
Fourier transforms of indicator functions, lattice point
discrepancy, and the stability of integrals

Michael Greenblatt

January 17, 2021

Abstract

We prove sharp estimates for Fourier transforms of indicator functions of bounded
open sets in Rn with real analytic boundary, as well as nontrivial lattice point discrep-
ancy results. Both are derived from estimates on Fourier transforms of hypersurface
measures. Relations with maximal averages are discussed, connecting two conjectures
of Iosevich and Sawyer from [ISa1]. We also prove a theorem concerning the stability
under function perturbations of the growth rate of a real analytic function near a zero.
This result is sharp in an appropriate sense. It implies a corresponding stability result
for the local integrablity of negative powers of a real analytic function near a zero.

1 Background and Statements of Results

1.1 Preliminaries

Let D be a bounded open set in Rn+1 for some n ≥ 1 whose boundary ∂D is a real analytic
hypersurface. By this we mean that if x ∈ ∂D then there is a neighborhood Nx of x such
that Nx ∩ ∂D is the graph of a real analytic function of some n of the coordinate variables,
and such that Nx ∩D is the portion of Nx that is on one side of this graph.

Our theorems will be stated in terms of an index we define as follows. Given x0 ∈ ∂D,
we perform a translation and rotation taking x0 to the origin after which the ∂D can be
represented as a graph of some f(x) with f(0) = 0 and∇f(0) = (0, ..., 0). Then by resolution
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of singularities (see [AGuV] chapter 7 for a discussion of such facts and [G1] for elementary
proofs of closely related statements) there is an r0 > 0 such that there is a gx0 > 0 and an
integer 0 ≤ kx0 ≤ n− 1 such that if r < r0 one has an asymptotic expansion of the following
form, where m denotes Lebesgue measure and cr,x0 > 0.

m({x : |x| < r, |f(x)| < ε}) = cr,x0ε
gx0 | ln ε|kx0 + o(εgx0 | ln ε|kx0 ) (1.1)

Note that by the relation between distribution functions and integrability of functions, (1.1)
implies that |f(x)|−δ is integrable on some neighborhood of the origin for δ < gx0 and is not
integrable on any neighborhood of the origin when δ ≥ gx0 .

To give a better idea what the index gx0 means, suppose f(x) has a zero of order l ≥ 2
at the origin. Then there is some direction v such that the directional derivative ∂lvf(x) is
nonzero on a neighborhood of the origin. Then by the measure Van der Corput lemma
(Lemma 2.3) in the v direction, there is a constant C such that on some neighborhood of the
origin, on each interval in the v direction the measure of the points for which |f(x)| > ε is at

most Cε
1
l . Thus integrating over the remaining n− 1 directions we have that the exponent

gx0 is at least 1
l
. In the other extreme, if f(x) has nonzero Hessian determinant at the origin,

en elementary argument gives gx0 = n
2
. Thus gx0 is a measure of how flat ∂D is at x0, with

a smaller value of gx0 corresponding to a flatter surface.

We define the index g by
g = inf

x∈∂D
gx (1.2)

Our results will be expressed in terms of the index g.

There is also a natural geometric characterization of the index g when g ≤ 1. Let
Tx0(∂D) denote the tangent plane to ∂D at x0 and let d(x, Tx0(∂D)) denote the Euclidean
distance from x to this tangent plane. Let µ denote the Euclidean surface measure for the
surface ∂D. Then by (1.1) the index gx0 is equal to sup{h :

∫
∂D∩N d(x, Tx0(∂D))−hdµ <∞}

for any sufficiently small neighborhood N of x0. Note that if P is any other hyperplane
containing x0, then sup{h :

∫
∂D∩N d(x, P )−hdµ < ∞} = 1 for sufficiently small N , and if P

is a hyperplane not containing x0, then this supremum is infinity for sufficiently small N .
The above considerations combined with a compactness argument imply that if g ≤ 1, then
we have the following alternate definition.

g = sup{h :

∫
∂D

d(x, P )−hdµ <∞ for all hyperplanes P} (1.2’)

1.2 Lattice point discrepancy

We consider the situation where D can be written in polar form as {(r, ω) ∈ [0,∞) × Sn :
r < h(ω)} where h is a positive real analytic function on Sn. The classes of D of Examples
1 and 2 described in section 1.4 give some examples of domains of this form. For s > 0
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let sD denote the dilate of D given by {sx : x ∈ D}. Let N(s) denote the number of
lattice points contained inside the closure of sD. Then N(s) ∼ sn+1m(D) for large s, and
a simple geometric argument further gives that for some constant C one has the estimate
|N(s)− sn+1m(D)| < Csn. If D were say a polyhedral region with rational vertices instead
of a domain with real analytic boundary, it is not hard to show that the flatness of the sides
of D would cause the exponent n in Csn to be best possible.

It turns out that the curvature of δD in the situations at hand leads to stronger
estimates on this discrepancy function |N(s)−sn+1m(D)|. In fact, well-known methods (see
p.383-384 of [ShS]) imply the following. Suppose S is a smooth compact surface in Rn+1

bounding an open set U such that there are constants c, δ0 > 0 such that whenever δ < δ0,
if x ∈ U and |y| < δ, then x + y ∈ (1 + cδ)U . Then if the Euclidean surface measure ν
on S satisfies |ν̂(ξ)| = O(|ξ|−α), the lattice point discrepancy satisfies N(s) − sn+1m(U) =
O(sn−

α
n+1−α ).

Since the domains D being considered here satisfy the above condition, as an imme-
diate consequence of Theorem 1.3 of this paper in conjunction with a partition of unity on
∂D, we have the following.

Theorem 1.1. Suppose D = {(r, ω) ∈ [0,∞) × Sn : r < h(ω)} where h is a positive real
analytic function on Sn. Let g be as in (1.2), and let k = max{kx : x ∈ ∂D with gx = g}.

1. If g < 1
n+1

and k = 0, then we have the estimate N(s)− sn+1m(D) = O(sn−
g

n+1−g ).

2. If g = 1
n+1

or if g < 1
n+1

and k > 0, then for each ε > 0 we have N(s)− sn+1m(D) =

O(sn−
g

n+1−g+ε).

3. If g > 1
n+1

then we have the estimate N(s)− sn+1m(D) = O(s
n− 1

n2+2n ).

Finding the optimal exponent for the lattice point discrepancy is a notoriously difficult
problem, and even for the unit disk in two dimensions the optimal exponent is unknown.
The famous (and unsolved) Gauss circle problem is to show that for the disk one has an

estimate N(s)− πs2 = O(s
1
2
+ε) for any positive ε; it was shown by G.H. Hardy [Ha1] [Ha2]

that one does not have an estimate of the form N(s) − πs2 = O(s
1
2 ). As of this writing

the best exponent for which an estimate N(s) − πs2 = O(sη) is known is η = 517
824

, due to
Bourgain and Watt [BWa].

Due to the extensive history of the subject we can only give some of the highlights of
the known lattice point discrepancy results. Much of the following history is taken from
[IvKrKuNo]. For the disk in two dimensions, the exponent η provided by the above-
mentioned surface measure Fourier transform argument is η = 2

3
, a result discovered by

Sierpiński [Si]. One can improve on this exponent using expressions involving Bessel func-
tions for discrepancy function N(s)− πs2. There were a number of papers in this direction,
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culminating in the paper [Ko] of Kolesnik which gave the exponent η = 278
429

+ ε for any ε > 0.
In the 1980’s, papers of Bombieri and Iwaniec [BoIw] and Iwaniec and Mozzochi [IwMo]
developed a new approach to such problems which spurred further development. For some
time, the best result expanding on this approach was the paper of Huxley [Hu3], giving the
exponent η = 131

208
+ ε, but the recent above-mentioned preprint of Bourgain and Watt [BWa]

provides the current best exponent of 517
824

.

For spheres in three dimensions, an early result of Landau [L] showed that N(s) −
s3m(D) = O(s

3
2 ). It was shown in several papers of Vinogradov, culminating in [Vi], that

one has N(s)−s3m(D) = O(s
4
3
+ε). This exponent has been improved since then, for example

in the paper of Heath-Brown [He] that gives an exponent of 21
16

+ ε. It is known by an old
result of Szegö [Sz] that one can never get an exponent of 1, providing a limit to how far
these results may be improved.

For spheres in four or more dimensions, the problem becomes much less difficult. One
can show that for n+ 1 ≥ 4 one has N(s)− sn+1m(D) = O(sn−1), and that this exponent is
best possible. We refer to [Kr2] for more information about the higher-dimensional situation.

Most past results for domains other than spheres have been for convex domains. In
the case of a convex domain in two dimensions whose boundary is C2 with nonvanishing
curvature, van der Corput [Va1] showed that N(s) − s2m(D) = O(s

2
3 ). He later showed in

[Va2] that if the boundary is in fact C∞, then one necessarily has an exponent strictly less
than 2

3
, improved by Trifonov [Tr] to 27

41
+ ε. Later, in the above-mentioned paper of Huxley

[Hu3] the exponent 131
208

+ ε was achieved for such domains with C3 boundary. One will never
get an exponent better than 1

2
that works for all C2 convex domains with nonvanishing

curvature, as was first proved by Jarnik [J1]. There are individual such domains where one
cannot improve Van der Corput’s 2

3
exponent, proved by Jarnik in [J2].

For a convex domain in higher dimensions whose boundary has nonzero Gaussian
curvature and satisfies an appropriate smoothness condition, Hlawka [Hl1][Hl2] showed that

one has N(s) − sn+1m(D) = O(sn−1+
2

n+2 ). This result was improved over the subsequent
decades. A noteworthy example is the paper of Müller [Mu] where it is shown that for n = 2
one can improve the exponent to 1 + 20

43
+ ε, for n = 3 one can improve it to 2 + 6

17
+ ε, and

for n ≥ 4 one can improve it to n− 1 + n+5
n2+3n+4

+ ε.

There are also a variety of papers where the Gaussian curvature condition and/or
smoothness condition on the boundary of the convex domain are relaxed, such as the papers
[ISaSe1] [ISaSe2] [ISaSe3] [R3] [R4], whose proofs use harmonic analysis techniques.

We refer to the references [Hu1] [Hu2] [IvKrKuNo] [Kr1] [Kr2] for further results on
lattice point discrepancy problems.

