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Abstract

We prove Lp(R3) to Lps(R3) Sobolev improvement theorems for local averaging
operators over real analytic surfaces in R3. In a sense made precise in the paper, the set
of (p, s) for which we prove Lp(R3) to Lps(R3) boundedness is optimal up to endpoints
for generic such operators. Using an interpolation argument in conjunction with these
Lp(R3) to Lps(R3) results we obtain an Lp(R3) to Lq(R3) improvement theorem, and
the set of exponents (p, q) obtained will also generically be optimal up to endpoints.
The advantage the methods of this paper have over those of the author’s earlier papers
is that the oscillatory integral methods of the earlier papers, closely tied to the Van der
Corput lemma, allow one to only prove 1/2 of a derivative of surface measure Fourier
transform decay, while the methods of this paper, when combined with appropriate
resolution of singularities methods, allow one to go up to the maximum possible 1
derivative. This allows us to prove the stronger sharp up to endpoints results.

1 Introduction and theorem statements

We prove Lp(R3) to Lps(R3) Sobolev improvement theorems for local averaging operators over
real analytic surfaces in R3. For generic operators, in a sense we will make precise, the set of
(p, s) for which we prove Lp(R3) to Lps(R

3) boundedness is optimal up to endpoints. Using
an interpolation argument in conjunction with these Lp(R3) to Lps(R3) results we obtain an
Lp(R3) to Lq(R3) improvement theorem, and the set of exponents (p, q) obtained will also
generically be optimal up to endpoints.

This work was supported by a grant from the Simons Foundation.
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1.1 Definitions and key concepts

We consider the operator, initially defined on Schwartz functions on R3, defined by

Tf(x1, x2, x3) =

∫
R2

f(x1 − t1, x2 − t2, x3 − S(t1, t2))ϕ(t1, t2) dt1dt2 (1.1)

Here ϕ(t1, t2) is a bump function supported near the origin and S(t1, t2) is a real analytic
function, not identically zero, defined on a neighborhood of the origin that contains the
support of ϕ(t1, t2), which satisfies

S(0, 0) = 0 ∇S(0, 0) = (0, 0) (1.2)

Since our theorems will be invariant under invertible linear transformations, we do not lose
generality by assuming (1.2).

A key concept in our theorems and proofs will be the following. Suppse g(t1, t2) is a
real analytic function defined on a neighborhood of the origin which satisfies g(0, 0) = 0 and
which is not identically zero. Then using resolution of singularities, (we refer to Chapters
6-7 of [AGV] for more details) one can show that there are 0 < η ≤ 1, an integer k = 0 or
1 and a neighborhood U of the origin in R2, such that if V ⊂ U is a neighborhood of the
origin then for some positive constants bV , cV one has the following for all 0 < δ < 1

2
.

bV δ
η| ln δ|k < m({(t1, t2) ∈ V : |g(t1, t2))| < δ}) < cV δ

η| ln δ|k (1.3)

Here m denotes Lebesgue measure. The exponent η in (1.3) can be described succinctly as
the supremum of the numbers ϵ > 0 for which |g|−ϵ is locally integrable in any sufficiently
small neighborhood of the origin.

When (1.2) holds, the maximum possible value of η is 1, which occurs in the non-
degenerate case, i.e. when the Hessian determinant of S is nonzero at the origin. In this
situation, the optimal Lp to Lqs results follow immediately from interpolating with the well-
established L2 to L2

1 and Lp to Lq boundedness properties for nondegenerate surfaces. As a
result, in this paper we will always assume that the Hessian determinant of S(t1, t2), which
we denote by H(t1, t2), satisfies

H(0, 0) = 0 (1.4)

We will also assume that H(t1, t2) is not identically zero. The case where H(t1, t2)
is identically zero effectively means that S(t1, t2) behaves like a function of one variable. In
fact, it can be shown that if S(t1, t2) is a polynomial, if H(t1, t2) is identically zero then after
a linear transformation S(t1, t2) does indeed becomes a function of one variable, in which
case the Sobolev improvement theorems known for curves in R2 (see [C1] and [Gra]) imply
optimal results for the surfaces.
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1.2 Lp to Lp
s theorems

We now come to the main theorem of this paper; the other results will follow from combining
this result with other results, using appropriate interpolation arguments.

Theorem 1.1. Suppose (1.2) and (1.4) hold and neither S(t1, t2) nor H(t1, t2) are identically
zero. Let η be the exponent in (1.3) corresponding to S(t1, t2), and let η′ be the exponent in
(1.3) corresponding to H(t1, t2). There is a neighborhood U of the origin such that if ϕ(t1, t2)
is supported in U , then T is bounded from Lp(R3) to Lps(R3) for (1

p
, s) in the interior of

the trapezoid in the xy plane bounded by the lines y = 0, y = min(η, 2η′

1+2η′
), y = 2x, and

y = 2 − 2x. If η ≤ 2η′

1+2η′
, then this result is sharp up to endpoints; if ϕ is nonnegative with

ϕ(0, 0) > 0 and (1
p
, s) is not in the closed trapezoid, then T is not bounded from Lp(R3) to

Lps(R3).

We address the sharpness statement of Theorem 1.1. One never has Lp to Lps bound-
edness for T when (1

p
, s) is strictly above the line y = 2− 2x; this can be verified by testing

T on bump functions supported on balls of radius r for r → 0. By duality, one therefore
never has Lp to Lps boundedness for T when (1

p
, s) is strictly above the line y = 2x. If

1 < p < ∞, one also never has Lp to Lps boundedness for s > η; this can be verified by
testing on functions of the form ψ(x1, x2, x3)|x3|a for 0 < a < 1 and ψ a nonnegative bump
function satisfying ψ(0, 0, 0) > 0. The details of this argument are worked out at the end of
[G1].

Thus if η ≤ 2η′

1+2η′
, Theorem 1.1 provides optimal Lp Sobolev improvement up to

endpoints. As we will see in section 2.1, there is a sense in which generically one actually
has η = 2η′

1+2η′
. Thus Theorem 1.1 gives boundedness that is sharp up to endpoints in

such generic scenarios. If 2η′

1+2η′
< η, one can interpolate Theorem 1.1 with results in the

literature to obtain stronger results. If η ≤ 1
2
, one can interpolate with Theorem 1.2 of

[G2], and if η > 1
2
one can interpolate with the L2 to L2

η boundedness that is known to hold
for all surfaces; this boundedness is equivalent to the uniform decay rates for the Fourier
transforms of surface measures and was proven by Duistermaat in [Du]. The result of these
interpolations is the following.

Theorem 1.2. Suppose we are in the setting of Theorem 1.1 and 2η′

1+2η′
< η. There is a

neighborhood U of the origin such that if ϕ(t1, t2) is supported in U , then

1. If η ≤ 1
2
, then T is bounded from Lp(R3) to Lps(R3) for (1

p
, s) in the interior of the

polygon with vertices (0, 0), ( η′

1+2η′
, 2η′

1+2η′
), (η, η), (1 − η, 1 − η), (1 − η′

1+2η′
, 2η′

1+2η′
), and

(1, 0).

2. If η > 1
2
, then T is bounded from Lp(R3) to Lps(R3) for (1

p
, s) in the interior of the

polygon with vertices (0, 0), ( η′

1+2η′
, 2η′

1+2η′
), (1

2
, η), (1− η′

1+2η′
, 2η′

1+2η′
), and (1, 0).
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There has been a lot of work done on boundedness properties of averaging operators
on function spaces. For curves in R2, [Se] proves Lpα to Lqβ boundedness theorems that are
complete up to endpoints. For translation invariant averaging operators, L2 to L2

β Sobolev
space improvement is equivalent to a surface measure Fourier transform decay rate estimate.
For surfaces in three dimensions, the stability theorems of Karpushkin [Ka1] [Ka2], when
combined with [V], give such sharp decay rate results for real analytic surfaces. Extensions
to finite type smooth surfaces appear in [IkKM]. There are also some results for convex
(non necessarily smooth) surfaces such as [R1][R2]. For general p, the paper [St] considers
Sobolev estimates for Radon transforms in a quite general setting, focusing attention on
singular density functions. We also mention the papers [HeHoY1] [HeHoY2] in this area.
The author has also written several previous papers with results on this subject, including
[G1][G2][G3][G6].

1.3 Lp to Lq theorems

It follows from Theorem 1.2 of [G3] that for any 1 < p ≤ q < ∞ and any r > −1, the
operator T is bounded from Lp to Lqr. For a sequence of ( 1

pn
, 1
qn
, rn) approaching (1, 0,−1),

we interpolate this fact with Theorems 1.1 and 1.2, obtaining an Lp to Lq boundedness region
for 1 < p < q <∞. Theorems 1.1 and 1.2 translate as follows.

Theorem 1.3. Suppose we are in the setting of Theorem 1.1 and 2η′

1+2η′
≥ η. There is a

neighborhood U of the origin such that if ϕ(t1, t2) is supported in U , then T is bounded from
Lp(R3) to Lq(R3) for (1

p
, 1
q
) in the interior of the trapezoid in the xy plane bounded by the

lines y = x, y = x− η
η+1

, y = x
3
, and y = 3x− 2.

Theorem 1.4. Suppose we are in the setting of Theorem 1.1 and 2η′

1+2η′
< η. Let R be the open

region given by Theorem 1.2, and let R′ be the image of R under the map (x, y) → (x+y
y+1

, x
y+1

).

There is a neighborhood U of the origin such that if ϕ(t1, t2) is supported in U and (1
p
, 1
q
) is

in R′ then T is bounded from Lp(R3) to Lq(R3).

There have been quite a few Lp to Lq boundedness theorems for averaging opera-
tors over hypersurfaces. Surfaces with nonvanishing Gaussian curvature are analyzed in
[L][St2][Str]. The situation where S(t1, t2) is a homogeneous or mixed homogeneous function
has been considered in [DZ] [FGoU1] [FGoU2] [ISa] [Sch]. Convex surfaces of finite line type
are dealt with in [ISaSe]. We will have more to say about such surfaces later in the paper.
Also, there have been papers considering averaging operators with a damping function, often
related to the Hessian determinant. We mention [Gr] and [O] as examples.

For the setting of Theorem 1.3, one has sharpness as follows. By testing on functions
f(x) that vanish near the origin and are equal to |x|−α for sufficiently large |x|, one can see
that T cannot be bounded from Lp to Lq for q < p. By testing on characteristic functions
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of balls with radii tending to zero, one can show that T cannot be bounded from Lp to Lq

for (1
p
, 1
q
) below the line y = 3x− 2; by duality the same is true for the line y = x

3
.

There remains the line y = x− η
η+1

. One generically does not have Lp to Lq bounded-

ness for (1
p
, 1
q
) below this line. To understand in what sense this is true, we need to introduce

some notions involving Newton polygons and related matters. To this end, let g(x, y) denote

a power series in x
1
N and y for some positive integer N , and write g(x, y) =

∑
a,b ga,bx

ayb.

Definition 1.1. For any (a, b) for which ga,b ̸= 0, let Qab be the quadrant {(x, y) ∈ R2 : x ≥
a, y ≥ b}. Then the Newton polygon N(g) of g(x, y) is defined to be the convex hull of the
union of all Qab.

The boundary of N(g) consists of finitely many (possibly none) bounded edges of
negative slope as well as an unbounded vertical ray and an unbounded horizontal ray. We
next have the following definitions.

Definition 1.2. For a bounded edge e of N(g), ge(x, y) denotes the polynomial
∑

(a,b)∈e ga,bx
ayb.

Definition 1.3. For a bounded edge e of N(g), o(e) denotes the maximum order of any zero
of the polynomial ge(1, y) other than y = 0. In the case there are no zeroes, we say o(e) = 0.

Definition 1.4. The Newton distance of g, denoted by d(g), is the infimum of all x for
which (x, x) ∈ N(g).

