1 is a local statement, since we are working on a compact set in all variables,
it immediately implies a corresponding statement over all (x0, ω, v, r). Namely there is some
k ≥ n + 2 and δ > 0 such given any (ω, x0, v, r), there is a Cx0,ω,v (which may be zero) and
an n+ 2 ≤ lx0,ω,v ≤ k such that for |r′ − r| < δ one has

1

2
Cx0,ω,v ≤ |∂lx0,ω,v

r Px0,ω,v(r)| ≤ Cx0,ω,v (4.10)

We now apply Lemma 4.3 in conjunction with (4.10). By applying (4.3b) repeatedly, we get
that there is a constant b such that for all 1 ≤ j ≤ n+ 2 and all r > 0 one has

sup
t∈[0,r]

|∂jrPx0,ω,v(r)| ≤ br−j+1 sup
t∈[0,r]

|∂rPx0,ω,v(r)| (4.11)

Since ∂rPx0,ω,v(r) is nonnegative and increasing, this implies that

|∂jrPx0,ω,v(r)| ≤ br−j+1∂rPx0,ω,v(r) (4.12)
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We now proceed to the analysis of (4.8). Since ∂rPx0,ω,v(r) is positive and nondecreasing for
r > 0, ∂rPx0,ω,v(r) is bounded below away from zero on the support of the ψ1(|λPx0,ω,v(r)|)
factor appearing in (4.8). As a result, we may integrate by parts as follows, with no endpoint
terms appearing. We write

e−i|λ|Px0,ω,v(r) = −i|λ|∂rPx0,ω,v(r)e
−i|λ|Px0,ω,v(r) × (−i|λ|∂rPx0,ω,v(r))

−1

In (4.8) we integrate −i|λ|∂rPx0,ω,v(r)e
−i|λ|Px0,ω,v(r) back to e−i|λ|Px0,ω,v(r), and differentiate

(−i|λ|∂rPx0,ω,v(r))
−1 times the remaining factors. We perform this integration by parts a

total of n+ 1 times.

The idea is that after k integrations by parts, the integrand incurs a factor bounded
by a constant times |λPx0,ω,v(r)|−k. To see why this is the case, we examine all the possibile
factors the r derivative may land in an integration by parts, and we will see that each time the
integrand is multiplied a factor bounded by a constant times |λPx0,ω,v(r)|−1. We start with
the situation where the derivative lands on a (∂rPx0,ω,v(r))

l appearing in the denominator
of a ratio of derivatives of Px0,ω,v(r), such as the original (−i|λ|∂rPx0,ω,v(r))

−1 in the first
integration by parts. Then the (∂rPx0,ω,v(r))

−l becomes ∂rrPx0,ω,v(r)(∂rPx0,ω,v(r))
−l−1, so

that we have incurred a factor bounded by C|∂rrPx0,ω,v(r)(∂rPx0,ω,v(r))
−1|. By (4.12) this

is at most C ′r−1. When combined with the preexisting (−i|λ|∂rPx0,ω,v(r))
−1 factor in the

integration by parts, we see we have a factor bounded by C ′|λr ∂rPx0,ω,v(r)|−1, which by (4.9)
is bounded by the desired constant times |λPx0,ω,v(r)|−1, the factor we seek.

Next, we consider the case where the r derivative lands on some ∂krPx0,ω,v(r) appearing
in the numerator of a ratio of derivatives of Px0,ω,v(r). Then the ∂krPx0,ω,v(r) becomes a
∂k+1
r Px0,ω,v(r). Whereas before |∂krPx0,ω,v(r)| was being estimated using (4.12) with j = k,

we now estimate |∂k+1
r Px0,ω,v(r)| with (4.12) with j = k + 1. Thus we incur an additional

factor of Cr−1. Hence again when combined with the preexisting (−i|λ|∂rPx0,ω,v(r))
−1 factor,

we obtain the desired factor of a constant times |λPx0,ω,v(r)|−1.