4



1.3 Maximal averages

Let S be a smooth hypersurface in Rn+1, let φ(x) be a smooth cutoff function on Rn+1 and
let µ denote the Euclidean surface measure on S. Consider the operator

Mf = sup
s>0

∣∣∣∣ ∫
Rn+1

f(x− st)φ(t) dµ(t)

∣∣∣∣
Such operators are often referred to as maximal averaging operators over hypersurfaces and
there has been a lot of work on these operators. The initial work was by Stein [S2], where
maximal averages over n-dimensional spheres were analyzed for n ≥ 2 and M was shown to
be bounded on Lp exactly when p > n+1

n
. The tricky case when n = 1 was later dealt with

in Bourgain’s paper [B], where boundedness of M was shown to indeed hold if and only if
p > 2. These results can be generalized to situations where S is a hypersurface for which the
Hessian determinant has positive rank, as was shown in results of Sogge [So] and Greenleaf
[Gr].

As for more general hypersurfaces, there have been a number of results. In the paper
[I] of Iosevich, it was shown that the methods of [B] can be extended to finite-type curves in
R2. For two-dimensional hypersurfaces in R3, Ikromov, Kempe, and Muller [IkKeM] proved
a sharp result for p > 2 whenever the hypersurfaces satisfy a certain transversality condition.
The author also has a recent paper [G7] with results on this subject. The methods of [IkKeM]
were later extended to various p < 2 situations in [BuDeIkM]. The methods of [IkKeM] and
[G7] have some commonalities with those of this paper; they use resolution of singularities
(in two dimensions) to prove oscillatory integral estimates related to surface measure Fourier
transform decay estimates, and these estimates are key to the proofs of the maximal operator
boundedness theorems. However, the resolution of singularities methods of both papers are
specific to two dimensions, so different resolution of singularities methods are needed in this
paper.

There also have been quite a few results in higher dimensions. The paper [SoS] by
Sogge and Stein showed that if the Gaussian curvature of S does not vanish to infinite order
at any point, there is some p < ∞ for which M is bounded on Lp. Optimal values of p
for which M is bounded on Lp have been proven by the author under a nondegeneracy
condition on the Newton polyhedron [G5]. For convex hypersurfaces of finite line type, there
have been many results. For example, there are results of Cowling and Mauceri [CoMa1]
[CoMa2], Nagel, Seeger, and Wainger [NaSeW], Iosevich and Sawyer [ISa1], and Iosevich,
Sawyer and Seeger [ISaSe4].

In [ISa1], two conjectures were made for the hypersurface case. The first conjecture
is as follows.

Conjecture 1. [ISa1] If S is a smooth hypersurface and p > 2, then a necessary and

sufficient condition for M to be bounded on Lp for every φ(x) is that dist(x, V )−
1
p is locally

integrable with respect to the measure µ for any hyperplane V not containing the origin.

5



In [ISa2] the authors showed the necessity of this condition in relatively short order
(for all p > 1 in fact), so the main issue is showing sufficiency for p > 2. The second
conjecture in [ISa1] is as follows, extending a conjecture of Stein who considered the γ = 1

2

case.

Conjecture 2. [ISa1] If S is a smooth hypersurface such that |µ̂(ξ)| ≤ C(1 + |ξ|)−γ for
some 0 < γ ≤ 1

2
then M is bounded on Lp for p > 1

γ
for any φ(x).

Suppose S is a compact real analytic hypersurface with g ≤ 1
n+1

none of whose tangent
planes contain the origin. Then Conjecture 1 becomes the statement that a necessary and
sufficient condition for M to be bounded on Lp for every φ(x) is that p > 1

g
. So if Conjecture

2 holds, given p0 >
1
g

one can use a partition of unity in conjunction with Theorem 1.3 below

and take γ = 1
p0

in Conjecture 2, leading to the statement that M is bounded on Lp for any

p > p0. Letting p0 approach 1
g

we then have that M is bounded on Lp for all p > 1
g
.

Thus Theorem 1.3 combined with Conjecture 2 imply that the sufficiency part of
Conjecture 1 holds. Since the necessity part was shown in [ISa2], we have that Conjecture 2
implies Conjecture 1 for the surfaces at hand.

1.4 Fourier transforms of indicator functions

We let D be a bounded open set in Rn+1 with real analytic boundary, like before. As usual
let χD(x) denote the indicator function of D. We are interested in estimates of the following
form for |ξ| > 2 say, where C is a constant that can depend on the domain D.

|χ̂D(ξ)| ≤ C|ξ|−δ(ln |ξ|)l (1.3)

Here we would like δ > 0 be optimal and l ≥ 0 to be optimal for a given δ. Since D is a
bounded domain, |χ̂D(ξ)| is a bounded function, so we are interested in seeing when (1.3)
holds for |ξ| > N for some large N .

Using a partition of unity and simple integrations by parts transverse to the surface
one can show δ ≥ 1, and the fact that ∂D is a non-flat real analytic surface can be used to
show δ > 1. The general heuristic is that the more curved the surface the better the exponent
δ can be made. The most extreme case is when ∂D has nonzero Gaussian curvature, where
one can take (δ, l) = (n

2
+ 1, 0).

Note that by Plancherel’s theorem, since D is bounded one has that χ̂D(ξ) is in

L2(Rn+1). As a result, |χ̂D(ξ)| decays as o(|ξ|−n+1
2 ) in a certain averaged sense. But when

the surface is not very curved at at least one point on the boundary, there will be directions
with a much slower decay rate.

This problem has been considered by a number of authors. We mention the early
work of Randol [R1] [R2] (for D not necessarily with real analytic boundary), which also
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proved lattice point discrepancy results using the Fourier transform methods described in
section 1.2. [BraHoI] [Sv] give further results on Fourier transforms of indicator functions
for convex sets. When the set is convex one does not get a logarithmic factor, so the issue
is finding the optimal power |ξ|−δ in the Fourier transform decay rate.

As will be described in (1.12)−(1.14), a straightforward integration by parts argument
connects decay rate estimates on |χ̂D(ξ)| to decay rate estimates on the Fourier transform
of smooth surface measures on ∂D. We refer to the end of section 1.5 for a description of
some prior work in the latter subject.

Our theorem regarding Fourier transforms of characteristic functions is as follows, where C
denotes a constant depending on the domain D. Here g is as in sections 1.1 and 1.2.

Theorem 1.2.

1. Suppose g < 1
n+1

. Then g = gx for at least one x ∈ ∂D. Let k = max{kx : x ∈ ∂D
with gx = g}. Then for |ξ| > 2 the estimate |χ̂D(ξ)| ≤ C|ξ|−1−g(ln |ξ|)k is satisfied.

2. If g = 1
n+1

, then part 1 holds except with an additional logarithmic factor: |χ̂D(ξ)| ≤
C|ξ|−1−g(ln |ξ|)k+1.

3. If g > 1
n+1

, then the estimate |χ̂D(ξ)| ≤ C|ξ|−1−
1

n+1 holds.

4. If g < 1, then one does not have an estimate |χ̂D(ξ)| ≤ C|ξ|−1−δ for any δ > g. Thus
the exponent −1− g of parts 1 and 2 of this theorem is sharp.

Although we will not prove it here, by rigorizing the heuristics at the end of this section
one can actually show that if x ∈ ∂D with gx < 1 then there even exists a constant C ′ (de-
pending on D) such that for sufficiently large R one has sup|ξ|=R |χ̂D(ξ)| ≥ C ′R−1−gx(lnR)kx .
Hence the estimate of part 1 of Theorem 1.2 is optimal.

Example 1.

For positive integers a1, ..., an+1 let D = {x ∈ Rn+1 :
∑n+1

i=1 x
2ai
i ≤ 1}. Since each

function x2aii is convex, for any x and y in D and any 0 ≤ t ≤ 1 one has
∑n+1

i=1 (txi + (1 −
t)yi)

2ai ≤
∑n+1

i=1 (tx2aii +(1− t)y2aii ) = t
∑n+1

i=1 x
2ai
i +(1− t)

∑n+1
i=1 y

2ai
i < 1. Hence D is convex.

Moreover, whenever y ∈ ∂D with more than one component yi nonzero, the surface
∂D has at least one nonvanishing curvature at y. To see why this is the case, suppose yi and
yj are both nonzero. Then the two-dimensional cross section of D in the xi and xj variables

containing y is a curve of the form {(xi, xj) : x2aii + x
2aj
j = c} with (yi, yj) on the portion of

the curve with xi, xj, c 6= 0. A direct computation reveals that the curve has nonvanishing
curvature at such points. Therefore the curvature tangent to this curve is nonvanishing at y
and thus gy ≥ 1

2
.
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Next suppose y ∈ ∂D is such that all components except one are zero. We fo-
cus on the case where yn+1 6= 0, so that y = (0, ..., 0, 1). Then since xn+1 = (1 −∑n

i=1 x
2ai
i )

1
2an+1 on ∂D near y, one can represent ∂D near y as the graph of f(x1, ..., xn) =

1− 1
2an+1

b(x1, ..., xn)
∑n

i=1 x
2ai
i , where b(x) is real analytic with b(0, ..., 0) = 1. Thus the pair

(gy, ky) is characterized by the following holding for small r > 0.

m({x : |x| < r,

n∑
i=1

x2aii < ε}) = cr,yε
gy | ln ε|ky + o(εgy | ln ε|ky) (1.4)

One can compute the exponent in (1.4) directly using elementary methods, or using Newton
polyhedra as in [AGuV]. The result is that ky = 0 and gy =

∑n
i=1

1
2ai

.

The analogous result holds for the other y for which all but one component is zero.
So if yj is nonzero we have gy =

∑
i 6=j

1
2ai

. Thus the minimum of gy over all y for which all

but one component is zero is given by g0 =
∑n+1

i=1
1
2ai
− 1

2mini ai
. So the index g is given by g0

if g0 ≤ 1
2
, and some number at least 1

2
if g0 >

1
2
. If g < 1

n+1
as in part 1 of Theorem 1.2, we

must be in the former situation and as a result g = g0 =
∑n+1

i=1
1
2ai
− 1

2mini ai
.

Example 2.

Let p(x1, ..., xn) be a polynomial with p(0) = 0 and let a be a positive integer such
that 2a is greater than the degree of p. For a small η > 0, let D = {x ∈ Rn+1 :

∑n+1
i=1 x

2a
i −

η p(x1, ..., xn) = 1}. If η is sufficiently small, then ∂D is domain with real analytic boundary,
as can be seen by observing that the outward directional derivative will be nonzero on ∂D
if η is sufficiently small.