The exponent η of (1.3) is often given by 1
d(g)

. This holds whenever the line y = x

intersects N(g) at a vertex, on the horizontal or vertical rays, or in the interior of a compact
edge e for which o(e) ≤ d(g) We refer to [G5] for proofs. It is not hard to show that one
can only have o(e) > d(g) if the slope of e is either an integer or the reciprocal of an integer,
and even in those cases one generically has o(e) ≤ d(g) in a sense described below after the
statement of Theorem 1.5. Thus in this way, η = 1

d(g)
is the generic situation.

Whenever η = 1
d(g)

, one can show that one cannot go below the line y = x − η
η+1

in

Theorem 1.3 by testing on rectangular boxes. Thus was explicitly worked out in the η ≤ 1
2

case in Theorem 1.5 of [G3], where an analogous result was also shown in the Sobolev space
setting. Hence we have

Theorem 1.5. Suppose that the line y = x either intersects N(S) at a vertex, on the
horizontal or vertical ray, or in the interior of a compact edge e with o(e) ≤ d(S). Then if
ϕ is nonnegative and ϕ(0, 0) > 0, T is not bounded from Lp(R3) to Lq(R3) for 1

q
< 1

p
− η

η+1
.

Consequently, if we also have η ≤ 2η′

1+2η′
, then Theorem 1.3 is sharp up to endpoints; T is

not bounded from Lp(R3) to Lq(R3) outside the closed trapezoid of the theorem.

The condition on N(S) in the above theorem is weaker than nondegeneracy in the
sense of Varchenko [V], which requires o(e) ≤ 1 for all compact edges. Varchenko’s con-
dition is generic in the following sense. Suppose that g(x, y) is a real analytic function on

5



a neighborhood of the origin with g(0, 0) = 0. Let gf (x, y) =
∑

e ge(x, y) where the sum
is taken over all compact dges of N(g). Then given a fixed Newton polygon N , the set of
monomial coefficients of the gf (x, y) for which g satisfying N(g) = N is not nondegenerate
is of measure zero in the appropriate Rn. We refer to Chapter 6 of [AGuV] for more details
on such matters. Since the Newton polygon conditions of Theorem 1.5 are weaker than
nondegeneracy, one can view these conditions as generic in the same way. Thus in this sense
generically one cannot go below the line y = x − η

η+1
of the trapezoid in Theorem 1.3. In

view of the optimality of the other three sides, in this way generically Theorem 1.3 is best
possible whenever we have η ≤ 2η′

1+2η′
. Hence the final statement of Theorem 1.5. As we will

see in the next section, there is a similar sense in which generically one has η = 2η′

1+2η′
and

the intersection of the latter generic situation with the former can also be viewed as generic.
In this sense Theorem 1.3 is generically optimal up to endpoints.

2 The condition η = 2η′

1+2η′

2.1 More about Newton polygons

To help understand when η = 2η′

1+2η′
, and therefore we are in a setting where Theorem 1.1

and possibly 1.3 give results that are sharp up to endpoints, we again turn our attention to
Newton polygons. Let S(x, y) be as in (1.1), and we consider its Newton polygon N(S). We
denote the successive vertices of N(S) by (a1, b1), ..., (an, bn), where bi+1 > bi for each i. Let
ei denote the edge of N(S) connecting (ai, bi) to (ai+1, bi+1) and we denote the slope of ei by
− 1
mi
, so that mi is decreasing in i. We stipulate that m0 = ∞ and mn = 0. We also make

the following definition.

Let H(x, y) denote the Hessian determinant of S(x, y), and we suppose H(0, 0) = 0
but H is not identically zero. Suppose (ai, bi) is a vertex of N(S) such that neither ai nor
bi is zero. Suppose l is a line in the xy plane containing (ai, bi) whose slope − 1

m
satisfies

mi−1 > m > mi. Then l intersects N(S) in exactly one point, (ai, bi). This situation can be
described by saying that a +mb is minimized over all nonzero terms Sa,bx

ayb of the Taylor
expansion of S(x, y) in the single term Sai,bix

aiybi . Correspondingly, for such m, a +mb is
minimized over all nonzero terms of the Taylor expansion of H(x, y) in the term given by
the Hessian determinant of Sai,bix

aiybi , namely (Sai,bi)
2aibi(1− ai − bi)x

2ai−2y2bi−2.

Thus if the line y = x intersects N(S) at the vertex (d, d), the line y = x intersects
N(H) at the vertex (2d − 2, 2d − 2). By the earlier discussion, this implies that η = 1

d
and

η′ = 1
2d−2

, in which case η = 2η′

1+2η′
. If the line y = x intersects N(S) in the interior of the

vertical ray x = d or horizontal ray y = d that doesn’t intersect the opposing coordinate
axis, the line y = x intersects N(H) in the interior of the vertical ray x = 2d−2 or horizontal
ray y = 2d− 2 respectively. Thus again η = 1

d
and η′ = 1

2d−2
, so that η = 2η′

1+2η′
.
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If the line y = x intersects N(S) in the interior of a bounded edge e that doesn’t
intersect either coordinate axis, then the line y = x intersects N(H) in the interior of a
bounded edge e′ with the same slope. So for example if the slope of this edge is not an
integer or the reciprocal of an integer, once again η = 1

d(S)
and η′ = 1

d(H)
. The same holds

whenever o(e) ≤ d(S) and o(e′) ≤ d(H). In these situations, as before if the line y = x
intersects N(S) at (d, d) the line y = x intersects N(H) at the vertex (2d − 2, 2d − 2), so
that again we have η = 2η′

1+2η′
.

Thus by the above discussion, we see that the only way we could have 2η′

1+2η′
̸= η is

if N(S) has exactly one vertex, located on a coordinate axis, or if the line y = x intersects
N(S) in the interior of a bounded edge e which either intersects a coordinate axis or satisfies
one or both of the conditions o(e) > d(S) and o(e′) > d(H). For given N(S) and N(H),
these conditions are rare in the sense described at the end of section 1. When none of these
exceptional cases occur, both Theorem 1.1 and Theorem 1.3 will be sharp up to endpoints.
Furthermore, as we will see in the examples below, even if the edge e intersects one or both
coordinate axes one still often has sharpness in Theorems 1.1 and 1.3 in conjunction with an
η = 2η′

1+2η′
situation. The same is true if N(S) has exactly one vertex, located on a coordinate

axis.

2.2 Additional examples where η ≤ 2η′

1+2η′

We consider the situation where the graph of S(x, y) in (1.1) is convex and of finite line type,
meaning that every line tangent to the graph is not tangent the surface to infinite order.
By a theorem of Schulz [Sc], after a linear coordinate change the Newton polygon N(S) will
have exactly two vertices, one of the form (a, 0) and the other of the form (0, b) for even
integers 2 ≤ b ≤ a. Thus there is one bounded edge of N(S), joining (a, 0) and (b, 0). In this
setting, Theorem 1.4 of the paper [ISaSe] gives Lp to Lqs results. The L

p to Lps statement is
as follows.

Theorem 2.1. [ISaSe] If the graph of S is convex and of finite line type, there is a neigh-
borhood U of the origin such that if ϕ(x, y) is supported in U , then T is bounded from Lp to
Lps if (1

p
, s) is in the interior of the polygon with vertices (0, 0), ( 1

a
, 2
a
), (1

b
, 1
a
+ 1

b
), (1− 1

b
, 1
a
+

1
b
), (1− 1

a
, 2
a
), and (1, 0).

The statement for Lp to Lq boundedness in [ISaSe] can be derived from the above
using a similar interpolation argument to one we used to get Theorems 1.3 and 1.4 from
Theorems 1.1 and 1.2. Note that the edges of the polygon in the above theorem have slopes
2, 1, 0,−1, and 2 respectively, with the edges of slope 1 and −1 disappearing if a = b. The
above result can be stronger than that of Theorem 1.1 if η > 2η′

1+2η′
, such as in the case

where S(x, y) = xa + yb for distinct even integers a and b. But there are many situations
where η = 2η′

1+2η′
, in which case Theorems 1.1 and 1.3 are sharp up to endpoints and will give

stronger results. We next describe a class of examples that illustrates this phenomenon.
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Example 1. Suppose S(x, y) = y4 + ay2x4 + x8 + f(x, y), where a is any real number
and f(x, y) is a real analytic function all of whose nonzero Taylor expansion terms fa,bx

ayb

are such that (a, b) is above the line joining (8, 0) to (0, 4). Thus N(S) has two vertices,
(0, 4) and (8, 0), and a single edge joining them. Then a direct computation reveals that
H(x, y) = 144ax2y4+(672−40a2)x6y2+112ax10+g(x, y), where every nonzero term ga,bx

ayb

of g’s Taylor expansion lies above the line joining (10, 0) to (0, 5).

The Newton distances d(S) and d(H) are computed readily, with d(S) = 8
3
and

d(H) = 10
3

if a ̸= 0. The line y = x intersects N(S) in the interior of a compact edge e
with Se(x, y) = y4 + ay2x4 + x8, and when a ̸= 0, the line y = x intersects N(H) in the
interior of a compact edge e′ with He′(x, y) = 144ax2y4 + (672− 40a2)x6y2 + 112ax10. Since
both Se(x, y) and He′(x, y) are functions of y

2 for fixed x, the maximum order of any zero of
Se(1, y) or He′(1, y) for y ̸= 0 is two, which is less than either Newton distance. Thus here
η = 1

d(S)
= 3

8
and η′ = 1

d(H)
= 3

10
, and we have 2η′

1+2η′
= η. Hence whenever a ̸= 0, we are in

the situation where Theorems 1.1 and 1.3 give estimates that are sharp up to endpoints.

We next consider when this class of examples corresponds to surfaces that are convex
and of finite line type. For simplicity we assume f(x, y) = 0 so that S(x, y) = y4+ay2x4+x8

and H(x, y) = 144ax2y4 + (672 − 40a2)x6y2 + 112ax10. A necessary condition is that the
Hessian determinant is never negative. This rules out a being negative as in this case the
Hessian determinant is negative on the x axis. If a > 0 and the discriminant of b(z) =
144az2 + (672− 40a2)z + 112a is negative, then b(z) has complex conjugate roots and thus
b(z) is a positive function. The same will then be true for H(x, y) = 144ax2y4 + (672 −
40a2)x6y2 + 112ax10 except on the y axis. Thus S(x, y) must be either strictly convex or
strictly concave outside the y axis but since S(x, 0) is convex in x for example, we conclude
S(x, y) is strictly convex outside the y axis. As for the y axis, one can directly verify that
at each (0, y0) and each direction v, the second directional derivative in the v direction is
nonnegative, and some higher directional derivative is nonzero. We conclude that S(x, y) is
convex and of finite line type everywhere if the discriminant of b(z) is negative. Similarly,
if the discriminant of b(z) is positive, but the roots of b(z) are negative, corresponding to
the case where 672 − 40a2 > 0, then H(1, y) = 144ay4 + (672 − 40a2)y2 + 112a has purely
imaginary roots and by similar considerations to the above, S(x, y) will be convex and of
finite line type.

In summary, S(x, y) will be convex and of finite line type if a > 0 and either the
discriminant of b(z) is negative or the discriminant of b(z) is positive but 672 − 40a2 > 0.
This discriminant is calculated to be 64(25a4 − 1848a2 + 7056), which is positive from 0
to 2.0097..., negative from 2.0097... to 8.3595..., and positive beyond 8.3595..... In the first
interval one has 672− 40a2 > 0, so we conclude that S(x, y) is convex and of finite line type
whenever 0 < a < 8.3595... In these cases Theorems 1.1 and 1.3 give optimal boundedness
domains up to endpoints, and these will be larger than that of the a = 0 case, which is the
domain given by Theorem 1.4 of [ISaSe].

The phenomenon of the above example occurs in various other families, convex and
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nonconvex. We give the following example.