Next, we look at when the r derivative lands on the ψ1(|λPx0,ω,v(r)|) factor. We obtain
a factor bounded by a constant times |λ|∂rPx0,ω,v(r), which is exactly cancelled out by the
preexisting (−i|λ|∂rPx0,ω,v(r))

−1 factor. Thus it would seem we just incur a factor bounded
by a constant here. However, the derivative turns the ψ1(|λPx0,ω,v(r)|) into a ψ′

1(|λPx0,ω,v(r)|)
and ψ′

1 is compactly supported. Hence we may simply insert 1 ≤ C|λPx0,ω,v(r)|−1 here to
obtain the desired factor of a constant times |λPx0,ω,v(r)|−1.

We move on to the case where the derivative lands on rn−1. This gives a factor of
Cr−1, which like in the earlier cases gives us the factor we seek. Lastly, we consider the case
where the derivative lands on the ϕ(x0+ rω) factor. Here we simply incur a bounded factor,
which will be better than the Cr−1 we need.

We have now considered all possibilities and we see that with each integration by
parts incurs a factor bounded by C|λPx0,ω,v(r)|−1. Thus if we integrate by parts in this
fashion n+ 1 times, we see that the inside integral (4.8) is bounded by the following, where

11



K denotes the interval of integration in this integral.

C

∫
K

rn−1ψ1(|λPx0,ω,v(r)|)
1

|λPx0,ω,v(r)|n+1
dr (4.13)

Here the constant C will depend on f and ϕ, but not on x0, ω, v, or λ. Next, since ψ1(x) is
supported on |x| ≥ 1

2
, we have that (4.13) is bounded by

C

∫
{r∈K: |λPx0,ω,v(r)|≥ 1

2
}

rn−1

|λPx0,ω,v(r)|n+1
dr (4.14)

We split (4.14) dyadically as

C

∞∑
j=0

∫
{r∈K: 2j−1|λ|−1≤Px0,ω,v(r)<2j |λ|−1}

rn−1

|λPx0,ω,v(r)|n+1
dr (4.15)

Let [aj, bj] denote the r interval of integration in (4.15) corresponding to j and denote its
length bj−aj by lj. Since ∂rrPx0,ω,v(r) ≥ 0 and therefore ∂rPx0,ω,v(r) is increasing, the lengths
of the intervals of integration in (4.15) increase no faster than if Px0,ω,v(r) were linear, so
that lj ≤ 2jl0 and rn−1 ≤ 2j(n−1)bn−1

0 on [aj, bj]. (This can be seen rigorously by applying
the mean-value theorem to (Px0,ω,v)

−1(t) on the intervals [2j−1|λ|−1, 2j|λ|−1] for j ≥ 0 and
comparing.)

Thus the jth term of (4.15) is bounded by C ′2j(n−1)bn−1
0 ×2jl0×2−j(n+1) = C ′2−jbn−1

0 l0.
Adding this over all j gives that (4.15) is bounded by C ′′bn−1

0 l0, which is bounded by a
constant times the j = 0 term of (4.15), where one has |λPx0,ω,v(r)| ∼ 1. As a result, we
have that (4.15) is bounded by

C ′′′
∫
{r∈K: |λPx0,ω,v(r)|≤1}

rn−1 dr (4.16)

Going back from polar to retangular coordinates and integrating (4.16) in the ω variables
leads to a bound of C ′′′m({x ∈ D̄ : |λ|(P (x) · v − P (x0) · v) < 1}). Since the above measure
for P (x) · v − P (x0) · v = P (x) · v − s(v) on D corresponds to, up to a constant factor, the
corresponding measure for x · v − s(v) on the surface S ′, and |λ| here corresponds to |t| in
the statement of Theorem 1.1, this is exactly the desired right hand side of (1.4) and we are
done.