Since p(0) = 0, the point y = (0, ..., 0, 1) is on ∂D. Near this point, ∂D satisfies

xn+1 = (1 + η p(x1, ..., xn)−
n∑
i=1

x2ai )
1
2a (1.5)

As a result, near (0, ..., 0, 1) the surface ∂D is represented as the graph of f(x), where f(x)
is of the form

f(x1, ..., xn) = 1 + b(x1, ..., xn)(
η

2a
p(x1, ..., xn)− 1

2a

n∑
i=1

x2ai ) (1.6)

Here b(x) is real analytic with b(0) = 1. Stated another way, for any polynomial p(x) with
p(0) = 0 one can find an arbitrarily high order perturbation q(x) of a small multiple of p(x)
for which there exists a domain D with y = (0, ..., 0, 1) ∈ ∂D near which ∂D is the graph of
1 + b(x)q(x) near y, where b(0) = 1. This illustrates that there is a wide range of possible
local behavior for the surfaces and indices being considered in this paper.

In the case at hand, the pair (gy, ky) is characterized by the following being true for
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small r > 0.

m({x : |x| < r,
∣∣p(x1, ..., xn)− 1

η

n∑
i=1

x2ai
∣∣ < ε}) = cr,yε

gy | ln ε|ky + o(εgy | ln ε|ky) (1.7)

Some motivation behind Theorem 1.2.

To give an idea of why (1 + g, k) might be the optimal exponent pair for which (1.3)
holds, let v be any direction, and suppose we are looking at χ̂D(ξ) for ξ in the v direction. Let
x0 be any point on ∂D for which v is the normal direction to ∂D at x0. After a translation
and rotation, we can assume that x0 is the origin and that v is the (0, ..., 0, 1) direction. Let
f(x) be such that the surface ∂D is parameterized by xn+1 = f(x1, ..., xn) with f(0) = 0 and
∇f(0) = (0, ..., 0). For some small r > 0, let Ar denote the disk {x ∈ Rn : |(x1, ..., xn)| < r}
and let β(x) be a nonnegative cutoff function on R supported on (−r, r) and nonzero on a
neighborhood of x = 0. We examine the Fourier transform of χD(x)χAr(x1, ..., xn)β(xn+1)
in the (0, ..., 0, 1) direction, given by I(t), where

I(t) =

∫ ∞
−∞

(∫
|(x1,...,xn)|<r

χD(x) dx1... dxn

)
β(xn+1)e

−itxn+1 dxn+1 (1.8)

Write f(x) = f+(x) − f−(x) as the difference of its positive and negative parts, and let
c = m({x : |x| < r, f(x) < 0}).

If xn+1 > 0, the inner integral of (1.8) is given by c + m({x : |x| < r, 0 < f+(x) <
xn+1}), while if xn+1 < 0, the inner integral of (1.8) is given by c − m({x : |x| < r, 0 <
f−(x) < −xn+1}). Thus I(t) can be rewritten as

c

∫ ∞
−∞

β(xn+1)e
−itxn+1 dxn+1

+

∫ ∞
0

m({x : |x| < r, 0 < f+(x) < xn+1})β(xn+1)e
−itxn+1 dxn+1

−
∫ ∞
0

m({x : |x| < r, 0 < f−(x) < xn+1})β(xn+1)e
itxn+1 dxn+1 (1.9)

Because β is smooth, the first integral in (1.9) decays faster than C|t|−N for any N . For the
second and third integrals, assuming f+ and f− respectively are not identically zero near
the origin, if r is sufficiently small, analogously to (1.1) we may write

m({x : |x| < r, 0 < f+(x) < ε}) = c+r ε
g+ | ln ε|k+ + o(εg

+ | ln ε|k+) (1.10a)

m({x : |x| < r, 0 < f−(x) < ε}) = c−r ε
g−| ln ε|k− + o(εg

− | ln ε|k−) (1.10b)

Then the growth rate εg0 | ln ε|k0 of (1.1) (letting x0 = 0) is the slower of the two corresponding
growth rates of (1.10a)− (1.10b). By resolution of singularities, it turns out that derivatives
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in ε of the left-hand expressions of (1.9) have asymptotics given by the derivatives in ε of
the corresponding right-hand sides, with the same for higher derivatives. Thus the second
and third integrals of (1.9) have the same asymptotics in t as the integrals

c+r

∫ ∞
0

xg
+

n+1| lnxn+1|k
+

β(xn+1)e
−itxn+1 dxn+1

c−r

∫ ∞
0

xg
−

n+1| lnxn+1|k
−
β(xn+1)e

itxn+1 dxn+1 (1.11)

By stationary phase one gets that for large |t| the first integral is of order |t|−1−g+| ln t|k+

and the second integral is of order |t|−1−g− | ln t|k− . When g0 < 1, it can be shown that the
coefficients of these terms are such that even if g+ = g− and k+ = k−, these two leading
terms will not cancel. As a result, the overall expression (1.9) will have a decay rate in t
given by the slower of these two decay rates, which is exactly the rate (g0, k0).

To find the decay rate of χ̂D(ξ) in some arbitrary v direction, one does a partition
of unity in the integral defining χ̂D(ξ). The largest terms will be those terms that are
localized near a boundary point x0 of D for which the normal to ∂D is in the v direction.
Using a rigorization of the above argument, such a term has magnitude comparable to
C|ξ|−1−gx0 (ln |ξ|)−kx0 for large |ξ|. Adding over all such terms of the partition of unity gives
a bound of the maximum of several such terms. Since the index g is the infimum of all gx0 ,
we have that in the v direction χ̂D(ξ) satisfies the bounds of Theorem 1.2 part 1. This bound
will be sharp since different terms coming from the partition of unity will not cancel one
another out. This can be seen as follows. Note that a translation by some a ∈ Rn+1 results
in a factor of e−iξ·a on the Fourier transform. As a result, the asymptotics corresponding to a
term of the partition of unity centered at a will have a coefficient of e−iξ·a on the asymptotics
and several such terms can never cancel, even if they have the same rate of Fourier decay.
As a result, the overall decay rate of the Fourier transform will be exactly the minimum of
the decay rates corresponding to the various terms from the partition of unity.

Note that the above heuristics only use consequences of resolution of singularities and
not the Van der Corput lemma or other tools from harmonic analysis often used to analyze
such integrals. The reason is that the above heuristics only apply in a single direction, and
finding bounds that are uniform over all directions is substantially more difficult. Thus to
prove Theorem 1.2 more is needed. For this we turn to the connection between the above
Fourier transforms of indicator functions and Fourier transforms of surface measures.

1.5 Fourier transforms of hypersurface measures

Let x0 ∈ ∂D and like above, without loss of generality we may assume that x0 = 0 and ∂D
is the graph of some f(x1, ..., xn) with f(0) = 0 and ∇f(0) = 0. Let ψ(x) be a nonnegative
cutoff function supported near the origin with ψ(x) = 1 on some neighborhood of the origin.
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We look at ̂ψ(x)χD(x)(ξ), given by∫
Rn

(∫
{x:xn+1>f(x1,...,xn)}

ψ(x1, ..., xn+1)e
−iξn+1xn+1 dxn+1

)
e−iξ1x1−...−iξnxn dx1... dxn (1.12)

We change variables in the inner integral, turning xn+1 into xn+1 + f(x1, ..., xn). Then for a
new cutoff function ψ0(x1, ..., xn+1), (1.12) becomes∫

Rn

(∫ ∞
0

ψ0(x1, ..., xn+1)e
−iξn+1xn+1 dxn+1

)
e−iξn+1f(x1,...,xn)−iξ1x1−...−iξnxn dx1... dxn (1.13)

Suppose |ξn+1| <
∑n

i=1 |ξi|. Then since ∇f(0) = 0, if ψ0 is supported on an appropriately
small neighborhood of the origin, one can integrate by parts in (1.13) repeatedly in the xi
variable for which |ξi| is greatest and obtain a bound of CN |ξi|−N ≤ C ′N |ξ|−N for any N .
Thus our interest is in the case when |ξn+1| ≥

∑n
i=1 |ξi|, which we henceforth assume.

We integrate by parts twice in the xn+1 variable in (1.13), integrating the e−iξn+1xn+1

factor and differentiating ψ0(x1, ..., xn+1), leading to

1

−iξn+1

∫
Rn
ψ0(x1, ..., xn, 0)e−iξn+1f(x1,...,xn)−iξ1x1−...−iξnxn dx1... dxn

+
1

(ξn+1)2

∫
Rn

∂ψ0

∂xn+1

(x1, ..., xn, 0)e−iξn+1f(x1,...,xn)−iξ1x1−...−iξnxn dx1... dxn

− 1

(ξn+1)2

(∫ ∞
0

∂2ψ0

∂x2n+1

(x1, ..., xn+1)e
−iξn+1xn+1 dxn+1

)
e−iξn+1f(x1,...,xn)−iξ1x1−...−iξnxn dx1... dxn

(1.14)

Note that the second and third terms in (1.14) are bounded by C 1
|ξn+1|2 ≤ C ′ 1

|ξ|2 , and

that the first term is 1
−iξn+1

times the Fourier transform of a surface measure supported on

∂D. So since |ξn+1| > c|ξ| in the situation at hand, if we can show that such surface measure
Fourier transforms satisfy the estimates of Theorem 1.2 parts 1-3 except with exponents
decreased by 1, then by using a partition of unity on ∂D parts 1-3 of Theorem 1.2 will
follow. That these estimates are satisfied follows from the following theorem.

Theorem 1.3. Let µ denote the standard Euclidean surface measure on ∂D. Suppose x0 ∈
∂D, and let gx0 and kx0 be as in (1.1). Then there is a neighborhood N of x0 in Rn+1 such
that if φ(x) is a smooth function supported on N , then for some constant C > 0 depending
on both D and φ, for all |ξ| > 2 we have

1. If gx0 <
1

n+1
, then φ̂(x)µ(ξ) ≤ C|ξ|−gx0 (ln |ξ|)kx0 .

2. If gx0 = 1
n+1

, then φ̂(x)µ(ξ) ≤ C|ξ|−gx0 (ln |ξ|)kx0+1.

11



3. If gx0 >
1

n+1
, then φ̂(x)µ(ξ) ≤ C|ξ|−

1
n+1 .

4. If gx0 < 1 and φ(x) is a nonnegative function that is positive on a neighborhood of

x0, then one does not have an estimate φ̂(x)µ(ξ) ≤ C|ξ|−h for any h > gx0. Thus if
gx0 ≤ 1

n+1
the power of |ξ| in parts 1 and 2 is best possible.

Although we will not show it here, if gx0 < 1 and φ(x) is a nonnegative function that
is positive on a neighborhood of x0, then similarly to Theorem 1.2 there is even a constant

C ′ such that for sufficiently large R one has sup|ξ|=R |φ̂(x)µ(ξ)| ≥ C ′R−gx0 (lnR)kx0 .