Example 2. Suppose S(x, y) = y3 + ay2x + byx2 + x3 + f(x, y) for some real a and b,
where f(x, y) has a zero of order 4 or greater at the origin. Note that any function with
a zero of order 3 at the origin can be converted into this form after an appropriate linear
transformation. Then N(S) has vertices at (0, 3) and (3, 0), and a single edge e that connects
them. The Newton distance d(S) is then 3

2
. The function Se(1, y) = y3 + ay2 + by + 1 has a

double root r if and only if (a, b) = (−2r + 1
r2
, r2 − 2

r
), so the set of (a, b) for which Se(1, y)

has a double root has measure zero. If (a, b) is not in this set then o(e) = 0 or 1, so that
o(e) < d(S) and as a result η = 1

d
= 2

3
.

The Hessian of S(x, y) can be computed to be H(x, y) = (12b−4a2)y2+(36−4ab)xy+
(12a−4b2)x2+g(x, y) for some g(x, y) with a zero of order 3 or greater at the origin. Suppose
12b−4a2, 12a−4b2 ̸= 0. Then N(H) will have one edge e′, connecting the two vertices (2, 0)
and (0, 2). Note that d(H) = 1 and that He′(1, y) = (12b−4a2)y2+(36−4ab)y+(12a−4b2)
will only have a double root if the discriminant (36− 4ab)2− 4(12b− 4a2)(12a− 4b2) is zero.
This corresponds to (a, b) belonging to a curve in R2. Thus for (a, b) outside a set of measure
zero, o(e′) ≤ 1 = d(H). For these situations η′ = 1.

Combining the above, we see that for (a, b) outside a set of measure zero, we have
η = 2η′

1+2η′
and Theorem 1.1 is sharp up to endpoints. Since we have o(e) ≤ d(S) and

o(e′) ≤ d(H) in these situations, we also have that Theorem 1.3 is sharp up to endpoints.

We next give a class of examples corresponding to the case where N(S) has exactly
one vertex, which lies on a coordinate axis.

Example 3. Let S(x, y) = yn + axyn for some n ≥ 2, a ̸= 0. Then N(S) has one vertex, at
(0, n). In this case the Hessian H(x, y) is −a2n2y2n−2. Thus d(S) = n and d(H) = 2n − 2.
In both cases the line y = x intersects the Newton polygon in the interior of the horizontal
ray, so we have η = 1

d(S)
= 1

n
and η′ = 1

d(H)
= 1

2n−2
respectively. Thus once again we have

η = 2η′

1+2η′
and the boundedness regions provided by Theorem 1.1 or 1.3 are optimal up to

endpoints.

Lastly, we give a class of examples that illustrates that one can have η < 2η′

1+2η′
.

This class of functions also shows you can have sharpness in Theorem 1.1 without having
o(e) ≤ d(S) for the edge e of N(S) intersecting the line y = x.

Example 4. Let S(x, y) = (y−xm)n for some integersm,n ≥ 2. Then by changing variables
from (x, y) to (x, y − xm), we see that η here is that of yn, namely 1

n
. On the other hand,

the Hessian determinant of S(x, y) is H(x, y) = −(m− 1)m(n− 1)n2xm−2(y − xm)2n−3. By
the same variable change, we see that η′ here is that of xm−2y2n−3, namely min( 1

m−2
, 1
2n−3

).

Thus 2η′

1+2η′
= min( 2

m
, 2
2n−1

), which is at least η whenever m ≤ 2n. Thus whenever m ≤ 2n,
Theorem 1.1 is sharp up to endpoints.

On the other hand, the Newton polygon of S(x, y) has an edge e connecting (mn, 0)
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to (0, n), so that the Newton distance d(S) is mn
m+1

. Thus o(e) = n is always greater than
d(S). Hence our condition giving sharpness up to endpoints in Theorem 1.3 does not hold
here.

3 Resolution of singularities and some consequences

3.1 The original resolution of singularities theorem

We now make use of resolution of singularities results theorems from [G4], which were also
used in [G2]. Suppose we have real analytic functions f1(x, y), ..., fk(x, y) on a neighborhood
of the origin, none identically zero, with fj(0, 0) = 0 for each j. Denote the Taylor expansion
of fj(x, y) by

∑
α,β f

j
αβx

αyβ and denote by oj the order of the zero fj(x, y) at the origin. After

rotating coordinates if necessary, we assume f j0,oj ̸= 0 for each j.

Divide the xy plane into eight triangles by slicing the plane using the x and y axes
and two lines through the origin, one of the form y = mx for some m > 0 and one of
the form y = mx for some m < 0. These two lines should not be lines on which which
any function

∑
α+β=oj

f jαβx
αyβ vanishes, except at the origin. After reflecting about the x

and/or y axes and/or the line y = x if necessary, each of the triangles becomes of the form
Tb = {(x, y) ∈ R2 : x > 0, 0 < y < bx} (modulo an inconsequential boundary set of measure
zero). Then Theorems 2.1 and 2.2 of [G4] give the following.

Theorem 3.1. Let Tb = {(x, y) ∈ R2 : x > 0, 0 < y < bx} be as above. Abusing notation
slightly, use the notation fj(x, y) to denote the reflected function fj(±x,±y) or fj(±y,±x)
corresponding to Tb. Then there is a a > 0 and a positive integer N such that if Fa,b =
{(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ bx}, then one can write Fa,b = ∪ni=1cl(Di), such that for
to each i there is a ki(x) = lix

si + ... with ki(x
N) real analytic and si ≥ 1 such that after a

coordinate change of the form ηi(x, y) = (x,±y + ki(x)), the set Di becomes a set D′
i in the

upper right quadrant on which each function fj ◦ ηi(x, y) approximately becomes a monomial
dijx

αijyβij , αij a nonnegative rational number and βij a nonnegative integer in the following
sense.

1. D′
i = {(x, y) : 0 < x < a, gi(x) < y < Gi(x)}, where gi(x

N) and Gi(x
N) are real

analytic. If we expand Gi(x) = Hix
Mi + ..., then Mi ≥ 1 and Hi > 0.

2. The function gi(x) is either identically zero or gi(x) can be expanded as hix
mi + ...

where hi > 0 and mi > Mi. The D′
i can be constructed such that such that for any

predetermined κ > 0 there is a dij ̸= 0 such that on D′
i, for all 0 ≤ l ≤ αij and all

0 ≤ m ≤ βij one has

|∂lx∂my (fj ◦ηi)(x, y)−αij(αij−1)...(αij− l+1)βij(βij−1)...(βij−m+1)dijx
αij−lyβij−m|

≤ κ|dij|xαij−lyβij−m (3.1)
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As stated in Corollary 2.3 of [G4], the proofs of Theorems 2.1 and 2.2 of [G4] imply the
following corollary.

Corollary 3.1.1. For any given K, however large, the D′
i can be constructed so that there

is a constant CK so that on D′
i one has |∂ax∂by(fj ◦ ηi)(x, y)| ≤ CKx

−ay−b|(fj ◦ ηi)(x, y)| for
all a, b < K and all j.

For our purposes, we need a slight extension of the above corollary. Namely we need
it to hold for arbitrarily many y derivatives. This also follows from the proofs of Theorem
2.1 and 2.2 of [G4].

Corollary 3.1.2. The D′
i can be constructed so that for each b there is a constant Cb so that

on D′
i one has |∂by(fj ◦ ηi)(x, y)| ≤ Cby

−b|(fj ◦ ηi)(x, y)| for all b and all j.

The basic idea behind why Corollary 3.1.2 holds is as follows. When fj ◦ ηi ∼ xαijyβij

on D′
i, the Newton polygon N(fj ◦ηi) has a vertex at (αij, βij) and on D′

i, x
αijyβij dominates

any other nonzero term cα,βx
αyβ of the Taylor expansion of fj ◦ηi due to the fact that (α, β)

is contained in this Newton polygon. Therefore for any b, xαijyβij will, up to some constant
depending on b, dominate any other nonzero term of the Taylor expansion of yb∂by(fj ◦ ηi)
since the Newton polygon of yb∂by(fj ◦ ηi) is a subset of that of fj ◦ ηi.

The resolution of singularities theorem above is compatible with smooth functions in
the following sense, as follows directly from the constructions of Theorems 2.1 and 2.2 of
[G4].

Theorem 3.2. Suppose we are in the setting of Theorem 3.1, and suppose ψ(x, y) is a
smooth bump function on R2. Then on R2 − {(0, 0)} we can write ψ(x, y) =

∑
ijk ψijk(x, y)

such that the following hold for some constant C independent of ψ.

1. Each ψijk ◦ηi(x, y) is a smooth function supported on [C−12−j, C2−j]× [C−12−k, C2−k].

2. For each nonnegative integer a and b there is a constant Da,b,ψ such that for each
(i, j, k) one has

|∂ax∂by(ψijk ◦ ηi(x, y))| ≤ Da,b,ψ2
aj+bk (3.2)

3. The inequality (3.1) as well as Corollaries 3.1.1 and 3.1.2 hold on the support of ψijk ◦
ηi(x, y)

3.2 Adjusting the algorithm

We will need a variant of the above theorems, which in the context of Theorem 1.1 we will
apply to S(x, y), ∂2yS(x, y), ∂y(S(x, y) − S(0, y)), and the Hessian determinant of S(x, y),
which we are callingH(x, y). The purpose of resolving the singularities of ∂y(S(x, y)−S(0, y))

11



is to ensure ∂xyS(x, y) is monomialized in the new coordinates in the sense of part 2 of
Theorem 3.1. We don’t resolve the singularities of ∂xyS(x, y) itself since this function does
not behave as well as ∂y(S(x, y) − S(0, y)) under the types of coordinate changes we are
doing in this paper, and resolving the singularities of ∂y(S(x, y) − S(0, y)) will ensure the
singularities of ∂xyS(x, y) are resolved.

The variant proceeds as follows. After doing the rotations and reflections preceding
Theorem 3.1, we do some further linear maps. Namely, if o denotes the order of the zero
of (the rotated/reflected) S(x, y) at (0, 0), let S0(x, y) =

∑
α+β=o Sα,βx

αyβ, the sum of the
terms of S’s Taylor expansion of lowest order. We divide the domain triangle {(x, y) ∈
R2 : 0 < x < a, 0 < y < bx} into smaller triangles Ul, then do linear maps of the form
L(x, y) = (x, y +mlx), ml ∈ R, to place the lower boundaries of the Ul on the x axis. We
do this in such a way such that if U ′

l denotes the domain Ul in the new coordinates, if U ′
l is

written as {(x, y) ∈ R2 : 0 < x < a, 0 < y < clx}, then the function S0(x, y +mlx) is such
that S0(1, y +ml) either has no zeroes on [0, cl], or has a single zero, located at y = 0.

Let Rl(x, y) denote S(x, y +mlx), viewed as a function on U ′
l . We next look at the

Newton polygon N(Rl). Because of the form of the domains U ′
l , we will only be interested

in the edges of N(Rl) of slope − 1
m

for some m ≥ 1. We first have the following lemma.

Lemma 3.3. Suppose e is an edge of N(Rl) of slope − 1
m

for m ≥ 1, and suppose y0 ≥ 0 is
such that the associated polynomial (Rl)e(1, y) (see Definition 1.2) satisfies (Rl)e(1, y0) ̸= 0
and ∂y(Rl)e(1, y0) = 0. Then there is a small wedge Wy0 = {(x, y) ∈ R2 : 0 < x <
a, cxm < y < c′xm}, where c < y0 < c′, on which for some α > 0 (depending on y), we have
|Rl(x, y)| ∼ xα and |∂xRl(x, y)| ∼ xα−1. If y0 = 0 we also have |∂xxRl(x, y)| ∼ xα−2.