4.3 The proof of Theorem 1.2.

We define E = {x ∈ D̄ : gi(x) < 0 for all i} and our goal is to bound I(λ) given in (1.5) by

I(λ) =

∫
E

e−iλ1x1−...−iλnxn−iλn+1f(x1,...,xn)ϕ(x1, ..., xn) dx1... dxn (4.17)
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Once again we let v = λ
|λ| , and since |I(λ)| = |I(−λ)|, once again we may assume vn+1 ≥ 0

as in the statement of the theorem. Once again we subtract s(v) from the phase, where
s(v) = minx∈D̄ P (x) · v, and x0 is any point such that s(v) = P (x0) · v. So like (4.5) we have

|I(λ)| =
∣∣∣∣ ∫

Rn

e−i|λ|(P (x)·v−P (x0)·v) ϕ(x) dx

∣∣∣∣ (4.18)

Next, we let A = {x ∈ D : |λ(P (x) · v − P (x0) · v)| < 1} and 2A its x0-centered double
{x0 + 2(x − x0) : x ∈ A}. We let χ1(x) be the characteristic function of 2A and χ2(x) =
1 − χ1(x), the characteristic function of (2A)c. Denote the integral in (4.18) by I0(λ). We
write I0(λ) = I1(λ) + I2(λ), where for j = 1, 2 we have

Ij(λ) =

∫
Rn

χj(x)e
−i|λ|(P (x)·v−P (x0)·v) ϕ(x) dx (4.19)

We bound |I1(λ)| simply by taking absolute values inside the integrand of (4.19) and inte-
grating. We see that |I1(λ)| is bounded by the first term on the right-hand side of (1.6),
recalling that P (x0) · v = s(v) and that the measure of a subset of S ′ is comparable to the
measure of its projection onto the first n− 1 coordinates. Hence we devote our attention to
bounding |I2(λ)|.

In (4.19) for j = 2, we switch to polar coordinates, and as in the proof of Theorem
1.1 we define

Px0,ω,v(r) = P (x0 + rω) · v − P (x0) · v
Analogous to (4.6) we have

I(λ) =

∫
Sn−1

∫
Eω,x0

e−i|λ|Px0,ω,v(r)rn−1ϕ(x0 + rω) dr dω (4.20)

Here Eω,x0 is the cross section of E being integrated over in r. We claim that there is a
fixed N such that Eω,x0 is comprised of at most N intervals for every ω and x0. To see this,
we locally apply Lemma 4.2 to the functions gi(x0 + rω), where r corresponds to the xn
variable in Lemma 4.2 and the x0 and ω variables correspond to the xi variables for i < n; a
compactness argument then gives the statement over all x0, r, and ω. Note that the fact that
we are restricting to D̄ does not matter since D̄ is convex and won’t increase the number
of intervals. Similarly the fact that we are restricting to the points where |λ|Px0,ω,v(r) > 1
doesn’t increase the number of intervals since this function is increasing.

The domain of integration of the inner integral of (4.20), if nonempty, is a collection
of at most N intervals. On a given interval, which we call J , we integrate by parts as we did
in the proof of Theorem 1.1, but only once this time. The function ∂rPx0,ω,v(r) will never
be zero on J since for I2(λ) we are on the set where |λ|Px0,ω,v(r) > 1; since Px0,ω,v(0) = 0
and ∂rPx0,ω,v(0) is nonnegative and increasing, the latter due to the convexity of f(x), we
have that if |λ|Px0,ω,v(r) > 1 then ∂rPx0,ω,v(r) > 0. Thus we may proceed as in the proof of
Theorem 1.1 and write

e−i|λ|Px0,ω,v(r) = −i|λ|∂rPx0,ω,v(r)e
−i|λ|Px0,ω,v(r) × (−i|λ|∂rPx0,ω,v(r))

−1
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In the inner integral of (4.20) we integrate −i|λ|∂rPx0,ω,v(r)e
−i|λ|Px0,ω,v(r) back to e−i|λ|Px0,ω,v(r),

and differentiate (−i|λ|∂rPx0,ω,v(r))
−1 times the remaining factors. We also get two end-

point terms this time. If we denote the endpoints of J by αJ and βJ , then the terms
obtained at these endpoints are of magnitude bounded by C(|λ|∂rPx0,ω,v(αJ))

−1(αJ)
n−1 and

C(|λ|∂rPx0,ω,v(βJ))
−1(βJ)

n−1 respectively.