Suppose we have translated and rotated coordinates so that x = 0, f(x) = 0, and

∇f(0) = 0. We focus our attention on the following expression for φ̂(x)µ(ξ).

φ̂(x)µ(ξ) =

∫
Rn
φ(x1, ..., xn)e−iξn+1f(x1,...,xn)−iξ1x1−...−iξnxn dx1... dxn (1.15)

Using a rigorization of the heuristics at the end of section 1.4 (see chapter 6 of [AGV]
for more information), when ξi = 0 for all 1 ≤ i ≤ n, the integral in (1.15) can be shown
to be bounded by C|ξ|−g0(ln |ξ|)k0 for |ξ| > 2. Thus proving Theorem 1.3 is equivalent
to showing this bound is stable under linear perturbations of the phase. By shrinking the
neighborhood of x0 we are working in if necessary, we can always assume that given η > 0
we have

∑n
i=1 |ξi| < η|ξ|, for when

∑n
i=1 |ξi| ≥ η|ξ| there is a neighborhood of 0 on which

repeated integrations by parts give a bound of CN |ξ|−N for any N .

Thus the goal is to understand when the bound when ξi = 0 for all 1 ≤ i ≤ n is
stable under small linear perturbations of the phase. In the n = 1 case, simply using the
Van der Corput lemma for kth derivatives, where k is the order of the zero of f(x) at x = 0,
will do the trick. For arbitrary n, in this paper we will use resolution of singularities to
simultaneously “untangle” the zeroes of n+ 1 functions in the phase to reduce to a situation
where the functions are effectively monomials and the Van der Corput lemma for some kth
derivative, with k ≤ n+1, can be used in one direction. The author used a similar philosophy
in [G6]. Because we may need as many as n+1 derivatives in the Van der Corput lemma, we
only get the best possible estimate when gx0 <

1
n+1

, with an additional logarithmic factor if

gx0 = 1
n+1

. This also accounts for the exponent 1
n+1

in part 3 of Theorems 1.2 and 1.3. The

author does not know if this boundary value gx0 = 1
n+1

can be improved with an additional
argument, such as an examination of the resolution of singularities process being used rather
than simply using a resolution of singularities theorem as we are doing in this paper.

There is an extensive literature concerning the decay rate of Fourier transforms of
smooth hypersurface measures, which in view of integrations by parts such as in (1.12)−(1.14)
imply corresponding results on the decay rate of Fourier transforms of indicator functions.
If the surface has nonvanishing Gaussian curvature of x0, then as is well known one has an

estimate φ̂(x)µ(ξ) ≤ C|ξ|−n2 . We refer to Chapter 8 of [S] for details and further results.
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When the surface has at least one vanishing curvature, one can use similar methods to

show one has φ̂(x)µ(ξ) ≤ C|ξ|− 1
2 . One popular class of surfaces to study has been the

convex hypersurfaces considered in [BrNaW] [CoDiMaM] [CoMa2] [NaSeW] [Sc]. It should
be pointed out that the paper [BrNaW] characterizes the Fourier decay rate for smooth
convex hypersurfaces of finite line type in terms of the height of certain balls, and this
characterization is readily seen to be equivalent (for such surfaces) to the characterization
in terms of g in Theorem 1.3.

1.6 Stability of integrals

Suppose q(x) is a real analytic function defined on a neighborhood of the origin in Rn with
q(0) = 0. Then as in (1.1), there is an r0 > 0 and a pair (h, l) with h > 0 and 0 ≤ l ≤ n− 1
an integer such that if 0 < r ≤ r0 we have an asymptotic development

m({x : |x| < r, |q(x)| < ε}) = crε
h| ln ε|l + o(εh| ln ε|l) (1.16)

A natural question is ask is how perturbing the function q(x) affects the growth rate of q(x).
For example, we may ask for which s(x) do we have an estimate of the following form for
some r1 < r0.

m({x : |x| < r1, |q(x) + s(x)| < ε}) ≤ Cεh| ln ε|l (1.17)

Ideally, we would like the estimate (1.17) to hold over all s(x) in a large class of real analytic
perturbation functions that are small in an appropriate sense.

Besides its inherent interest, this question arises in complex geometry when one con-
siders the analogous question for perturbations of analytic functions of several complex
variables. For example, a strong perturbation result was proved in [DK] and then used to
prove the existence of Kähler-Einstein metrics on a class of Fano orbifolds, generalizing and
simplifying earlier work of Nadel [N]. Significant work in this area has also been done by
Phong and Sturm, such as in [PSt] and subsequent papers. The papers [DK] and [PSt] show
that for (complex analytic) perturbations s(x), there are r2 > r1 > 0 such that equation
(1.17) holds if sup|x|≤r2 |s(x)| is sufficiently small.

One gets much different behavior in the real case, as can be seen by the example
q(x1, x2, x3) = x21 + x22 + x23. Then (h, l) = (3/2, 0), but any small linear perturbation of
q(x1, x2, x3) will have its index pair (h, l) given by (1, 0). This phenomenon is not restricted
to linear perturbations. If one takes q(x1, x2, x3) = x41 + x22 + x23, then it can be shown that
(h, l) = (5/4, 0), while for x41− tx21 + x22 + x23, if t > 0 one has (h, l) = (1, 0). This example is
worked out in [G2] and is derived from a related example of Varchenko [V].

Examples such as the above rule out general results in the real case that are analogous
to the ones above in the complex case. But there are classes of real-analytic functions for
which the growth rate can only improve under perturbations. The simplest example occurs
when n = 1. Suppose q(x) is a real analytic function of one variable defined near the origin
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with q(0) = 0. Let m denote the order of the zero of q(x) at x = 0. Then h = 1
m

and l = 0

in (1.16). Let I be an interval centered at x = 0 and a δ > 0 such that | dmq
dxm
| > δ on I. Then

if q(x) + s(x) is a perturbation of q(x) such that |d
m(q+s)
dxm

| > δ
2

on I, one can use the measure
Van der Corput lemma, Lemma 2.3, to conclude that there is a constant C independent of
r such that m({x ∈ I : |q(x) + s(x)| < ε}) < Cε

1
m . Thus the estimate (1.17) holds over all

such perturbations with a uniform constant.

In two dimensions it was proved by Karpushkin [Ka1][Ka2] using versal deformation
theory that one obtains a strong stability result similar to those for complex analytic func-
tions described above. This was reproven up to endpoints in [PSSt] and they also showed
that in three dimensions such a result holds if h < 2

N
, where N is the order of the zero of q(x)

at the origin. But results in higher dimensions have been hard to come by. We will show
that if one restricts to perturbations coming from a finite-dimensional space of functions,
one can get results that hold in any dimension. The maximum dimension of such a space of
perturbation functions will be sharp in an appropriate sense. Our theorem is as follows.

Theorem 1.4.

1. Write h = 1
m+γ

, where m is a nonnegative integer and 0 < γ ≤ 1. Let s1(x), ..., sm(x)
be linearly independent functions, each real analytic on a neighborhood of the origin
and satisfying si(0) = 0.

Then there are positive constants C, δ, and r1 < r0 depending on q(x) and the si(x)
such that for each s(x) of the form

∑m
i=1 ηisi(x) with each |ηi| < δ one has

m({x : |x| < r1, |q(x) + s(x)| < ε}) ≤ Cεh| ln ε|l (1.18)

Consequently, if t > 0 is such that
∫
{x:|x|<r0} |q(x)|−t <∞, then there is a constant Dt

such that for each such
∑m

i=1 ηisi(x) we have
∫
{x:|x|<r1} |q(x) + s(x)|−t < Dt

2. The number m of functions in part 1 is sharp in the sense that if t is any positive
rational number and one writes t = 1

m+γ
with 0 ≤ γ < 1, m a nonnegative integer,

then there exists a q(x) for which h = t, real analytic functions s1(x), ..., sm+1(x) with
each si(0) = 0, and an h′ < h such that there are no δ, r1 and C for which every s(x)
of the form

∑m+1
i=1 ηisi(x) with each |ηi| < δ satisfies

m({x : |x| < r1, |q(x) + s(x)| < ε}) ≤ Cεh
′

(1.19)

Here q(x) and the si(x) are functions of a number of variables that depends on t.

Note that when h = 1
m

is the reciprocal of an integer, there is a difference of two in
the number of perturbation functions in the two parts of Theorem 1.4 instead of one. This
is because when γ = 0, the arguments of the proof of part 1 lead to an additional factor
of | ln ε| in (1.18). Therefore the case γ = 0 must be excluded from the statement of part
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1. Also, since in part 2) the si(x) are functions of a number of variables that depends on t,
it does not preclude analogues of the three-dimensional theorem of [PSSt] from holding in
higher dimensions.

The methods we will use to prove part 1 of Theorem 1.4 will be quite similar to
those used to prove Theorem 1.3 as the arguments in the proof of Theorem 1.3 apply to
nonlinear perturbation functions equally well as linear perturbation functions. In place of
the oscillatory integral Van der Corput lemmas, Lemma 2.1 and Lemma 2.2, we will use the
measure version, Lemma 2.3.

2 The proof of parts 1-3 of Theorems 1.2 and 1.3.

As explained above Theorem 1.2, parts 1-3 of Theorem 1.2 follow from parts 1-3 of Theorem
1.3, so that is what we will prove in this section.

2.1 Preliminary lemmas.

We will make essential use of Van der Corput-type lemmas in our arguments. If p > 1, we
use the traditional Van der Corput lemma (see p. 334 of [S1]):

Lemma 2.1. Suppose h(x) is a real-valued Ck function on the interval [a, b] such that
|h(k)(x)| > A on [a, b] for some A > 0. Let φ(x) be C1 on [a, b].

If k ≥ 2 there is a constant ck depending only on k such that∣∣∣∣ ∫ b

a

eih(x)φ(x) dx

∣∣∣∣ ≤ ckA
− 1
k

(
|φ(b)|+

∫ b

a

|φ′(x)| dx
)

(2.1)

If k = 1, the same is true if we also assume that h(x) is C2 and h′(x) is monotone on [a, b].

When p = 1, we will use the following variant of Lemma 2.1 that holds when k = 1.