Proof. First note that up to small error terms, Rl(x, y) equals the mixed homogeneous
polynomial (Rl)e(x, y) on such a Wy0 . Since (Rl)e(1, y0) ̸= 0, this means that |Rl(x, y)| ∼
|(Rl)e(x, y)| ∼ xα for some α on such a Wy0 . Since (Rl)e(1, y0) ̸= 0, the mixed homogeneity
combined with the fact that the y derivative vanishes at y0 ensures that the x derivative
|∂x(Rl)e(x, y)| will not be vanishing on the curve y = y0x

m. Thus for a small enough wedge
Wy0 we have |∂x(Rl)e(x, y)| ∼ xα−1 on Wy0 , and therefore |∂xRl(x, y)| ∼ xα−1 as well close
enough to the origin. In the case that y0 = 0, one can argue directly; since (Rl)e(x, 0) ̸= 0
one has ∂x(Rl)e(x, 0) ∼ xα−1 and ∂xx(Rl)e(x, 0) ∼ xα−2. Thus if Wy0 is sufficiently small, on
Wy0 one similarly has |∂xRl(x, y)| ∼ xα−1 and |∂xxRl(x, y)| ∼ xα−2.

In what follows, we will always assume that for y0 ̸= 0, the wedge Wy0 is chosen small
enough so that 0 /∈ [c, c′].

The variant of Theorems 3.1 and 3.2 we will need is as follows. For any wedge Wy0

as in Lemma 3.3 we reverse the roles of the x and y variables and consider the function
Ql(x, y) = Rl(y, x) on the reflected set W ′

y0
. If y0 ̸= 0, the set W ′

y0
is a wedge of the

form {(x, y) ∈ R2 : 0 < y < a, c′x
1
m < y < cx

1
m} on which we have |Ql(x, y)| ∼ x

α
m and

|∂yQl(x, y)| ∼ x
α
m
− 1

m . If y0 = 0, then W ′
y0

is a wedge of the form {(x, y) ∈ R2 : 0 < y <
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a, y > cx
1
m} on which we have |Ql(x, y)| ∼ yα, |∂yQl(x, y)| ∼ yα−1, and |∂yyQl(x, y)| ∼ yα−2.

Although these forms are different from those in Theorems 3.1 and 3.2, one can still apply the
resolution of singularities algorithm on such wedges. So we apply the algorithm to Ql(x, y),
∂2yQl(x, y), ∂y(Ql(x, y)−Ql(0, y)), and the Hessian determinant of Ql(x, y). Then Theorem
3.1 and Corollaries 3.1.1 and 3.1.2 will all still hold.

On the portions of the domains U ′
l that are not part of any Wy0 , we simply apply the

original resolution of singularities algorithm to Rl(x, y), ∂
2
yRl(x, y), ∂y(Rl(x, y) − Rl(0, y)),

and the Hessian determinant of Rl(x, y), and Theorem 3.1 and Corollaries 3.1.1 and 3.1.2
will hold as usual.

The reason we make the above modifications of the resolution process is that we want
to be in one of the two situations in Theorem 3.4 on every D′

i. If we had not done the above
reversals of the roles of the x and y variables, there could be situations where (Rl)e(1, y0) ̸= 0
and ∂y(Rl)e(1, y0) = 0 for which neither part of the lemma is satisfied on D′

i coming from
the associated Wy0 .

In what follows we let ηi denote any of the coordinate change maps occurring in the
resolution of singularities process above, whether or not it derives from aWy0 . In other words,
the original (rotated/reflected) S(x, y) on the triangle {(x, y) ∈ R2 : 0 < x < a, 0 < y < bx}
becomes S ◦ ηi(x, y) in the final coordinates. We similarly let D′

i denote any of the final
domains occurring, so that in this notation Theorem 3.1 and Corollaries 3.1.1 and 3.1.2
hold. As for Theorem 3.2, since the subdivisions forming the Wy0 are done at the initial
stages of the resolution of singularities procedure, they do not interfere with the result and
Theorem 3.2 still holds in the current setting.

3.3 Some useful consequences

In the case that S ◦ ηi(x, y) ∼ xαi on D′
i for some αi (i.e. βij = 0 for S ◦ ηi in Theorem 3.1),

we will need some second derivative estimates on S ◦ ηi(x, y) for our future results. These
will be given by the next two theorems. The first is as follows.

Theorem 3.4. Let Si(x, y) denote S ◦ ηi(x, y), and suppose Si(x, y) ∼ xαi on D′
i. Let o

denote the order of the zero of S(x, y) at the origin. Then for each i, at least one of the
following two situations holds.

1. There exists a constant C and gi, si > 0 such that for each j and k, one has | ∂2Si

∂x∂y
(x, y)| >

C−1xsi−gi−1 on the support of ψijk, and such that |Si(x, y)| < Cxsi on a product of inter-
vals R1×R2 ⊂ [2−j, 2−j+1]× [C−12−jgi , C2−jgi ], where |R1| > C−12−j, |R2| > C−12−jgi,
and k ≥ jgi.

2. The lowest edge of the Newton polygon N(Si) joins (αi, 0) to (α′
i, β

′
i) for some β′

i ≥ 2.
If the slope − 1

m
of this edge satisfies m < 2 then β′

i ≤ o
2
. If m ≥ 2 then β′

i ≤ o.
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Proof.

We will be making use of certain aspects of the proof of Theorem 3.1 (Theorems 2.1
and 2.2 of [G4]), and to have the fullest understanding of this proof it would be helpful to
be familiar with the proofs of those theorems.

We first go back to the domains U ′
l defined subsequent to the statement of Theorem

3.2 For a given such U ′
l , we examine the Newton polygon of the function we denoted by

Rl(x, y), which was a linear shift of S(x, y). We let (a1, b1), ...., (an, bn) denote the vertices
of N(Rl), where ap > ap+1 for each p, and we let ep denote the edge of N(Rl) joining (ap, bp)
to (ap+1, bp+1). We write the slope of ep as − 1

mp
. For large enough N , if p ̸= 1 or n, we will

have Rl(x, y) ∼ xapybp on any set Ap = {(x, y) ∈ U ′
l : Nxmp−1 < y < 1

N
xmp}. The same

will be true for p = 1 on the set A1 = {(x, y) ∈ U ′
l : y <

1
N
xm1}, and for p = n on the set

An = {(x, y) ∈ U ′
l : Nx

mn−1 < y}.

If Si(x, y) ∼ xαi on D′
i and D

′
i derives from one of the above sets Ap for bp ≥ 1, then

for the associated vertex (ap, bp), αi will equal ap +mbp, where m is such that D′
i is derived

from the portion of Ap where y ∼ xm. In this case we will be in case 1 of the theorem;
we will have that ∂yRl(x, y) ∼ xap+mbp−m, which implies that ∂ySi(x, y) ∼ xap+mbp−m and
therefore ∂xySi(x, y) ∼ xap+mbp−m−1 on Ai, which translates into case 1 holding with gi = m
and si = ap+mbp. Here R1 ×R2 is a dyadic rectangle in the coordinates of U ′

l , transformed
into the coordinates of D′

i.

The remaining situations are where D′
i derives from a set that is either of the form

{(x, y) ∈ U ′
l :

1
N
xmp < y < Nxmp}, where the lower vertex (ap, bp) of the edge ep satisfies

bp ≥ 1, or is of the form {(x, y) ∈ U ′
l : 0 < y < Nxmp}, where the lower vertex of the edge

ep is of the form (ap, 0).

The constructions of the resolution of singularities algorithms are such that there are
a few possibilities. The first is that D′

i derives from a set of the form B = {(x, y) ∈ U ′
l :

cxmp < y < c′xmp}, 0 ≤ c < c′, for which (Rl)ep(1, y) and ∂y(Rl)ep(1, y) are both nonzero on
[c, c′]. In this case we have (Rl)ep(x, y) ∼ xap+mpbp and ∂y(Rl)ep(x, y) ∼ xap+mpbp−bp on B,
so since the error terms are negligible on B we also have Rl(x, y) ∼ xap+mpbp , ∂yRl(x, y) ∼
xap+mpbp−bp , on B. The same will hold true with Rl replaced by Si, which then implies that
∂xySi(x, y) ∼ xap+mpbp−bp−1. This places us into case 1 of this theorem, where si = ap+mpbp,
gi = mp and again R1 × R2 is a dyadic rectangle in U ′

l , transformed into the coordinates of
D′
i.

The next possibility we consider for the {(x, y) ∈ U ′
l :

1
N
xmp < y < Nxmp}, bp ≥ 1

or {(x, y) ∈ U ′
l : 0 < y < Nxm1}, b1 = 0 situation is when D′

i derives from a set of the
form {(x, y) ∈ U ′

l : cx
mp < y < c′xmp}, 0 ≤ c < c′, for which (Rl)ep(1, y) is nonzero on [c, c′]

but ∂y(Rl)ep(1, y) has a zero in [c, c′]. In this case, our constructions are such that we may
assume that {(x, y) ∈ U ′

l : cx
mp < y < c′xmp} is a subset of one of the Wy0 of Lemma 3.3,

that y0 is the only zero of (Rl)ep(1, y) in [c, c′], and that either y0 = 0 or 0 < c < c′.
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If y0 = 0, then switching the x and y variables either puts us into a situation where
either no further resolution of singularities is needed and |∂xxRl(x, y)| ∼ xα−2 from becomes
|∂yyR̃l(x, y)| = |∂yySi(x, y)| ∼ yα−2 in the new coordinates, meaning we are no longer in the
βij = 0 situation of this theorem, or if some further resolution of singularities is needed, we
can assume we are restricted to a domain which is a subset of a wedge y ∼ xm for some x.
In this case |R̃l(x, y)| ∼ xmα and |∂yR̃l(x, y)| ∼ xmα−m, so that |∂ySi(x, y)| ∼ xmα−m and
|∂xySi(x, y)| ∼ xmα−m−1. Therefore we are in the setting of part 1 of this theorem, with the
R1 ×R2 coming from dyadic rectangles in the reflected regions from which D′

i derives.

If y0 ̸= 0, after reversing the roles of the x and y variables, the statement from Lemma

3.3 that |∂xRl(x, y)| ∼ xap+mpbp−1 becomes the statement |∂yR̃l(x, y)| ∼ x
ap
mp

+bp− 1
mp , which

implies that |∂ySi(x, y)| ∼ x
ap
mp

+bp− 1
mp and thus |∂xySi(x, y)| ∼ x

ap
mp

+bp−1− 1
mp , so we are again

in the setting of part 1 of this theorem, similar to the last paragraph.

Next, we consider the {(x, y) ∈ U ′
l :

1
N
xmp < y < Nxmp}, bp ≥ 1 or {(x, y) ∈ U ′

l :
0 < y < Nxm1}, b1 = 0 situation when (Rl)ep(1, y) has a zero r ̸= 0 in [c, c′] for which
∂y(Rl)ep(1, r) ̸= 0. Then considerations as in four paragraphs ago show that ∂ySi(x, y) ∼
xap+mpbp−bp , and ∂xySi(x, y) ∼ xap+mpbp−bp−1, while Si(x, y) ∼ xαi for some αi ≥ ap +mpbp.
Thus we are again in case 1 with gi = mp, si = ap +mpbp, and R1 × R2 a dyadic rectangle
in U ′

l , transformed into the coordinates of D′
i.

Lastly, we consider the {(x, y) ∈ U ′
l :

1
N
xmp < y < Nxmp}, bp ≥ 1 or {(x, y) ∈ U ′

l :
0 < y < Nxm1}, b1 = 0 situation when (Rl)ep(1, y) has a zero r ̸= 0 in [c, c′] of order two or
greater. Again we may assume that it is the unique zero of (Rl)ep(1, y) in [c, c′] and c > 0.
Our constructions are such that mp ≥ 1 for any domain U ′

l where the roles of the x and y
variables have not been switched, such as the present situation. Furthermore, due to the
linear coordinate shifts described above Lemma 3.3, if (Rl)ep(x, y) has zeroes in such a U ′

l

then in fact mp > 1. So mp > 1 here.

The maximum order of a zero of (Rl)ep(1, y) is the y-coordinate of the intersection
of the line containing ep with the y-axis, which is at most o since in the beginning of the
resolution of singularities process, we did a rotation to ensure the Newton polygon of S had
a vertex at (0, o). Furthermore, if 1 < mp < 2, since mp is not a multiple of an integer, the
maximum possible order of a zero r ̸= 0 of (Rl)ep(1, y) is

o
2
since in this case (Rl)ep(1, y) must

skip at least every other degree. We conclude that the order of the zero r of (Rl)ep(1, y) is
at most o, and is at most o

2
when mp < 2.