We now look at the several places the r derivative may land in this integration by
parts and the effect it has. In every case we will simply take absolute values of the resulting
integrand and bound the resulting integral. First, suppose the derivative lands on the rn−1

factor. Then we incur a factor of Cr−1, and the absolute value of the resulting term is at
most

C

∫
J

(|λ|r∂rPx0,ω,v(r))
−1rn−1 dr (4.21)

Next, we consider the case where the derivative lands on the (−i|λ|∂rPx0,ω,v(r))
−1 factor.

The resulting term is at most

C

∫
J

(|λ|(∂rPx0,ω,v(r))
−1)2(|λ|∂rrPx0,ω,v(r))r

n−1 dr (4.22)

Here we are using that ∂rrPx0,ω,v(r) ≥ 0 due to the convexity of f(x). In (4.22) we integrate
by parts again, this time integrating the (|λ|(∂rPx0,ω,v(r))

−1)2(|λ|∂rrPx0,ω,v(r)) factor back to
(|λ|∂rPx0,ω,v(r))

−1. We get one integral term bounded by (4.21), and two endpoint terms that
like before are bounded by C(|λ|∂rPx0,ω,v(αJ))

−1(αJ)
n−1 and C(|λ|∂rPx0,ω,v(βJ))

−1(βJ)
n−1.

Lastly, the r derivative may land on the ϕ(x0 + rω) factor. In this case one incurs at
most a constant factor, which is better than the Cr−1 factor incurred when the derivative
lands on the rn−1 factor. Hence once again (4.21) serves as a bound for the term in question.

Next, we bound the above endpoint terms in terms of an integral resembling (4.21).
Namely, since ∂rPx0,ω,v(r) is increasing, we have

(|λ|∂rPx0,ω,v(αJ))
−1(αJ)

n−1 ≤ C

∫ αJ

αJ
2

(|λ|r∂rPx0,ω,v(r))
−1rn−1 dr

(|λ|∂rPx0,ω,v(βJ))
−1(βJ)

n−1 ≤ C

∫ βJ

βJ
2

(|λ|r∂rPx0,ω,v(r))
−1rn−1 dr (4.23)

We see that we have boundedly many terms, all bounded by integrals of the form (4.21)
or (4.23). The intervals J are all derived from the characteristic function of (2A)c above
(4.19), so any of the intervals in either (4.21) or (4.23) come from the characteristic function
of Ac. Since A = {x ∈ D : |λ(P (x) · v − P (x0) · v)| < 1}, this means the intervals all are
a subset of the points where |λPx0,ω,v(r)| ≥ 1. As a result, given that there are boundedly
many intervals J , the sum of all of the terms (4.21) and (4.23) bounding our inner integral
of (4.20) is bounded by

C ′
∫
|λPx0,ω,v(r)|>1

(|λ|r∂rPx0,ω,v(r))
−1rn−1 dr (4.24)
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Equation (4.9) holds exactly as in the proof of Theorem 1.1, so (4.24) in turn is bounded by

C ′′
∫
|λPx0,ω,v(r)|>1

|λPx0,ω,v(r)|
−1rn−1 dr (4.25)

Thus we have an overall bound for I2(λ) of

|I2(λ)| ≤ C ′′
∫
Sn−1

∫
|λPx0,ω,v(r)|>1

|λPx0,ω,v(r)|
−1rn−1 dr dω (4.26)

Converting back into rectangular coordinates, we obtain

|I2(λ)| ≤ C ′′′
∫
{x∈D̄:|λ|(P (x)·v−P (x0)·v)>1}

(|λ|(P (x) · v − P (x0) · v))−1 dx (4.27)

We recall that P (x0) · v = s(v) and decompose (4.27) dyadically to obtain a bound

|I2(λ)| ≤ C ′′′′
∞∑
j=1

2−jm({x ∈ D̄ : 2j−1|λ|−1 ≤ (P (x) · v − s(v)) < 2j|λ|−1}) (4.28)

Since the above measure for P (x) ·v−s(v) on D corresponds to, up to a constant factor, the
corresponding measure for x · v − s(v) on the surface S ′, and |λ| here corresponds to |t| in
the statement of Theorem 1.2, we see that |I2(λ)| is bounded by the infinite series in (1.6).
This concludes the proof of Theorem 1.2.
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