Lemma 2.2. (Lemma 2.2 of [G3].) Suppose the hypotheses of Lemma 2.1 hold for k = 1,
except instead of assuming that h′(x) is monotone on [a, b] we assume that |h′′(x)| < B

(b−a)A
for some constant B > 0. Then we have∣∣∣∣ ∫ b

a

eih(x)φ(x) dx

∣∣∣∣ ≤ A−1
(

(B + 2) sup
[a,b]

|φ(x)|+
∫ b

a

|φ′(x)| dx
)

(2.2)

We will also make use of the following measure version of the Van der Corput lemma.
We refer to [C] for a proof.

15



Lemma 2.3. Suppose k ≥ 1 and f(t) is a Ck function on an interval I such that

∣∣∣∣∂kf∂tk
∣∣∣∣ > A

on I, where A > 0. There is a constant Bk depending on k only such that for each ε > 0 the
following holds.

m({t ∈ I : |f(t)| < ε}) ≤ BkA
− 1
k ε

1
k

We next prove a compactness lemma needed for our arguments. In the following,
for mutually orthogonal unit vectors v1, ..., vn+1 ∈ Rn+1 and ε > 0, we let Av1,...,vn+1,ε =
{c1v1 + ...+ cn+1vn+1 : |c1| ≤ 1, |ci+1| ≤ ε|ci| for all i ≥ 1}.

Lemma 2.4. Suppose for each set of mutually orthogonal unit vectors v1, ..., vn+1 in Rn+1

the set Bv1,...,vn+1 is of the form Av1,...,vn+1,ε for some ε > 0. Then there is a finite collection
{Bi}Ni=1 where each Bi is some Bv1,...,vn+1, such that {x : |x| ≤ 1} ⊂ ∪Ni=1Bi.

Proof. We induct on the dimension. For n = 1 the lemma follows immediately from the
compactness of the unit circle, so we assume the result is known for n − 1 and seek to
prove it for some n ≥ 2. For a fixed v1, for some εv2,...,vn+1 > 0 a given Bv1,...,vn+1 contains
Cv2,...,vn+1 = {v1 + c2v2 + ... + cn+1vn+1 : |c2| ≤ εv2,...,vn+1 , |ci+1| ≤ εv2,...,vn+1|ci| for all i ≥ 2}.
Let Dv2,...,vn+1 denote the dilate of Cv2,...,vn+1 by a factor of (εv2,...,vn+1)

−1 in the hyperplane
{x : x · v1 = 1}, where the dilation is centered at v1. Then the sets Dv2,...,vn+1 satisfy the
hypotheses of this lemma in this hyperplane in one lower dimension. Thus we may apply
the induction hypothesis to conclude that there is a finite collection of Dv2,...,vn+1 covering
{x : x · v1 = 1, |x− v1| ≤ 1}.

Going back to the sets Cv2,...,vn+1 , we see that there is therefore a finite collection of
sets Cv2,...,vn+1 covering a set of the form {x : x · v1 = 1, |x − v1| ≤ δ}, where δ > 0. Since
Cv2,...,vn+1 ⊂ Bv1,...,vn+1 , this means the corresponding finite collection of Bv1,...,vn+1 also cover
{x : x · v1 = 1, |x − v1| ≤ δ}. But Bv1,...,vn+1 is defined so that if (x1, ..., xn+1) ∈ Bv1,...,vn+1

then so is (tx1, ..., txn+1) for any 0 ≤ t ≤ 1. Hence this finite list of Bv1,...,vn+1 cover a cone
containing v1.

The above argument applies for any v1 with |v1| = 1, so by compactness of Sn, there
is a finite list of Bv1,...,vn+1 covering all of {x : |x| ≤ 1}. This concludes the proof of the
lemma.

2.2 The proof of parts 1-3 of Theorem 1.3.

As before, after rotating and translating if necessary we may assume that x0 in Theorem 1.3
is the origin and that the vector (0, ..., 0, 1) is normal to ∂D there. Writing ∂D as the graph
of some real analytic function f(x1, ..., xn) with f(0) = 0 and ∇(0) = 0, one can write the
Fourier transform of φ(x)µ as follows:

φ̂(x)µ(ξ) =

∫
Rn
φ0(x1, ..., xn)e−iξn+1f(x1,...,xn)−iξ1x1−...−iξnxn dx1... dxn (2.3)
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Here φ0(x1, ..., xn) = φ(x1, ..., xn, f(x1, ..., xn)). As before, we may assume that |ξn+1| >∑n
i=1 |ξn| since by repeated integrations by parts one has arbitrarily fast decay in the re-

maining directions.

Write ξ = |ξ|ξ′, where |ξ′| = 1. By Lemma 2.4, in order to prove Theorem 1.3 it
suffices to show that for each v1, ..., vn+1 there is some ε > 0 (depending on v1, ..., vn+1)
such that the estimates of Theorem 1.3 hold for ξ′ ∈ Av1,...,vn+1,ε. To this end, for a given
v1, ..., vn+1 we write ξ′ = c1v1 + ...+ cn+1vn+1 where |c1| ≤ 1, |ci+1| ≤ ε|ci| for all i ≥ 1, where
ε will be determined by our arguments. Since |ξ′| = 1 and ε will be small, we will always
have 1

2
≤ |c1| ≤ 1.

Observe that the phase in (2.3) is given by ξ · (x1, ..., xn, f(x1, ..., xn)), which can be
rewritten as |ξ|

∑n+1
i=1 civi · (x1, ..., xn, f(x1, ..., xn)). Thus it makes sense to define gi(x) =

vi · (x1, ..., xn, f(x1, ..., xn)), in which case (2.3) becomes

φ̂(x)µ(ξ) =

∫
Rn
φ0(x)e−i|ξ|(c1g1(x)+...cn+1gn+1(x)) dx1... dxn (2.4)

We next apply resolution of singularities to the functions g1(x), ..., gn+1(x) simultane-
ously. For our purposes it will not matter exactly which resolution of singularities procedure
we use, and for example Hironaka’s famous work [H1] [H2] more than suffice. By such reso-
lution of singularities, there is a neighborhood N of the origin such that if α(x) is a smooth
function supported in N then α(x) can be written as

∑M
j=1 αj(x) such that for each j there is

a real analytic variable change Ψj such that each αj(Ψj(x)) is smooth and on a neighborhood
of the support of αj(Ψj(x)) each function gi ◦Ψj(x) can be written in the form aij(x)mij(x),
where aij(x) is real analytic and does not vanish on the support of αj(Ψj(x)) and mij(x) is
a nonconstant monomial x

αij1
1 ...x

αijn
n . By resolving the singularities of each gi1(x) − gi2(x)

for i1 6= i2 at the same time, we can ensure that in the resolved coordinates, for a given j
the multiindices αij = (αij1, ..., αijn) are lexicographically ordered (not necessarily strictly)
in some ordering.

We let α(x) be such a function that is equal to 1 on a neighborhood N ′ of the origin,
and without loss of generality we may assume that φ0(x) is supported on N ′. Writing
φj(x) = φ0(x)αj(x), we have that

∑M
j=1 φj(x) = φ0(x), and each φj(Ψj(x)) is smooth.

We write φ̂(x)µ(ξ) =
∑N

j=1 bj(ξ) in accordance with the decomposition φ0(x) =∑M
j=1 φj(x) as inserted in (2.4), and then perform the coordinate changes Ψj(x) obtaining

bj(ξ) =

∫
Rn
φj(Ψj(x))Jacj(x)e−i|ξ|(c1a1j(x)m1j(x)+...cn+1an+1 j(x)mn+1 j(x)) dx1... dxn (2.5)

Here Jacj(x) denotes the Jacobian determinant of the coordinate changes Ψj(x). Our resolu-
tion of singularities procedure can be done so that Jacj(x) is also comparable to a monomial,
which will be useful in our analysis. We let φ̄j(x) denote φj(Ψj(x)), so that φ̄(x) is a smooth
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function and (2.5) becomes

bj(ξ) =

∫
Rn
φ̄j(x)Jacj(x)e−i|ξ|(c1a1j(x)m1j(x)+...cn+1an+1 j(x)mn+1 j(x)) dx1... dxn (2.5’)

Here the functions aij(x) are nonvanishing on the support of φ̄j(x). Our goal now is to show
that each bj(ξ) satisfies the bounds of Theorem 1.3 if the ε determining the coefficients ci is
sufficiently small. In order for our arguments to work, we will need that for any given j there
is a single l such that the lth component αijl is nonzero for all i and such that αi1j > αi2j
implies αi1jl > αi2jl. In order to ensure this is the case, we perform an additional (relatively
simple) resolution of singularities.

We proceed as follows. We divide Rn (up to a set of measure zero) into n! regions
{Ak}n!k=1, where each Ak is a region of the form {x ∈ Rn : |xl1| < |xl2| < ... < |xln|}, where

xl1 , ..., xln is a permutation of the x variables. We write (2.5′) as
∑n!

k=1 bjk(ξ), where

bjk(ξ) =

∫
Ak

φ̄j(x)Jacj(x)e−i|ξ|(c1a1j(x)m1j(x)+...+cn+1an+1 j(x)mn+1 j(x)) dx1... dxn (2.6)

We focus our attention one one such Ak and we let ui denote xli . We make the variable
changes ui =

∏n
p=i yp. In the y variables, Ak becomes the rectangular box (−1, 1)n−1 × R

and (2.6) can be written in the form

bjk(ξ) =

∫
(−1,1)n−1×R

φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dy1... dyn (2.7)

Here Jjk(y) is the Jacobian of the combined coordinate change, once again comparable to
a monomial, the pijk(y) are again monomials and the bijk(y) are nonvanishing real analytic
functions on the support of the smooth compactly supported function φ̃jk(y). Like above,
for fixed j and k the exponents of the monomials pijk(y) are lexicographically ordered (not
necessarily strictly) in some ordering. Furthermore, note that each pijk(y) is of the form

y
βijk1
1 ...y

βijkn
n where βijkn is the overall degree of the monomial mij(x). In particular, each

βijkn is nonzero and βi1jk > βi2jk implies βi1jkn > βi2jkn, achieving the goal of this second
resolution of singularities.

To perform the analysis (2.7) we will use the Van der Corput lemma on (2.7) in yn
variable. If there are i1 > i2 such that βi1jk ≥ βi2jk, then if the ε such that |ci+1| ≤ ε|ci|
for each i is small enough, the term ci1bi1jk(y)pi1jk(y) will be negligible in comparison with
ci2bi2jk(y)pi2jk(y) when performing such applications of the Van der Corput lemma. As a
result the phase in (2.7) will effectively have terms cibijk(y)pijk(y) for which the βijk are
*strictly* decreasing in i. Furthermore, the βijkn too will be effectively strictly decreasing in
i, as well as nonzero. The latter facts are needed for our applications of the Van der Corput
lemma to be successful.