The resolution of singularities process is such that if D′
i corresponds to this higher

order zero situation, then in the final coordinates, N(Si) has a vertex at a point (ci, di)
where di is the order of the zero of (Rl)ep(1, y) at r. Furthermore, since Si ∼ xαi here, the
lowest edge of N(Si) connects (0, αi) to some (α′

i, β
′
i), where β

′
i ≤ di. If β′

i = 1, then we
are in case 1 of this theorem; in this situation we have that ∂xySi ∼ xα

′
i−m−1 on D′

i where
m = αi − α′

i, while Si ∼ xα
′
i on rectangles where y ∼ xm. If β′

i > 1, by the last paragraph
we have 2 ≤ β′

i ≤ di ≤ o
2
if mp < 2 and 2 ≤ β′

i ≤ di ≤ o if mp ≥ 2. Furthermore, if − 1
m
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denotes the slope of this edge, then m ≥ mp, so if m < 2 we have β′
i ≤ o

2
and if m ≥ 2 we

have β′
i ≤ o. Hence we are in case 2 of this theorem whenever β′

i ≥ 2.

Thus we have proved Theorem 3.4 in all cases and we are done.

Suppose now we are in case 2 of Theorem 3.4. Since ∂yySi is monomialized by our
resolution of singularities process, we may let α′′

i , β
′′
i be such that ∂yySi ∼ xα

′′
i yβ

′′
i in the final

coordinates. The following theorem gives us estimates we will need later in the paper.

Theorem 3.5. Suppose i corresponds to case 2 of Theorem 3.4, and αi is as in that theorem,
so that Si ∼ xαi in the final coordinates. There is a constant C such that for each j and k
for which ψijk is defined we have∫

[2−j ,2−j+1]×[2−k,2−k+1]

|xα′′
i yβ

′′
i +2|−

2
3
η|xαi |−

η
3 dx dy < C (3.3)

Proof. Let α′
i, and β

′
i be as in Theorem 3.4. Thus Si(x, y) ∼ xαi on [2−j, 2−j+1]× [2−k, 2−k+1]

and the lowest edge of the Newton polygon N(Si) joins (αi, 0) to (α′
i, β

′
i), where β

′
i ≥ 2.

Since β′
i ≥ 2, (α′

i, β
′
i) is also a vertex of N(y2∂yySi). Since ∂yySi is monomialized by our res-

olution of singularities process, y2∂yySi is also monomialized, comparable to xα
′′
i yβ

′′
i +2. Since

(α′
i, β

′
i) is a vertex of N(y2∂yySi), x

α′
iyβ

′
i is either comparable to |y2∂yySi(x, y)| ∼ xα

′′
i yβ

′′
i +2

on [2−j, 2−j+1] × [2−k, 2−k+1], or is dominated by xα
′′
i yβ

′′
i +2 on [2−j, 2−j+1] × [2−k, 2−k+1]. In

either case, there is a constant C ′ such that on [2−j, 2−j+1]× [2−k, 2−k+1] we have

xα
′
iyβ

′
i ≤ C ′xα

′′
i yβ

′′
i +2 (3.4)

Consequently, we have∫
[2−j ,2−j+1]×[2−k,2−k+1]

|xα′′
i yβ

′′
i +2|−

2
3
η|Si|−

η
3 < C ′′

∫
[2−j ,2−j+1]×[2−k,2−k+1]

(x−
2
3
α′
iηy−

2
3
β′
iη)(x−

η
3
αi)

(3.5)
Thus we need to show that the integrand on the right in (3.5) is uniformly integrable over j
and k. The main issue is to show that 2

3
β′
iη ≤ 1, which will imply that the integral on the

right of (3.5) is nonincreasing in k.

Lemma 3.6. 2
3
β′
iη ≤ 1 for all i.

Proof. Let − 1
m

denote the slope of the edge e of N(Si) joining (αi, 0) to (α′
i, β

′
i). Then when

y ∼ xm, the functions xαi and xα
′
iyβ

′
i are of comparable magnitude. In particular, the integral

of (xα
′
iyβ

′
i)−η will be uniformly bounded over dyadic rectangles where y ∼ xm, since the same

is true for |Si|−η ∼ x−αiη. This translates into the statement that −η(α′
i+mβ

′
i)+m+1 ≥ 0,

or equivalently that η ≤ m+1
α′
i+mβ

′
i
. When m ≥ 2 this implies that

η ≤ m+ 1

α′
i +mβ′

i

≤ m+ 1

mβ′ ≤ 3

2β′
i
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This gives the lemma when m ≥ 2. When m < 2, case 2 of Theorem 3.4 says that β′
i ≤ o

2
.

But any function in two variables satisfies η ≤ 2
o
since this is the exponent for |x|o+ |y|o. As

a result, if m < 2 we have 2
3
β′
iη ≤ 2

3
, better than the estimate needed. This completes the

proof of the lemma.

We can now complete the proof of Theorem 3.5 in short order. Since |S| ∼ xαi ,
the vertex (0, αi) dominates (α′

i, β
′
i) in the sense that for some constant C we have xαi ≥

Cxα
′
iyβ

′
i on D′

i. This translates into the statement that y < C ′xm throughout our domain
for some constant C ′. Consequently, since by Lemma 3.6 the integral on the right of (3.5)
is nonincreasing in k, it can never be larger than when y ∼ xm. But xαi and xα

′
iyβ

′
i are of

comparable magnitude when y ∼ xm. Hence in this situation, the right hand integral of
(3.5) is simply comparable to

∫
[2−j ,2−j+1]×[2−k,2−k+1]

|Si|−η dx dy, which is uniformly bounded

in j and k by the definition of η as the supremum of the exponents making such integrals
finite. This concludes the proof of Theorem 3.5.

4 The proof of Theorem 1.1.

4.1 The decomposition of the operator

Let ρ0(x) be a function on R3 whose Fourier transform is nonnegative, compactly supported,
and equal to one on a neighborhood of the origin. Let ρ(x) = 8ρ0(2x) − ρ0(x). Then one
can write δ(x) = ρ0(x) +

∑∞
n=0 2

3nρ(2nx), and correspondingly we write

Tf = T0f +
∞∑
n=0

Tnf (4.1)

Here T0f = Tf ∗ ρ0 and Tnf = Tf ∗ 23nρ(2nx). T0 immediately satisfies the estimates of
Theorem 1.1 and more, so we need only consider Tn for n > 0. Let η1 = min(η, 2η′

1+2η′
) as in

Theorem 1.1. Then the vertices of the trapezoid in Theorem 1.1 are (0, 0), (η1
2
, η1), (1− η1

2
, η1),

and (1, 0). For each ϵ > 0, we will exhibit a p(ϵ) > 0 and a δ(ϵ) > 0 such that such that
||Tnf ||Lp(ϵ)

η1−ϵ
≤ Cϵ2

−δ(ϵ)n||f ||Lp(ϵ) . Adding over all n gives ||Tf ||
L
p(ϵ)
η1−ϵ

≤ C ′
ϵ||f ||Lp(ϵ) . Duality

then gives the corresponding estimate for p′(ϵ) satisfying 1
p(ϵ)

+ 1
p′(ϵ)

= 1. As ϵ approaches

zero, 1
p(ϵ)

will approach η1
2
, and the above estimates will then imply Theorem 1.1.

Next, we write Tnf = f ∗ µn, where µn is the measure whose Fourier transform satisfies

µ̂n(λ) = ρ̂(2−nλ)

∫
e−iλ1x−iλ2y−iλ3S(x,y)ϕ(x, y) dx dy (4.2)
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Let α1(x) be a smooth nonnegative compactly supported function on R that is equal to 1
on a neighborhood of 0, and let α2(x) = 1 − α1(x). For a c > 0 to be determined by our
arguments, we write µn = µ1

n + µ2
n, where for k = 1, 2 we have

µ̂kn(λ) = ρ̂(2−nλ)αk(c2
−nλ3)

∫
e−iλ1x−iλ2y−iλ3S(x,y)ϕ(x, y) dx dy (4.3)

We correspondingly let Tn = T 1
n +T

2
n , where T

k
nf = f ∗µkn. If ϕ is supported on a sufficiently

small neighborhood of the origin, the operator T 1
n is readily seen to be bounded from L2 to any

L2
s for s > 0 due to the cutoff function α1(c2

−nλ3) present in (4.3). To see why, suppose for
example λ1 > λ2. Then the α1(c2

−nλ3) factor ensures that |λ3|/|λ|, and therefore |λ3|/|λ1|,
is bounded above. Thus if ϕ is supported on a sufficiently small neighborhood of the origin,
the phase function in (4.3) has x derivative bounded below by some c′|λ1| > c′′|λ|, and one

can integrate by parts in x repeatedly in (4.3) to get an estimate |µ̂1
n(λ)| ≤ Cs|λ|−s holding

for any s.

Thus T 1
n is bounded from L2 to any L2

s. Since |λ| ∼ 2−n in (4.3), this immediately
implies an estimate ||T 1

nf ||L2
s
≤ Cs2

−n||f ||L2 as well. Interpolating this with the Lp to Lp

estimates for p ∈ (1,∞) for s large enough will then give the estimates we need, and more.

So we focus our attention on T 2
n . To simplify notation, we write σ(λ) = ρ̂(λ)α2(cλ3),

so that we have

µ̂2
n(λ) = σ(2−nλ)

∫
e−iλ1x−iλ2y−iλ3S(x,y)ϕ(x, y) dx dy (4.4)

Assume ϕ(x, y) is supported on a neighborhood of the origin on which Theorem 3.2 applies,
and write ϕ(x, y) =

∑
ijk ϕijk(x, y) as in that theorem. We correspondingly write T 2

n =∑
ijkn Uijkn, where Uijknf = f ∗ νijkn. Here νijkn is the measure whose Fourier transform

satisfies

ν̂ijkn(λ) = σ(2−nλ)

∫
e−iλ1x−iλ2y−iλ3S(x,y)ϕijk(x, y) dx dy (4.5)

Let ηi be as in Theorem 3.1 in the situation at hand. Let γijk(x, y) = ϕijk ◦ ηi(x, y). Then
due to the form of the coordinate changes (x, y) → (x, y + hi(x)) of this paper, for some
hi(x) equation (4.5) becomes

ν̂ijkn(λ) = σ(2−nλ)

∫
e−iλ1x−iλ2y−iλ2hi(x)−iλ3Si(x,y)γijk(x, y) dx dy (4.6)

Here hi(x) is a real analytic function of x
1
M for some M and Si(x, y) is the composition

of S(±x,±y) or S(±y,±x) with the map (x, y) → (x, y + hi(x)). Recall by Theorem 3.2
the γijk(x, y) are uniformly bounded and for some C the function γijk(x, y) is supported on
[C−12−j, C2−j] × [C−12−k, C2−k]. Hence for any s, the measure (1 −∆)

s
2νijkn is a function

with L1 norm bounded by Cs2
ns−j−k. Thus (1 − ∆)

s
2Uijknf is the convolution of f with

a function of L1 norm bounded by Cs2
ns−j−k. So by Young’s inequality, (1 − ∆)

s
2Uijkn is

bounded on any Lp with norm bounded by Cs2
ns−j−k as well. In other words Uijkn is bounded

from Lp to Lps with norm bounded by Cs2
ns−j−k.
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In the proof at hand, we are considering only s ≤ η1. For any such s, by the above we
have ||

∑
j+k≥2nη1

Uijkn||Lp→Lp
s
≤ C ′

s2
−η1n, which decreases exponentially in n and therefore

satisfies the estimates we seek. Hence it suffices to consider ||
∑

j+k<2nη1
Uijkn||Lp→Lp

s
. There

are only O(n2) such terms, so if we show that each ||Uijkn||Lp→Lp
s
≤ Cs2

−δsn for the (p, s) at
hand, where δs > 0, that will be enough to prove Theorem 1.1. This is the estimate we will
prove.

4.2 Defining the V l
ijkn and W l

ijkn

Restating the above, the goal is to show for ϵ > 0 that ||Uijknf ||Lp(ϵ)
η1−ϵ

≤ Cϵ2
−δ(ϵ)n||f ||Lp(ϵ)

where 1
p(ϵ)

approaches η1
2

as ϵ → 0. We will make extensive use of the expression (4.6) for

ν̂ijkn(λ). To simplify notation, we let R(x, y) = Si(x, y), so that (4.6) becomes

ν̂ijkn(λ) = σ(2−nλ)

∫
e−iλ1x−iλ2y−iλ2hi(x)−iλ3R(x,y)γijk(x, y) dx dy (4.7)

Let P (x, y) denote the phase function λ1x + λ2y + λ2hi(x) + λ3R(x, y) of (4.6). Note that
Pyy(x, y) = λ3Ryy(x, y), and also that Ryy(x, y) = ∂2ySi(x, y) is monomialized in the final
coordinates. In other words, on the support of γijk(x, y), for some α1 and β1 one has that
Ryy ∼ xα1yβ1 ∼ 2−jα1−kβ1 . Thus for fixed x, one can view the y integral in (4.6) as an integral
of a function whose second derivative is roughly constant, and then use standard stationary
phase on this integral. We will take this tack. If P has a critical point in such a y integral, the
natural width of a cycle of the phase at the critical point is (|λ|2−jα1−kβ1)−

1
2 . (We can use |λ|

and not |λ3| here since |λ| ∼ |λ3| on the support of σ(2−nλ)). Correspondingly, we will have

two different arguments, essentially depending on whether or not 2−k > (|λ|2−jα1−kβ1)−
1
2 ,

since the length of the y interval of integration is ∼ 2−k.

We will put the above philosophy into effect as follows. It will make our arguments
somewhat technically easier if for a small but fixed ϵ0 > 0 we make the two cases 2−k >
|λ|− 1

2
+

ϵ0
8 (2−jα1−kβ1)−

1
2 and 2−k ≤ |λ|− 1

2
+

ϵ0
8 (2−jα1−kβ1)−

1
2 . We refer to Uijkn corresponding

to the first situation as case 1 operators, and Uijkn corresponding to the second situation
as case 2 operators. The argument for case 1 operators will have some resemblance to an
argument that can be used for phases with nondegenerate Hessian determinant, and these
operators will account for why the index η′ appears in Theorem 1.1. The argument for case
2 operators doesn’t use the Hessian determinant, and instead resembles to some extent an
argument that can be used to find uniform decay estimates for Fourier transforms of surface
measures, and accounts for the index η appearing in Theorem 1.1.

We split case 1 operators as a sum Uijkn = V 1
ijkn + V 2

ijkn and case 2 operators as a
sum Uijkn = W 1

ijkn +W 2
ijkn as follows. As we did earlier, we let α1 be a smooth nonnegative

compactly supported function on R equal to 1 on a neighborhood of 0), and let α2(x) =
1−α1(x). Define R

∗
yy = 2−jα1−kβ1 , which we view as a fixed number that is comparable to Ryy
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on the domain of integration in (4.7). We first define W l
ijkn for l = 1, 2 by W l

ijknf = f ∗µlijkn,
where

µ̂lijkn(λ) = σ(2−nλ)

∫
e−iλ1x−iλ2y−iλ2hi(x)−iλ3R(x,y)γijk(x, y)αl

(
|λ|−

ϵ0
4 2−kPy(x, y)

)
dx dy (4.8)

We next define V 1
ijkn and V

2
ijkn. Our constructions can be done such that each γijk is supported

on the union of boundedly many rectangle of dimensions c2−j by c2−k such that our various
estimates hold on the rectangle of dimensions c′2−j by c′2−k for some c′ > c. Since Pyy ̸= 0
throughout, if for a given x there is some y for which Py(x, y) = 0 in one of these enlarged
rectangles, we may define y∗(x) by the condition that Py(x, y

∗(x)) = 0. We define V 1
ijknf =

f ∗ ν1ijkn and V 2
ijknf = f ∗ ν2ijkn, where for l = 1, 2 we have

ν̂lijkn(λ) = σ(2−nλ)

∫
e−iλ1x−iλ2y−iλ2hi(x)−iλ3R(x,y)γijk(x, y)αl

(
|λ|

1
2
− ϵ0

16 (R∗
yy)

1
2 (y − y∗(x)

)
dx dy

(4.9)

If y∗(x) does not exist in any of the enlarged rectangles, we replace the αl
(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 (y−

y∗(x)
)
factor by 0 if l = 1 and by 1 if l = 2.

Suppose (x, y) is such that the factor given by α1

(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 (y − y∗(x)

)
is well-

defined and nonzero. Then |y− y∗(x)| ≤ C|λ|− 1
2
+

ϵ0
16 (R∗

yy)
− 1

2 . Since we are in case 1, we have

2−k > |λ|− 1
2
+

ϵ0
8 (R∗

yy)
− 1

2 , so that |y − y∗(x)| ≤ C|λ|−
ϵ0
162−k. We may assume that n is large

enough so that the C|λ|−
ϵ0
162−k factor here is less than (c′−c)2−k. Thus if (x, y) is on the upper

or lower boundary of one of the c2−j by c2−k rectangles and α1

(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 (y − y∗(x)

)
is well-defined and nonzero, the monotone function y∗(x) will still be defined (in one of the
c′2−j by c′2−k rectangles) as this factor “makes its exit” through the boundary. Thus in the
l = 1 case, the set of points on which y∗(x) is defined contains a union of boundedly many
intervals containing the points x for which the integrand in (4.9) is nonzero for any y.

If x is such that y∗(x) does not exist in the c′2−j by c′2−k rectangles, then for any
(x, y) in the support of γijk, for such an x we must have that Py(x, y

′) ̸= 0 for any y′ with
|y′ − y| < (c′ − c)2−k. Since |Pyy| > C ′|λ|R∗

yy, this means that |Py(x, y)| > C ′′|λ|R∗
yy2

−k >

C ′′′|λ| 12+
ϵ0
8 (R∗

yy)
1
2 , the latter inequality following from the fact that we are in case 1.

4.3 The analysis of the operators V 2
ijkn and W 2

ijkn

The idea behind the analysis of V 2
ijkn and W 2

ijkn are similar. We simply repeatedly integrate
by parts in the y variable in (4.9). The α2 factors in both integrals are such that each time
we do such an integration by parts, one gains a factor of C|λ|−

ϵ0
16 . Thus doing it enough

times will give that both |µ̂2
ijkn(λ)| and |ν̂2ijkn(λ)| decay faster than any negative power of

|λ|. Hence V 2
ijkn and W 2

ijkn are bounded from L2 to any L2
s with operator norm bounded by

say C2−n. Thus interpolating with the Lp to Lp bounds for 1 < p <∞ gives the desired Lp

to Lps bounds, and more.
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We start with V 2
ijkn. If y∗(x) exists, then in the support of the integrand of (4.9),

one has |y − y∗(x)| ≥ C|λ|− 1
2
+

ϵ0
16 (R∗

yy)
− 1

2 . Since Py(x, y
∗(x)) = 0, for such a y we have

|Py(x, y)| = |Py(x, y)− Py(x, y
∗(x))| ≥ C ′|λ3|R∗

yy|y − y∗(x)|. Since |λ3| ∼ |λ| on the domain
in question, the lower bounds on |y − y∗(x)| lead to

|Py(x, y)| ≥ C|λ|
1
2
+

ϵ0
16 (R∗

yy)
1
2 (4.10)

Equation (4.10) will hold whenever the integrand in (4.9) is nonzero for l = 2 and y∗(x)
exists. But even if x is such that y∗(x) does not exist, (4.10) will still hold for each y for
which γijk(x, y) ̸= 0 by the discussion at the end of the last section. We now integrate by
parts repeatedly in (4.9) in y, integrating −iPy(x, y)e−iP (x,y) in y then differentiating − 1

iPy(x,y)

times the remaining factors. Each time we do so, we get a factor of | 1
iPy(x,y)

| that is bounded
by C ′′′|λ|− 1

2
− ϵ0

16 (R∗
yy)

− 1
2 , and various other factors that depend on where the derivative lands.

We examine each possibility in this regard.

Each time the derivative lands on a negative power of Py(x, y), the integration by parts

results in a factor bounded by C
∣∣ Pyy(x,y)

(Py(x,y))2

∣∣. Note that |Pyy(x, y)| = |λ3Ryy(x, y)| ≤ C|λ|R∗
yy,

so in view of (4.10) this factor is bounded by C|λ|−
ϵ0
8 . If the derivative lands on some

derivative of the α2 factor in (4.9), the integration by parts results in a factor bounded by

C|λ| 12−
ϵ0
16 (R∗

yy)
1
2 |(Py(x, y))|−1. The support of this derivative of the α2 factor is such that

(4.10) holds, so we get a bound of C ′|λ|−
ϵ0
8 again.

If the derivative lands on some y derivative of γijk(x, y), then by part 2 of Theorem 3.2,

we incur a factor bounded by C2k|Py(x, y)|−1, which by (4.10) is at most C ′2k|λ|− 1
2
− ϵ0

16 (R∗
yy)

− 1
2 .

Since we are in case 1, we have 2k < |λ| 12−
ϵ0
8 (R∗

yy)
1
2 , and we have a bound of C ′′|λ|− 3

16
ϵ0 , bet-

ter than what we need. Lastly, if the derivative lands on some ∂my R(x, y) for some m ≥ 2,
we go from an mth derivative to an m+ 1th derivative of R(x, y). By Corollary 3.1.2, each
such derivative results in a factor of C|y|−1 < C ′2k on top of the bound C ′′R∗

yy for the second
derivative. Thus once again we incur a factor bounded by a constant times C2−k|Py(x, y)|−1,

which we saw above is bounded by C ′′|λ|− 3
16
ϵ0 .

In summary, after each integration by parts, we gain a factor of at least C|λ|−
ϵ0
8 . Thus

as explained in the beginning of this section, by integrating by parts enough times and then
interpolating we can get any Lp to Lps boundedness we desire. This concludes the analysis
of the operators V 2

ijkn.

We now do a similar analysis for the W 2
ijkn. This time, in view of the support of the

α2 factor in (4.8), we replace (4.10) by

|Py(x, y)| ≥ C|λ|
ϵ0
4 2k (4.11)

We now perform the same repeated integration by parts as before, and examine the effect of
the derivative landing on each possible factor. If it lands on a negative power of Py(x, y), we

incur a factor bounded by C
∣∣ Pyy(x,y)

(Py(x,y))2

∣∣, which in view of (4.11) and the fact that Pyy = λ3Ryy
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is bounded by C ′R∗
yy|λ|1−

ϵ0
2 2−2k. Since we are in case 2, we have 2−k ≤ |λ|− 1

2
+

ϵ0
8 (R∗

yy)
− 1

2 .

Hence the factor is bounded by C ′′|λ|−
ϵ0
4 , which gives us what we need.

Next, if the derivative lands on a derivative of the α2 factor in (4.8), then the inte-
gration by parts incurs a factor bounded by C|λ|1−

ϵ0
4 2−kR∗

yy|Py(x, y)|−1. By (4.11) this is

at most C ′|λ|1−
ϵ0
2 2−2kR∗

yy, the same bound as before. So once again we have a bound of

C ′′|λ|−
ϵ0
4 .

If the derivative lands on some y derivative of γijk(x, y), then by part 2 of Theorem

3.2, we incur a factor bounded by C2k|Py(x, y)|−1, which in view of (4.11) is at most C ′|λ|−
ϵ0
4 ,

as needed. Lastly, if the derivative lands on a ∂my R(x, y) for some m ≥ 2, so that we go from
an mth derivative to an m + 1th derivative of R(x, y), exactly as in the case of the V 2

ijkn

operators we again incur a factor of C2k|Py(x, y)|−1, thus again giving us the bound C|λ|−
ϵ0
4

we need.