Next, we show that we may assume that there is a constant δ0 > 0 to be determined
by our arguments such that on the domain of integration of (2.7), for each i and each
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1 ≤ p ≤ n+ 1 we have

|∂pyn(bijk(y)pijk(y))− ∂pyn(bijk(y1, ..., yn−1, 0)pijk(y))| ≤ δ0
1

|yn|p
|bijk(y)pijk(y)| (2.8)

Since the bijk(y) are smooth functions and pijk(y) is a monomial, this is necessarily true over
the portion of the domain where |yn| < c for some c > 0 determined by δ0, and I claim that
we can arrange that such an inequality |yn| < c is automatically satisfied over the domain of
integration of (2.7).

To see why this is the case, first note that in terms of the x variables of (2.6), one
will have that |yn| < c if one has |x| < c′ for some c′ depending on c. Next, let x′ be in the
support of some αj(Ψj(x)) such that Ψj(x

′) = 0. Here αj is as defined after (2.4). There is a
neighborhood of x′ on which we may shift coordinates to become centered at x = x′ instead
of x = 0; the functions that were monomialized before will be monomialized in the shifted
coordinates, and the multiindices in the shifted coordinates will be lexicographically ordered
in the shifted coordinates just as before.

Let Dx′ be a disk centered at x′ such that the above considerations hold on Dx′

and such that each |x| is less than the associated c′ on Dx′ in the coordinates centered at
x′. By compactness, we may let Wj be a neighborhood of the points in the support of
αj(Ψj(x)) with Ψj(x) = 0, that is a finite union of such Dx′ . There is then an rWj

> 0
such that if the original cutoff function φ(x) is supported on |x| < rWj

, then the function
φj(Ψj(x)) = αj(Ψj(x))φ(Ψj(x)), will be supported in Wj. (Otherwise, there would be a
point outside of Wj in the support of αj(Ψj(x)) getting mapped to the origin by Ψj).

We can then use a partition of unity subordinate to the Dx′ comprising Wj to write
φj(Ψj(x)) as a finite sum

∑
l φjl(x) of smooth functions such that each φjl(x) is supported on

one of the Dx′ . We denote the x′ corresponding to φjl(x) by x′jl. If we use the φjl(x+ x′jl) in

place of φ̄j(x) = φj(Ψj(x)) and the φjl(Ψ
−1
j (x)− x′jl)) in place of φj(x), then the associated

|yn| will be as small as needed above. Thus so long as the original cutoff function φ(x) is
supported on {x : |x| < minj rWj

}, we have arranged that for each j and k the variable |yn|
will be smaller than the c needed for (2.8) to hold, as desired.

We now proceed to the analysis of (2.7). We consider the following variant of the
phase function of (2.7).

|ξ|
∑
i∈K

cibijk(y1, ..., yn−1, 0)pijk(y) (2.9)

Here K consists of those indices i for which there is no i′ with i′ < i and βi′jk ≤ βijk
(equivalently, βi′jkn ≤ βijkn)). We view (2.9) as a function of yn for fixed (y1, ..., yn). We
suppress the y1, ..., yn−1 variables and the indices j and k, writing σi = βijkn and letting

di = bijk(y1, ..., yn−1, 0)y
βijk1
1 ...y

βijk n−1

n−1 , and write (2.9) as

h(yn) = |ξ|
∑
i∈K

cidiy
σi
n (2.10)
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Write the σi appearing in (2.10) as σni for 1 ≤ i ≤ |K|. Since the σi are distinct
and nonzero, the vectors {(σpn1

, ..., σpn|K|) : p = 1, ..., |K|} are linearly independent (as can be

shown using the Vandermonde determinant). As a result, using row operations the vectors
wp = (

∏p−1
q=0(σn1 − q), ...,

∏p−1
q=0(σn|K| − q)) are linearly independent for p = 1, ..., |K|. As a

result, there exists an η > 0 such that for any vector v ∈ Rn there exists a p with 1 ≤ p ≤ |K|
such that

|wp · v| ≥ η|v| (2.11)

Letting v = cnidniy
σni
n , equation (2.11) implies that for each yn there necessarily exists

a p with 1 ≤ p ≤ |K| (which can depend on yn) such that∣∣∣∣dphdypn (yn)

∣∣∣∣ > η
1

|yn|p
|ξ|
∑
i∈K

|cidiyσin | (2.12)

Since there is a constant C such that

∣∣∣∣dp+1h

dyp+1
n

(yn)

∣∣∣∣ < C 1
|yn|p+1 |ξ|

∑
i∈K |cidiyσin | for all p with

1 ≤ p ≤ |K| and all yn, in view of (2.12) each dyadic interval in yn can be written as the
union of boundedly many subintervals on each of which we have for some 1 ≤ p ≤ |K| that∣∣∣∣dphdypn (yn)

∣∣∣∣ > η

2

1

|yn|p
|ξ|
∑
i∈K

|cidiyσin | (2.13)

We would like (2.13) to hold with h(yn) replaced by |ξ|
∑

i∈K cibijk(y)pijk(y). That is, we

want to be able to replace the bijk(y1, ..., yn−1, 0)y
βijk1
1 ...y

βijk n−1

n−1 factors in h(t) by the function

bijk(y)y
βijk1
1 ...y

βijk n−1

n−1 . This follows from (2.8), which by the discussion after (2.8) holds if
|yn| < c, which we showed we may assume. Hence letting j(y) = |ξ|

∑
i∈K cibijk(y)pijk(y) we

can assume that in place of (2.13) we have∣∣∣∣dpjdypn (yn)

∣∣∣∣ > η

4

1

|yn|p
|ξ|
∑
i∈K

|cidiyσin | (2.14)

Next, we would like for (2.14) to hold with j(y) replaced by the phase function P (y) =
|ξ|
∑n+1

i=1 cibijk(y)pijk(y) of (2.7), and with the sum on the right hand side being over all i
and not just all i ∈ K. In other words, in both sides of the equation we would like to include
the terms with i /∈ K.

If i /∈ K, there must be an i′ < i such that βi′jk ≤ βijk. As a result, if the ε such
that |cj+1| ≤ ε|cj| for all j is chosen sufficiently small, the term |cidiyσin | will be less than say
η

100n
|ci′di′y

σi′
n |. Thus including such terms will not affect the right-hand side of (2.14) beyond

a factor of 2. Similarly, if ε is sufficiently small then for any i /∈ K and any 1 ≤ p ≤ |K| the

term ∂p

∂ypn
(cibijk(y)y

βijk1
1 ...y

βijkn
n ) can be made smaller than η

100n
1
|yn|p |ci′di′y

σi′
n |, assuming as we

may that |yn| < c for a sufficiently small c. Hence including such terms will not affect (2.14)
beyond an additional factor of 2. Thus we may include these new terms in both sides of
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(2.14) and we obtain that on each yn-interval in question there is a p with 1 ≤ p ≤ |K| such
that ∣∣∣∣ dpdypn

(
|ξ|

n+1∑
i=1

cibijk(y)pijk(y)

)∣∣∣∣ > η

16

1

|yn|p
|ξ|

n+1∑
i=1

|cidiyσin | (2.15)

In the integral (2.7), for fixed y1, ..., yn−1, we now apply Lemma 2.1 or 2.2 in the yn directions
on one of the boundedly many subintervals of some dyadic interval 2−q−1 ≤ |yn| < 2−q on
which (2.15) holds. Denote this subinterval by J and let y′n denote the center of this interval.
We obtain ∣∣∣∣ ∫

J

φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dyn

∣∣∣∣
≤ CJjk(y1, ..., yn−1, y

′
n)|y′n|(|ξ|

n+1∑
i=1

|cidi(y′n)σi |)−
1
p (2.16)

Note that we use the fact that Jjk(y) is comparable to a monomial when applying Lemma
2.1 or Lemma 2.2 here, since this implies that Jjk(y) is comparable to the fixed value
Jjk(y1, ..., yn−1, y

′
n) on J ′, and gives appropriate bounds on its derivatives.

Because 1
2
≤ c1 ≤ 1 and the other ci can be arbitrarily small, even zero, it makes

sense to only include the first term in the sum on the right hand side of (2.16), and we obtain∣∣∣∣ ∫
J

φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dyn

∣∣∣∣
≤ CJjk(y1, ..., yn−1, y

′
n)|y′n|(|ξ||d1(y′n)σ1|)−

1
p (2.17)

Since yn ∼ y′n on J , if J ′ denotes the dyadic interval containing J this can be rewritten as∣∣∣∣ ∫
J

φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dyn

∣∣∣∣
≤ C

∫
J ′
Jjk(y)(|ξ||d1(y′n)σ1 |)−

1
p dyn (2.18)

Since σ1 = β1jkn and d1 = b1jk(y1, ..., yn−1, 0)y
β1jk1
1 ...y

β1jk n−1

n−1 is comparable in magnitude on

J to b1jk(y1, ..., yn−1, yn)y
β1jk1
1 ...y

β1jk n−1

n−1 , the factor |d1(y′n)σ1| on the right-hand side of (2.18)
is comparable in magnitude to |b1jk(y)yβ1jk | = |b1jk(y)pijk(y)|. Consequently, (2.18) can be
rewritten as ∣∣∣∣ ∫

J

φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dyn

∣∣∣∣
≤ C

∫
J ′
Jjk(y)(|ξ||b1jk(y)p1jk(y)|)−

1
p dyn (2.19)
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By simply taking absolute values and integrating, we also have∣∣∣∣ ∫
J

φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dy

∣∣∣∣ ≤ C1

∫
J ′
Jjk(y) dy (2.20)

Combining (2.19) and (2.20) then gives∣∣∣∣ ∫
J

φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dy

∣∣∣∣
≤ C2

∫
J ′
Jjk(y) min(1, (|ξ||b1jk(y)p1jk(y)|)−

1
p ) dy (2.21)

Since 1 ≤ p ≤ n + 1, the right-hand side of (2.21) is maximized for p = n + 1. Inserting
p = n + 1 into (2.21), then adding (2.21) over the boundedly many intervals J comprising
J ′, and then integrating the result in the y1, ..., ym−1 variables leads to the following.∣∣∣∣ ∫

(−1,1)n−1×J ′
φ̃jk(y)Jjk(y)e−i|ξ|(c1b1jk(y)p1jk(y)+...+cn+1bn+1 jk(y)pn+1 jk(y)) dy

∣∣∣∣
≤ C

∫
(−1,1)n−1×J ′

Jjk(y) min(1, (|ξ||b1jk(y)p1jk(y)|)−
1
p ) dy (2.22)