In summary, after each integration by parts, we gain a factor of at least C|λ|−
ϵ0
4 . So

just as in the case of the operators V 2
ijkn, by integrating by parts enough times we can get

any negative power of |λ| we seek, and therefore using interpolations we can get any Lp to
Lps boundedness statement. This concludes the analysis of the operators W 2

ijkn.

4.4 Lp to Lp
s bounds for the operators V 1

ijkn

We will be making use of the Van der Corput lemma for oscillatory integrals (see p.334 of
[S1] for a proof.)

Lemma 4.1. Suppose h(x) is a real-valued Ck function on the interval [a, b] such that
|h(k)(x)| > A on [a, b] for some A > 0. Let ϕ(x) be C1 on [a, b].

If k ≥ 2 there is a constant ck depending only on k such that∣∣∣∣ ∫ b

a

eih(x)ϕ(x) dx

∣∣∣∣ ≤ ckA
− 1

k

(
|ϕ(b)|+

∫ b

a

|ϕ′(x)| dx
)

If k = 1, the same is true if we also assume that h(x) is C2 and h′(x) is monotone on [a, b].

We examine (4.9) in the l = 1 case, which we may write as

ν̂1ijkn(λ) = σ(2−nλ)

∫
e−iP (x,y)γijk(x, y)α1

(
|λ|

1
2
− ϵ0

16 (R∗
yy)

1
2 (y − y∗(x)

)
dx dy (4.12)

Next, shift coordinates in y in (4.12), replacing y by y + y∗(x). The result is

ν̂1ijkn(λ) = σ(2−nλ)

∫
e−iP (x,y+y∗(x))γijk(x, y + y∗(x))α1

(
|λ|

1
2
− ϵ0

16 (R∗
yy)

1
2 y

)
dx dy (4.13)
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The right-hand side of this may be written as

σ(2−nλ)

∫
e−iP (x,y∗(x))e−i(P (x,y+y∗(x))−P (x,y∗(x))γijk(x, y + y∗(x))α1

(
|λ|

1
2
− ϵ0

16 (R∗
yy)

1
2 y

)
dx dy

(4.14)

The idea now is that due to the α1

(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 y

)
factor in (4.14), which has the effect of

localizing the phase to near y = 0, the phase in (4.14) is effectively P (x, y∗(x)) and we may
bound (4.14) well by simply using stationary phase in the x variable. We will do this via
an application of the Van der Corput lemma. (Recall that the x for which the integrand of
(4.12) is nonzero for any y is contained in finitely many intervals on which y∗(x) is defined,
so that issues regarding with the domain of y∗(x) will not interfere with applying the Van
der Corput lemma here in the x variable.) Our first step is to observe that we have

∂x(P (x, y
∗(x))) = Px(x, y

∗(x)) + (y∗)′(x)Py(x, y
∗(x))

= Px(x, y
∗(x)) (4.15)

The latter equation follows from the fact that y∗(x) is defined through the the condition that
Py(x, y

∗(x)) = 0. Taking a second derivative, we have

∂xx(P (x, y
∗(x))) = Pxx(x, y

∗(x)) + (y∗)′(x)Pxy(x, y
∗(x))

Since we have the formula (y∗)′(x) = −Pxy(x,y∗(x))
Pyy(x,y∗(x))

, the above becomes

∂xx(P (x, y
∗(x))) =

Pxx(x, y
∗(x))Pyy(x, y

∗(x))− (Pxy(x, y
∗(x)))2

Pyy(x, y∗(x))
(4.16)

Note the presence of the Hessian determinant of P (x, y∗(x)) in the numerator of (4.16).
The Hessian determinant of P (x, y) is invariant under transformations of the form (x, y) →
(x, y + h(x)) at any point where ∂yP (x, y) = 0, as can be verified by direct calculation; this
holds even when not at a critical point. So the numerator in (4.16) is the same as the Hes-
sian determinant of P (x, y) in the original coordinates, before the resolution of singularities
procedure was done. But in the original coordinates, P (x, y) was λ1x + λ2y + λ3S(x, y),
whose Hessian is just (λ3)

2H(x, y), where H(x, y) denotes the Hessian of S(x, y). Recall
that our resolution of singularities algorithm was applied to this Hessian, along with several
other functions. So if we denote the Hessian determinant in the final coordinates by Hi(x, y),
the numerator in (4.16) is just (λ3)

2Hi(x, y), where |Hi(x, y)| is comparable to a fixed value
throughout the domain of γijk(x), which we denote by H∗

i . Thus the absolute value of the

right-hand side of (4.16) is comparable to
|λ3|2H∗

i

|λ3|R∗
yy

∼ |λ|H∗
i (R

∗
yy)

−1, using that |λ3| ∼ |λ| here.

We now have uniform lower bounds on the absolute value of the second x derivative
of the phase function in (4.14). As a result, we may apply the Van der Corput lemma to the

x integral in (4.14). The result is this integral is bounded by |λ|− 1
2 (H∗

i )
− 1

2 (R∗
yy)

1
2 times the

integral of the absolute value of the x derivative of the product of the right-hand factors in
(4.14), which we will see is uniformly bounded in j and k.
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The x derivative can land in two places and get a nonzero value, the factor γijk(x, y+
y∗(x)) and the factor e−i(P (x,y+y∗(x))−P (x,y∗(x)). We first deal with γijk(x, y+y

∗(x)). Note that
we have

∂x(γijk(x, y + y∗(x))) = (γijk)x(x, y + y∗(x))− (γijk)y(x, y + y∗(x))
Pxy(x, y

∗(x))

Pyy(x, y∗(x))

Since Pxy = λ3Rxy and Pyy = λ3Ryy, the above can be rewritten as

∂x(γijk(x, y + y∗(x))) = (γijk)x(x, y + y∗(x))− (γijk)y(x, y + y∗(x))
Rxy(x, y

∗(x))

Ryy(x, y∗(x))
(4.17)

By part 2 of Theorem 3.2, the first term in (4.17) is bounded in absolute value by C2j.
Since the domain of integration has length at most C ′2−j, its integral in x is uniformly
bounded as needed. As for the second term in (4.17), using part 2 of Theorem 3.2 again

we see it is bounded in absolute value by C2k Rxy(x,y∗(x))
Ryy(x,y∗(x))

. Since we resolved the singularities

of ∂y(S(x, y) − S(0, y)) (after a linear coordinate change) in the resolution of singularities
process, Rxy(x, y

∗(x)) is monomialized in the final coordinates, so in particular there is some
fixed number R∗

xy such that Rxy ∼ R∗
xy whenever the integrand in (4.17) is nonzero. Hence

the ratio Rxy(x,y∗(x))
Ryy(x,y∗(x))

is comparable in magnitude to
R∗

xy

R∗
yy
, and the second term is bounded by

C2k
R∗

xy

R∗
yy
.

The length of the x interval of integration in (4.14) is at most the x-diameter of the

set in which the integrand of (4.12) is nonzero. The α1

(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 (y − y∗(x)

)
factor in

(4.12) implies bounds for this diameter. The curve y = y∗(x) has slope ∼ R∗
xy

R∗
yy
, so it traverses

an interval of y-length C2−k over an x-distance bounded by C2−k
R∗

yy

R∗
xy
. We saw after (4.9)

that the y-length of the support of α1

(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 (y − y∗(x)

)
is less than C|λ|−

ϵ0
162−k, so

the factor α1

(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 (y−y∗(x)

)
will also be supported on a set of x diameter bounded

by C2−k
R∗

yy

R∗
xy
. Thus the integral of the second term of (4.17) is bounded by C2k

R∗
xy

R∗
yy

× 2−k
R∗

yy

R∗
xy

and is therefore uniformly bounded. We conclude that when the x derivative lands on the
γijk(x, y + y∗(x)), the resulting term integrates to something uniformly bounded in j and k.

We move now to the case where the derivative lands on e−i(P (x,y+y∗(x))−P (x,y∗(x)). The
resulting term has magnitude bounded by

C
∣∣[Px(x, y + y∗(x))− Px(x, y

∗(x))]− [Py(x, y + y∗(x))− Py(x, y
∗(x))]

Rxy(x, y
∗(x))

Ryy(x, y∗(x))

∣∣ (4.18)

Note that

Px(x, y + y∗(x))− Px(x, y
∗(x)) = Pxy(x, y

∗(x))y +O(y2 supPxyy)

= λ3(Rxy(x, y
∗(x))y +O(|λ|y2 sup |Rxyy|) (4.19)
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Here the supremum is over the support of the integrand in (4.14). Similarly, one has

Py(x, y + y∗(x))− Py(x, y
∗(x)) = λ3(Ryy(x, y

∗(x))y +O(|λ|y2 sup |Ryyy|) (4.20)

Inserting (4.19) and (4.20) into (4.18), we see that (4.18) is bounded by

O(|λ|y2 sup |Rxyy|) +O(|λ|y2
R∗
xy

R∗
yy

sup |Ryyy|) (4.21)

By Corollary 3.1.1, we have that sup |Ryyy| ≤ C2kR∗
yy and sup |Rxyy| ≤ C2kR∗

xy. (Technically,
since we have resolved the singularities of ∂yS(x, y)−∂yS(0, y) and not ∂xyS(x, y), Corollary
3.1.1 applies to ∂yR(x, y)− ∂yR(x, 0), but it is not hard to show it applies to ∂xyR(x, y) as
well since it is monomialzed in the final coordinates.) Thus (4.21) is bounded by

C|λ|y22kR∗
xy (4.22)

As we saw above, the x interval of integration in (4.14) has length at most C2−k
R∗

yy

R∗
xy
. Hence by

(4.22), the x integral of the term in question is at most C ′|λ|y22kR∗
xy×2−k

R∗
yy

R∗
xy

= C ′|λ|y2R∗
yy.

Due to the presence of the α1

(
|λ| 12−

ϵ0
16 (R∗

yy)
1
2 y

)
factor in (4.14), we have

|y| ≤ C|λ|−
1
2
+

ϵ0
16 (R∗

yy)
− 1

2 (4.23)

Thus C ′|λ|y2R∗
yy ≤ C ′′|λ|

ϵ0
8 , another bound that is uniform in j and k.