Adding (2.22) over all intervals J ′, for some δ0 > 0 we get the following bound for |bjk(ξ)| in
(2.7):

|bjk(ξ)| ≤ C3

∫
(−1,1)n−1×(−δ0,δ0)

Jjk(y) min(1, (|ξ||b1jk(y)p1jk(y)|)−
1
p ) dy (2.23)

The form of (2.23) is such that if we replace δ0 by some δ1 < δ0, then inequality (2.23) will
still be valid, albeit with a different constant. So for any such δ1 we have

|bjk(ξ)| ≤ Cδ1

∫
(−1,1)n−1×(−δ1,δ1)

Jjk(y) min(1, (|ξ||b1jk(y)p1jk(y)|)−
1
p ) dy (2.24)

In particular, we may assume δ1 is small enough so that the pullback of (−1, 1)n−1× [−δ1, δ1]
under the coordinate changes of the above resolution of singularities is contained in a set
{x : |x| < r} on which one has an asymptotic development of the form (1.1) for g1(x). We
convert (2.24) back into the original x coordinates through these coordinate changes, turning
b1jk(y)p1jk(y) back into g1(x). We get that for some C4, r > 0 we have

|bjk(ξ)| ≤ C4

∫
{x:|x|<r}

min(1, (|ξ||g1(x)|)−
1

n+1 ) dx (2.25)

Adding this over all j and k then gives the following bound on the original Fourier transform

φ̂(x)µ(ξ) that we are bounding for those ξ for which ξ
|ξ| ∈ Av1,...,vn+1,ε = {c1v1+ ...+cn+1vn+1 :

|c1| ≤ 1, |ci+1| ≤ ε|ci| for all i ≥ 1}.

|φ̂(x)µ(ξ)| ≤ C5

∫
{x:|x|<r}

min(1, (|ξ||g1(x)|)−
1

n+1 ) dx (2.26)
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Recall that g1(x) is of the form v1 · (x1, ..., xn, f(x1, ..., xn)), where f(x) is as in (2.3)
and |v1| = 1. Recall f(0) = 0 and ∇f(0) = 0. So the growth rate as in (1.1) of
v1 · (x1, ..., xn, f(x1, ..., xn)) for |v1| = 1 is given by (g, k) = (1, 0) unless v1 is (0, ..., 0,±1), in
which case v1 · (x1, ..., xn, f(x1, ..., xn)) = ±f(x1, ..., xn) and the growth rate is slower. Thus
the decay rate of the right hand side of (2.26) is slowest when g1(x) = f(x). Hence we have

|φ̂(x)µ(ξ)| ≤ C6

∫
{x:|x|<r}

min(1, (|ξ||f(x)|)−
1

n+1 ) dx (2.27)

We now are in a position to prove parts 1 - 3 of Theorem 1.3. It is natural to break the
right-hand side (2.25) into |f(x)| > 1

|ξ| and |f(x)| < 1
|ξ| parts. We obtain

|φ̂(x)µ(ξ)| ≤ C6m({x : |x| < r, |f(x)| < |ξ|−1}) + C6|ξ|−
1

n+1

∫
{x:|x|<r, |f(x)|>|ξ|−1}

|f(x)|−
1

n+1 dx

(2.28)
If (g0, k0) denotes the growth rate of f(x) as in (1.1), then the above gives for |ξ| > 2 that

|φ̂(x)µ(ξ)| ≤ C7|ξ|−g0(ln |ξ|)k0 + C6|ξ|−
1

n+1

∫
{x:|x|<r, |f(x)|>|ξ|−1}

|f(x)|−
1

n+1 dx (2.29)

We apply to |f(x)|−1 the characterization of integrals of powers of functions in terms of their
distribution functions. Then the integral in (2.29) becomes

1

n+ 1

∫ ∞
|ξ|−1

t−
1

n+1
−1m(x : |x| < r, |ξ|−1 < |f(x)| < t}) dt (2.30a)

≤ 1

n+ 1

∫ 1
2

|ξ|−1

t−
1

n+1
−1m(x : |x| < r, |ξ|−1 < |f(x)| < t}) dt+ C8 (2.30b)

Thus by (1.1), we have that (2.30b) is bounded by

C9

∫ 1
2

|ξ|−1

t−
1

n+1
+g0−1| ln t|k0 dt+ C8 (2.31)

Given (2.31) and the fact that first term in (2.29) is bounded by C7|ξ|−g0(ln |ξ|)k0 , we conclude
that

|φ̂(x)µ(ξ)| ≤ C10

(
|ξ|−g0(ln |ξ|)k0 + |ξ|−

1
n+1 + |ξ|−

1
n+1

∫ 1
2

|ξ|−1

t−
1

n+1
+g0−1| ln t|k0) dt

)
(2.32)

If g0 <
1

n+1
, equation (2.32) leads to |φ̂(x)µ(ξ)| ≤ C11|ξ|−g0(ln |ξ|)k0 , which is the desired

estimate for part 1 of Theorem 1.3. If g0 = 1
n+1

we gain an additional logarithmic factor,

giving part 2. If g0 >
1

n+1
, we get that |φ̂(x)µ(ξ)| is bounded a constant times |ξ|−

1
n+1 , the

desired estimate for part 3 of Theorem 1.3. This concludes the proof of parts 1 through 3 of
Theorem 1.3. By the discussion above the statement of Theorem 1.2, parts 1 through 3 of
Theorem 1.2 then follow.
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3 The proof of parts 4 of Theorem 1.2 and 1.3.

We first prove part 4 of Theorem 1.3. Rotating and translating coordinates if necessary, we
may assume without loss of generality that x0 = 0 and the vector (0, ..., 0, 1) is normal to
∂D at 0. In the setting of part 4 of Theorem 1.3, gx0 = g0 < 1 and if the support of φ is
sufficiently small, which we may assume, we have

φ̂(x)µ(ξ) =

∫
Rn
φ0(x1, ..., xn)e−iξn+1f(x1,...,xn)−iξ1x1−...−iξnxn dx1... dxn (3.1)

Here ∂D is the graph of f(x) and φ0(x) is a smooth, compactly supported, nonnegative, and
positive function on a neighborhood of the origin. To prove part 4 of Theorem 1.3, we let g′

satisfy g0 < g′ < 1 and suppose that the estimate |φ̂(x)µ(ξ)| ≤ C|ξ|g′ holds for sufficiently
large |ξ|. We will arrive at a contradiction.

We examine (3.1) in the (0, ..., 0, 1) direction:∣∣∣∣ ∫
Rn
φ0(x)e−iξn+1f(x) dx

∣∣∣∣ ≤ C(1 + |ξn+1|)−g
′

(3.1’)

The following is largely taken from the proof of part 2 of Theorem 1.1 of [G4]. Denote
the integral on the left of (3.1′) by I(ξn+1). Let B(x) be a smooth function on R whose Fourier
transform is nonnegative, compactly supported, and equal to 1 on a neighborhood of the
origin, and let ε be a small positive number. If 0 < g′′ < g′, then (3.1′) implies that for some
constant A independent of ε one has∫

R
|I(ξn+1)ξ

g′′−1
n+1 B(εξn+1)| dξn+1 < A (3.2)

As a result we have∣∣∣∣ ∫
Rn+1

e−iξn+1f(x)φ0(x)|ξn+1|g
′′−1B(εξn+1) dξn+1 dx

∣∣∣∣ < A (3.3)

We do the integral in ξn+1 in (3.3). Letting bε(y) be the convolution of |y|−g′′ with 1
ε
B̂(y

ε
),

for a constant A′ independent of ε we get∣∣∣∣ ∫
Rn
bε(f(x))φ0(x) dx

∣∣∣∣ < A′ (3.4)

Note that both bε(f(x)) and φ0(x) are nonnegative here. Thus we may remove the absolute
value and let ε→ 0 to obtain ∫

Rn
|f(x)|−g′′φ0(x) <∞ (3.5)
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Since φ0(x) is bounded below by C > 0 on a neighborhood N of the origin, we therefore
have ∫

N

|f(x)|−g′′ dx <∞ (3.6)

In other words, |f(x)|−g′′ is in L1(N), and therefore in weak L1, and we have the existence
of a constant C such that

µ({x ∈ N : |f(x)|−g′′ > ε}) ≤ C
1

ε
(3.7)

Replacing ε by ε−g
′′
, we get

µ({x ∈ N : |f(x)| < ε}) ≤ Cεg
′′

(3.8)

However 0 < g′′ < g′ is arbitary, so since g′ > gx0 we may select g′′ > gx0 . This contradicts
that (1.1) holds for all sufficiently small r > 0. Thus we have arrived at a contradiction and
the proof of part 4 of Theorem 1.3 is complete.

Moving now to the proof of part 4 of Theorem 1.2, suppose g < 1 and there exists

some g′ > g such that the estimate |χ̂D(x)(ξ)| ≤ C|ξ|−1−g′ holds for sufficiently large |ξ|.
We may take g′ < 1. Let x0 ∈ ∂D such that gx0 < g′. Like above, rotating and translating
coordinates if necessary, we may assume that x0 = 0 and (0, ..., 0, 1) is normal to ∂D at x0.
Let ψ(x) be a nonnegative cutoff function defined on a neighborhood of 0 for which (1.12)
is valid, and such that ψ(x) > 0 on a neighborhood of 0. Then the estimate |χ̂D(ξ)| ≤
C|ξ|−1−g′ implies, by looking at the Fourier transform of the product as a convolution, that

| ̂χD(x)ψ(x)(ξ)| ≤ C|ξ|−1−g′ also holds. In particular, it holds when ξ is in the (0, ..., 0, 1)
direction.

Examining (1.12) − (1.14) in this direction, we observe that the last two terms in

(1.14) decay at a rate of at least C|ξ|−2, so | ̂χD(x)ψ(x)(ξ)| ≤ C|ξ|−1−g′ implies that the first
term of (1.14) must be bounded by C ′|ξ|−1−g′ . Thus the absolute value of the integral in
the first term is bounded by C ′|ξ|−g′ in this direction. But this integral is exactly a surface
measure Fourier transform of the form (3.1), with φ0(x) replaced by ψ1(x). So the argument
above shows that the bound of C ′|ξ|−g′ leads to a contradiction. This completes the proof
of Theorem 1.2.

4 The Proof of Theorem 1.4.

4.1 The proof of part 1 of Theorem 1.4.

We assume we are in the setting of part 1 of Theorem 1.4. So the index h is equal to 1
m+γ

for

a nonnegative integer m and some 0 < γ ≤ 1, and s1(x), ..., sm(x) are linearly independent
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real analytic functions on a neighborhood of the origin in Rn with each si(0) = 0. Let s(x)
denote (s1(x), ..., sm(x)). In order to prove part 1 of Theorem 1.4, it suffices to show there
exist positive constants r1, δ and C such that for each v ∈ Rm with |v| < δ, one has

m({x : |x| < r1, |q(x) + (s(x) · v)| < ε}) ≤ Cεh| ln ε|l (4.1)

For mutually orthogonal unit vectors v1, ..., vm, write v = (v1, ..., vm). Suppose for each such
v there is an ζv > 0 such that there exists a set Dv1,...,vm,ζv = {v : v = c1v1 + ...+ cmvm with
|c1| ≤ ζv, |ci+1| ≤ ζv|ci| for all i} such that (4.1) holds for all v ∈ Dv1,...,vm,ζv for some r1 > 0.
Then by applying Lemma 2.4 to the dilates 1

ζv
Dv1,...,vm,ζv , there is a δ > 0 such that the v

with |v| < δ is a subset of a finite union of such Dv1,...,vm,ζv . So in order to prove part 1 of
Theorem 1.4 we may assume that v1, ..., vm are fixed and we are seeking such a set Dv1,...,vm,ζv .
Letting ti(x) = s(x) · vi, the goal is then to show that there exist some C, ζv, r1 > 0 such
that if |c1| ≤ ζv and |ci+1| ≤ ζv|ci| for all i then we have

m({x : |x| < r1, |q(x) + c1t1(x) + ...+ cmtm(x)| < ε}) ≤ Cεh| ln ε|l (4.2)

Rewrite the left-hand side of (4.2) as∫
{x:|x|<r1}

χ{x:|q(x)+c1t1(x)+...+cmtm(x)|<ε}(x) dx (4.3)

We now argue analogously to after (2.4), with the functions g1(x), ..., gn+1(x) replaced by
q(x), t1(x), ..., tm(x). In analogy with (2.7) we are led to bounding finitely many terms of the
following form.

βjk(ε) =

∫
(−1,1)n−1×R

τjk(y)Jjk(y)χ{y:|B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)|<ε}(y) dy

(4.4)
Here τjk(y) is a bounded nonnegative function with compact support, Jjk(y) is the Jacobian
of the coordinate change into blown up coordinates, B1jk(y)P1jk(y) is the function q(x) in
blown up coordinates, and for i > 1, Bijk(y)Pijk(y) is ti−1(x) in the blown up coordinates.
Analogous to in section 2, the Pijk(y) are monomials whose exponent multiindices are lex-
icographically ordered in some ordering, and the Bijk(y) are real analytic functions whose
absolute values are bounded above and below by a constant.

Like in section 2, we integrate in yn first, breaking up each dyadic interval into bound-
edly many parts on which one may apply the measure version of the Van der Corput lemma,
Lemma 2.3. There is a slight variation here, in that instead of using lower bounds on some
pth derivative for 1 ≤ p ≤ m + 1 in conjunction with Lemma 2.1 or Lemma 2.2, we use
lower bounds on a pth derivative with 0 ≤ p ≤ m in conjunction with Lemma 2.3. Specif-
ically, in place of (2.15), we use that if the ζ defining the ci is small enough, then for each
fixed y1, ..., yn−1 each dyadic yn interval can be written as the finite union of subintervals,
uniformly bounded in number, on each of which for some 0 ≤ p ≤ m we have∣∣∣∣ dpdypn

(
B1jk(y)P1jk(y) + c1B2jk(y)P2jk(y)...+ cmBm+1jk(y)Pm+1jk(y)

)∣∣∣∣
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>
η

16

1

|yn|p
(|B1jk(y)P1jk(y)|+ |c1B2jk(y)P2jk(y)|+ ...+ |cmBm+1jk(y)Pm+1jk(y)|) (4.5)

Since the ci can be arbitrarily small, even zero, we will only use the first term on the right-
hand side of (4.5). So writing η0 = η

16
what we will be using is∣∣∣∣ dpdypn

(
B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)

)∣∣∣∣ > η0
1

|yn|p
|B1jk(y)P1jk(y)|

(4.6)
Let I denote a yn interval on which (4.6) holds. Let y′n be the center of I. Then we have
that 1

|yn|p |B1jk(y)P1jk(y)| ∼ 1
|y′n|p
|B1jk(y

′)P1jk(y
′)| on I. So if p > 0, using (4.6), Lemma 2.3

says that on I we have

m({yn : |B1jk(y)P1jk(y) + c1B2jk(y)P2jk(y)...+ cmBm+1jk(y)Pm+1jk(y)| < ε})

< C1ε
1
p |y′n||B1jk(y

′)P1jk(y
′)|−

1
p (4.7)

So if p > 0, in view of (4.7) and using that 1
|yn|p |B1jk(y)P1jk(y)| ∼ 1

|y′n|p
|B1jk(y

′)P1jk(y
′)|, that

τjk(y) is bounded, and that Jjk(y) is comparable to a fixed value on any dyadic interval since
it is comparable to a monomial, if I ′ denotes the yn dyadic interval containing I we have∫

I

τjk(y)Jjk(y)χ{y:|B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)|<ε}(y) dyn

≤ C2

∫
I′
Jjk(y)ε

1
p |B1jk(y)P1jk(y)|−

1
p dyn (4.8)

Simply taking absolute values in the left-hand side of (4.8) and integrating leads to∫
I

τjk(y)Jjk(y)χ{y:|B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)|<ε}(y) dyn

≤ C3

∫
I′
Jjk(y) dyn (4.9)

Combining (4.8) and (4.9) results in∫
I

τjk(y)Jjk(y)χ{y:|B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)|<ε}(y) dyn

≤ C4

∫
I′
Jjk(y) min(1, ε

1
p |B1jk(y)P1jk(y)|−

1
p ) dyn (4.10)

The above holds when 1 ≤ p ≤ m, and the right-hand integrand is largest when p = m, so
in such situations (4.10) implies∫

I

τjk(y)Jjk(y)χ{y:|B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)|<ε}(y) dyn
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≤ C4

∫
I′
Jjk(y) min(1, ε

1
m |B1jk(y)P1jk(y)|−

1
m ) dyn (4.11)

Although the above assumed p > 0, (4.11) will still hold if p = 0 in (4.6). For if (4.6)
holds with p = 0, then if |B1jk(y)P1jk(y) + c1B2jk(y)P2jk(y)... + cmBm+1jk(y)Pm+1jk(y)| < ε
at any point in I, then by (4.6) at that point one has |B1jk(y)P1jk(y)| < 1

η0
ε. As a result,

ε
1
m |B1jk(y)P1jk(y)|− 1

m > η
1
m at this point, in which case ε

1
m |B1jk(y)P1jk(y)|− 1

m > Cη
1
m over

all of I ′ for some C. Hence min(1, ε
1
m |B1jk(y)P1jk(y)|− 1

m ) is bounded by a constant on I ′

and (4.11) holds simply by taking absolute values inside the integral and integrating.

So we assume that (4.11) holds regardless of what p is. Adding this over the boundedly
many intervals I comprising I ′, (4.11) leads to∫

I′
τjk(y)Jjk(y)χ{y:|B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)|<ε}(y) dyn

≤ C5

∫
I′
Jjk(y) min(1, ε

1
m |B1jk(y)P1jk(y)|−

1
m ) dyn (4.12)

We then add (4.12) over all dyadic intervals I ′ and then integrate the result in the y1, ..., yn−1
variables. The result is that for some δ0 > 0 we have∫

[−1,1]n−1×R
τjk(y)Jjk(y)χ{y:|B1jk(y)P1jk(y)+c1B2jk(y)P2jk(y)...+cmBm+1jk(y)Pm+1jk(y)|<ε}(y) dy

≤ C5

∫
[−1,1]n−1×[−δ0,δ0]

Jjk(y) min(1, ε
1
m |B1jk(y)P1jk(y)|−

1
m ) dy (4.13)

Note that the left hand side of (4.13) is the function βjk(ε) of (4.4), and recall that in order
to prove part 1 of Theorem 1.4 we must show that each βjk(ε) is bounded by the right hand
side of (1.18), namely Cεh| ln ε|l, where (h, l) is as in (1.16). Equation (4.13) is analogous
to (2.22), and we can argue as we did after (2.22). The result is the following analogue of
(2.26).

βjk(ε) ≤ C6

∫
{x:|x|<r1}

min(1, ε
1
m |q(x)|−

1
m ) dx (4.14)

Then the steps from (2.26) onwards lead to a bound Cεh| ln ε|l so long as h < 1
m

, which holds
by the definition of h as 1

m+γ
with 0 < γ ≤ 1. Thus we have the needed bound and part 1

of Theorem 1.4 follows.

4.2 The proof of part 2 of Theorem 1.4

We consider the function f(x1, ..., xn) = x2k1 + ...+x2kn where k is a positive integer. An easy
computation reveals that for f(x), the pair (h, l) is given by ( n

2k
, 0). Let t be any positive

rational number and write t = a
b

where a and b are positive integers. Let u = ca
b

where c is
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the smallest positive integer such that u > 1. Then since u = 2ca
2b

, we can let n = 2ca and
k = b and we have that f(x1, ..., xn) = x2k1 + ...+ x2kn has as its (h, l) the pair (u, 0).

Next, note that for any δ > 0, however small, f(x1, ..., xn)+ δx1 has (1, 0) as its (h, l).
Since u > 1, this means that the pair (h, l) corresponding to f(x1, ..., xn) gets worse for any
such perturbation. Now let q(x) = (f(x))c. Then the pair (h, k) corresponding to q(x) is
(u
c
, 0) = (a

b
, 0) = (t, 0), and for any δ > 0 the corresponding pair for (f(x) + δx1)

c is (1/c, 1),
which is worse since u > 1. Hence one does not have uniformity in the sense of Theorem 1.4
part 1 for q(x) where the space of perturbation functions is the c dimensional space spanned
by the f(x)kxc−k1 for 0 ≤ k ≤ c− 1. Hence for the function q(x), the conclusion of part 1 of
Theorem 1.4 does not hold for c dimensional perturbation families, and in fact one has the
stronger fact that the index h gets worse for these perturbations.

Since c is defined to be the smallest integer such that ct > 1, if one writes t = 1
m+γ

where 0 ≤ γ < 1 as in the statment of part 2 of Theorem 1.4, then c = m+ 1. Therefore the
statement of part 2 of Theorem 1.4 follows and we are done.
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