We conclude that we can indeed apply the Van der Corput lemma to the x integral in
(4.14), obtaining a bound of C|λ|

ϵ0
8 times |λ|− 1

2 (H∗
i )

− 1
2 (R∗

yy)
1
2 . We then can do the y integra-

tion, using (4.23). We get that expression (4.14) for ν̂1ijkn(λ) is at most C|λ| 3
16
ϵ0|λ|−1(H∗

i )
− 1

2 .
Since ϵ0 > 0 was arbitrary, |λ| ∼ 2n, and and V 1

ijknf = f ∗ ν1ijkn, this can be restated
as the statement that for every ϵ > 0 there is a δ(ϵ) > 0 such that ||V 1

ijkn||L2→L2
1−ϵ

≤
Cϵ2

−δ(ϵ)n(H∗
i )

− 1
2 . Since Hi(x, y) is comparable to H∗

i on [2−j, 2−j+1] × [2−k, 2−k+1] and γijk
is supported in a bounded dilation of this box, we may restate this as

||V 1
ijknf ||L2→L2

1−ϵ
≤ Cϵ2

−δ(ϵ)n
∫
[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)x
2y2|−

1
2 (4.24)

On the other hand, due to the location of the support of γijk, the measure ν1ijkn has L1 norm

bounded by C2−j−k = C
∫
[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)x
2y2|0. Thus by Young’s inequality we

have

||V 1
ijknf ||L(ϵ−1)→L(ϵ−1) ≤ C

∫
[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)x
2y2|0 (4.25)

We now interpolate (4.24) and (4.25), using weighting L2 by η1 = min(η, 2η′

1+2η′
) as in the

statement of Theorem 1.1, and weighting Lϵ
−1

by 1−η1. In view of the fact that |Hi(x, y)x
2y2|

is comparable to a fixed value on the domain of integration in (4.24) or (4.25), the result is

||V 1
ijknf ||

L
2
η1

+δ′(ϵ)→L
2
η1

+δ′(ϵ)
η1−η1ϵ

≤ C ′
ϵ2

−δ′(ϵ)n
∫
[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)x
2y2|−

η1
2 (4.26)
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Here δ′(ϵ) → 0 as ϵ→ 0. Next, since η1 ≤ 2η′

1+2η′
, we have∫

[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)x
2y2|−

η1
2 ≤ C

∫
[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)x
2y2|−

η′
1+2η′ (4.27)

We apply Holder’s inequality in the right-hand integral (4.27), using exponent 1 + 2η′ on

|Hi(x, y)|−
η′

1+2η′ and exponent 1+2η′

2η′
on |x2y2|−

η′
1+2η′ . The result is∫

[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)x
2y2|−

η′
1+2η′

≤
(∫

[2−j ,2−j+1]×[2−k,2−k+1]

|Hi(x, y)|−η
′
) 1

1+2η′
(∫

[2−j ,2−j+1]×[2−k,2−k+1]

(xy)−1

) 2η′
1+2η′

(4.28)

The right-hand factor in (4.28) is immediately uniformly bounded, and the definition of
η′ is exactly that the left hand factor of (4.28) is uniformly bounded in i, j, and k. Thus
(4.26)− (4.28) imply that

||V 1
ijkn||

L
2
η1

+δ′(ϵ)→L
2
η1

+δ′(ϵ)
η1−η1ϵ

≤ C ′′
ϵ 2

−δ′(ϵ)n (4.29)

Since ϵ can be made arbitrarily small and δ(ϵ), δ′(ϵ) → 0 as ϵ→ 0, (4.29) give the needed Lp

to Lps estimates for V 1
ijkn and we are done.

4.5 Lp to Lp
s bounds for the operators W 1

ijkn

We look at (4.8) in the l = 1 case, which for the reader’s convenience is given by

µ̂1
ijkn(λ) = σ(2−nλ)

∫
e−iλ1x−iλ2y−iλ2hi(x)−iλ3R(x,y)γijk(x, y)α1

(
|λ|−

ϵ0
4 2−kPy(x, y)

)
dx dy

(4.30)

Observe that since we are in case 2, we have 2−k ≤ |λ|− 1
2
+

ϵ0
8 (R∗

yy)
− 1

2 and therefore in the
domain of integration of (4.30) we have

1 ≤ C
1

|λ| 12−
ϵ0
8 (R∗

yy)
1
2y

(4.31)

Squaring this, inserting into (4.30), then taking absolute values of the integrand and inte-
grating, gives

µ̂1
ijkn(λ) ≤ C ′′|λ|

ϵ0
4

∫
[2−j ,2−j+1]×[2−k,2−k+1]

1

|λR∗
yy|y2

dx dy (4.32)

Next, observe that due to the α1

(
|λ|−

ϵ0
4 2−kPy(x, y)

)
factor in (4.30) and the fact that

∂xPy(x, y) = λ3Rxy(x, y), for a given y the x-diameter of the set where the integrand in
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(4.30) is nonzero is at most C|λ|−1+
ϵ0
4 2k(R∗

xy)
−1. Thus the overall integral is bounded by a

constant times 2−k times this, or C ′|λ|−1+
ϵ0
4 (R∗

xy)
−1. So in analogy with (4.32) we have

µ̂1
ijkn(λ) ≤ C ′′|λ|

ϵ0
4

∫
[2−j ,2−j+1]×[2−k,2−k+1]

1

|λR∗
xy|xy

dx dy (4.33)

Suppose in the final coordinates R(x, y) ∼ xαyβ where β ≥ 1. Then estimates (4.32) and
(4.33) are all that we need. We use (4.32) if β > 1 and (4.33) if β = 1 and we obtain

µ̂1
ijkn(λ) ≤ C ′′′|λ|

ϵ0
4

∫
[2−j ,2−j+1]×[2−k,2−k+1]

1

|λ|xαyβ
dx dy (4.34)

Since ϵ0 > 0 was arbitrary, |λ| ∼ 2n, and U1
ijkn = f ∗ µ1

ijkn, this can be restated as the
statement that for every ϵ > 0 there is a δ(ϵ) > 0 such that

||U1
ijkn||L2→L2

1−ϵ
≤ C2−δ(ϵ)n

∫
[2−j ,2−j+1]×[2−k,2−k+1]

1

xαyβ
dx dy (4.35)

The desired Lp to Lps estimates for the β ≥ 1 situation are now proved using an inter-
polation argument very similar to that of the end of section 4.4. Namely, due to the
location of the support of γijk, the measure µ1

ijkn has L1 norm bounded by C2−j−k =

C
∫
[2−j ,2−j+1]×[2−k,2−k+1]

( 1
xαyβ

)0. Thus by Young’s inequality we have

||U1
ijknf ||L(ϵ−1)→L(ϵ−1) ≤ C

∫
[2−j ,2−j+1]×[2−k,2−k+1]

(
1

xαyβ

)0

dx dy (4.36)

Using the same weighting as before, in analogy with (4.26), for η1 = min(η, 2η′

1+2η′
) we have

||U1
ijknf ||

L
2
η1

+δ′(ϵ)→L
2
η1

+δ′(ϵ)
η1−η1ϵ

≤ C ′
ϵ2

−δ′(ϵ)n
∫
[2−j ,2−j+1]×[2−k,2−k+1]

(
1

xαyβ

)η1

dx dy (4.37)

Here δ′(ϵ) → 0 as ϵ→ 0. Next, since η1 ≤ η, we have∫
[2−j ,2−j+1]×[2−k,2−k+1]

(
1

xαyβ

)η1

≤ C ′′
∫
[2−j ,2−j+1]×[2−k,2−k+1]

(
1

xαyβ

)η

dx dy (4.38)

The index η is defined to the supremum of the e for which |S(x, y)|−e is integrable on a
neighborhood of the origin, and this index is invariant under the coordinate changes of this
paper. Hence since |Ri(x, y)| ∼ xαyβ, the integrals on the right of (4.38) are uniformly
bounded in j and k. Thus (4.37) and (4.38) imply

||U1
ijkn||

L
2
η1

+δ′(ϵ)→L
2
η1

+δ′(ϵ)
η1−η1ϵ

≤ C ′′
ϵ 2

−δ′(ϵ)n (4.39)

Since ϵ can be made arbitrarily small and δ(ϵ), δ′(ϵ) → 0 as ϵ → 0, (4.39) gives the needed
Lp to Lps estimates for U1

ijkn and we are done for the case where β ≥ 1.
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What remains is to consider the β = 0 case, so that |R(x, y)| ∼ xα. We will make use
of (4.32) when we are in the second case of Theorem 3.4, since it works best in conjunction
with Theorem 3.5, and we will make use of (4.33) when we are in the first case of Theorem 3.4
since that equation works best in conjunction with lower bounds of the first case of Theorem
3.4. Suppose we are in the first case. Then in our current notation, in this case there exists
a constant C and si, gi > 0 such that | ∂2R

∂x∂y
(x, y)| > C−1xsi−gi−1 on the support of γijk, and

such that |R(x, y)| < Cxsi on a product of intervals I1×I2 ⊂ [2−j, 2−j+1]×[C−12−jgi , C2−jgi ],
where |I1| > C−12−j, |I2| > C−12−jgi , and k ≥ jgi. By (4.33) we have

µ̂1
ijkn(λ) ≤ C|λ|

ϵ0
4

∫
[2−j ,2−j+1]×[2−k,2−k+1]

1

|λ|xsi−giy
dx dy (4.40)

By the steps of the above interpolation argument leading up to (4.37), using the fact that
η1 ≤ η, we have

||U1
ijknf ||

L
2
η1

+δ′(ϵ)→L
2
η1

+δ′(ϵ)
η1−η1ϵ

≤ C ′
ϵ2

−δ′(ϵ)n
∫
[2−j ,2−j+1]×[2−k,2−k+1]

(
1

xsi−giy

)η

(4.41)

Since η ≤ 1, the integral in (4.41) is nonincreasing in k. As a result, since k ≥ jgi, (4.41)
implies

||U1
ijknf ||

L
2
η1

+δ′(ϵ)→L
2
η1

+δ′(ϵ)
η1−η1ϵ

≤ C ′
ϵ2

−δ′(ϵ)n
∫
[2−j ,2−j+1]×[2−jgi ,2−jgi+1]

(
1

xsi−giy

)η

(4.42)

But since y ∼ xgi in the domain of (4.42), the integrand in (4.42) is comparable to (xsi)−η.
But since we are in case 1 of Theorem 3.4, |R(x, y)| < Cxsi on a product of intervals I1 × I2
whose measure is comparable to that of the domain of integration of (4.42). So the right hand
side of (4.42) is bounded by C ′′

ϵ 2
−δ′(ϵ)n ∫

I1×I2 |R(x, y)|
−η. Since η is defined as the supremum

of the e for which
∫
|R(x, y)|−e is finite on a neighborhood of the origin, this means that

the integral in (4.42) is uniformly bounded. Thus once again we have the desired estimate
(4.39).

We now move to the second case of Theorem 3.4. We raise (4.31) to the 2
3
power and

insert it in (4.30), obtaining that |µ̂1
ijkn(λ)| is bounded by

C|λ|
ϵ0
12

∫ ∣∣∣∣ ∫ 1

(|λ|R∗
yyy

2)
2
3

e−iλ1x−iλ2y−iλ2hi(x)−iλ3R(x,y)γijk(x, y)α1

(
|λ|−

ϵ0
4 2−kPy(x, y)

)
dx

∣∣∣∣ dy
(4.43)

We now use the Van der Corput lemma for either second or third derivatives in the x
integration in (4.43). Using (3.1), for either m = 2 or m = 3 the phase P (x, y) will satisfy
|∂mx P (x, y)| ≥ C|λ|xα−m. (Always α > 2 in the degenerate case at hand). We don’t have
to worry about the possibility that hi(x) has a zero of order α at x = 0; even if it does,
since we can assume |λ3| > D|λ2| for any preselected constant D in our initial decomposition
µn = µ1

n + µ2
n, we will still have |∂mx P (x, y)| ≥ C|λ|xα−m for m = 2 and 3 in this situation.
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We insert the m = 3 case of the Van der Corput lemma into (4.43) since that gives
the weaker estimate. The result can be written as

|µ̂1
ijkn(λ)| ≤ C|λ|

ϵ0
12

∫
[2−j ,2−j+1]×[2−k,2−k+1]

1

(|λ|R∗
yyy

2)
2
3

min(1, (|λ|xα)−
1
3 ) dx dy

We remove the left part of the minimum and just write this as

|µ̂1
ijkn(λ)| ≤ C|λ|

ϵ0
12

∫
[2−j ,2−j+1]×[2−k,2−k+1]

1

|λ|(R∗
yyy

2)
2
3 (xα)

1
3

dx dy (4.44)

The interpolation argument we have been using then implies the following analogue of (4.42).

||U1
ijknf ||

L
2
η1

+δ′(ϵ)→L
2
η1

+δ′(ϵ)
η1−η1ϵ

≤ C ′
ϵ2

−δ′(ϵ)n
∫
[2−j ,2−j+1]×[2−k,2−k+1]

(
1

|λ|(R∗
yyy

2)
2
3 (xα)

1
3

)η

(4.45)

By Theorem 3.5, the integral in (4.45) is uniformly bounded in j and k. Thus we once again
have the desired estimate (4.39).

We have now exhausted all cases, and we see that (4.39) is always satisfied. Hence we
are done with the analysis of the operators U1

ijkn, and therefore the proof of Theorem 1.1.
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