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Abstract

We describe an elementary method for bounding a one-dimensional oscillatory in-
tegral in terms of an associated non-oscillatory integral. The bounds obtained are
efficient in an appropriate sense and behave well under perturbations of the phase. As
a consequence, for an n-dimensional oscillatory integral with a critical point at the
origin, we may apply the one-dimensional estimates in the radial direction and then
integrate the result, thereby obtaining natural bounds for the n-dimensional oscillatory
integral in terms of the measures of the sublevel sets associated with the phase. To
illustrate, we provide several classes of examples, including situations where the phase
function has a critical point at which it vanishes to infinite order.

1 Background and theorem statements.

1.1 General discussion and the main theorems.

In a number of settings in analysis, one considers oscillatory integrals of the form

I(λ) =

∫
eiλf(x1,...,xn)ϕ(x1, ..., xn) dx1 ... dxn (1.1)

Here, ϕ(x1, ..., xn) is a compactly supported real-valued C1 function defined on a neighbor-
hood of the origin and f(x1, ..., xn) is at least a C2 real-valued function on an open set
containing the support of ϕ. The goal here is to find estimates of the form |I(λ)| ≤ g(|λ|),
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where g is an appropriately quickly decreasing function. To avoid trivialities, one normally
assumes that f is nonconstant and ∇f(0) = 0.

A canonical example of where oscillatory integrals (1.1) show up is in the analysis
of Fourier transforms of surface measures. If one is looking at the Fourier transform in
a specific direction of a smooth surface measure for a surface S, then after a rotation so
that the direction becomes (0, ..., 0, 1), the resulting oscillatory integral is locally exactly of
the form (1.1). Here f(x) is the function for which S is the graph of f(x). Since surface
measure Fourier transforms have applications to a wide variety of subjects including maximal
averages, restriction problems, lattice point discrepancy, and more, improved understanding
of oscillatory integrals (1.1) leads to developments in those subjects.

One often estimates a one-dimensional oscillatory integral by applying the method of
stationary phase or its consequences, for example using the Van der Corput lemma. The Van
der Corput lemma alone may not give optimal estimates when averaging over the remaining
n−1 variables. A more refined use of stationary phase may improve things, but such methods
can give endpoint terms and sublevel set measures that may be hard to average effectively
over these remaining variables.

In this paper, we will give a theorem (Theorem 1.1) that bounds a one-dimensional
oscillatory integral in terms of a single non-oscillatory integral, combined with a single end-
point term. This can be used in the oscillatory integral (1.1) by integrating in the radial
direction, applying Theorem 1.1, and then integrating the result over the unit sphere. This
”oscillatory integral method of rotations” frequently bounds the oscillatory integral by as-
sociated sublevel set measures in a natural way, as we will see in section 3, as the maximal
measure of a the set where the phase function is within a single period.

To prove the uniformity of the relevant constants in Theorem 1.1 over the unit sphere
for real analytic f(x), we will make use of a result (Theorem 2.1) providing uniform bounds
above and below on parallel lines for real analytic functions and/or its derivatives. This will
enable us to average Theorem 1.1 in the above manner. This result leads to some corollaries
(Corollaries 2.1.1-2.1.3) concerning the behavior of real analytic functions on parallel lines
which may be of interest to the reader in their own right. Theorem 2.1 will be proven in
section 6.

We also prove a theorem (Theorem 1.2) with weaker hypotheses which gives a similar
statement to Theorem 1.1 except it includes some endpoint terms that are not stable under
general perturbations of the phase. Nonetheless, this result provides useful estimates for
various classes of phase functions. Similarly to the real analytic case, in section 3 we will
use this result in the radial direction and then integrate over the sphere to bound oscillatory
integrals by sublevel set measures in a natural way, this time for classes of phases with zeroes
of infinite order at the origin.

In section 4, we will describe a few ways in which Theorems 1.1 and 1.2 can be viewed
as efficient, and in section 5 we will provide the proofs of Theorems 1.1 and 1.2.
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We should point out there have been various papers focusing on scalar oscillatory
integrals of the type considered here. We mention [BaGuZhZo] [CaCWr] [G] [Gi] [Gr] [PhStS]
[V] as some examples.

Throughout this paper, for a Ck function f(x) on a closed interval [a, b], for p ≤ k
we will write f (p)(x) to denote the standard pth derivative if x ∈ (a, b), and the appropriate
left or right-hand pth derivative if x is an endpoint a or b.

To give an idea of what we will be doing, we consider the simple one dimensional
integral

∫ b

a
eif(x) dx for f ∈ C2([a, b]). Let [c, d] ⊂ [a, b] such that f ′(x) ̸= 0 for x ∈ [c, d]. We

consider the portion of the integral over [c, d]. We apply the standard integration by parts,
namely writing eif(x) = if ′(x)eif(x) × 1

if ′(x)
and integrating by parts, integrating if ′(x)eif(x)

and differentiating 1
if ′(x)

. We obtain∫ d

c

eif(x) dx =
eif(d)

if ′(d)
− eif(c)

if ′(c)
+

1

i

∫ d

c

eif(x)
f ′′(x)

(f ′(x))2
dx (1.2)

In view of the form of (1.2), one might consider the integral on the right hand side of (1.2)

to be an improvement over the one on the left if
∣∣ f ′′(x)
(f ′(x))2

∣∣ < 1 on (c, d). This suggests the
possibility of dividing the overall integral into two terms. The first term is the integral over
those x for which

∣∣ f ′′(x)
(f ′(x))2

∣∣ ≥ 1 (or where f ′(x) = 0), a domain on which no integration by

parts is needed. The domain of the second term is where
∣∣ f ′′(x)
(f ′(x))2

∣∣ < 1. This domain is a

union of intervals on each of which we wish to integrate by parts as in (1.2).

We will see that as long as some kth derivative f (k) is continuous and nonzero on [a, b],
the endpoint terms in the integrations by parts of (1.2) are, generally speaking, of no greater
order of magnitude than the integral term. There is one exception, a term of magnitude
O( 1

sup[a,b] |f ′(x)|) that may be incurred in the overall sum. The precise theorem is as follows.

Theorem 1.1. Suppose k is a positive integer and f is a max(k, 2) times continuously
differentiable real-valued function on an interval [a, b] such that there is a constant A with
sup[a,b] |f (k)(x)| < A inf [a,b] |f (k)(x)| (note that this implies that f (k)(x) is nonzero on [a, b]).
Suppose ϕ(x) is a C1 function on [a, b]. Then we have the following.

� If k ≥ 2 then there is a constant BA,k > 0 such that∣∣∣∣ ∫ b

a

eif(x)ϕ(x) dx

∣∣∣∣ ≤
BA,k(||ϕ||L∞+ ||ϕ′||L1)

(∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣)dx+min
(
b−a, 1

sup[a,b] |f ′(x)|
))

(1.3)

� If k = 1 and [a, b] is the union of j intervals on which f ′(x) is monotonic, then (1.3)
holds with BA,1 replaced by jBA,1.
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We will often use (1.3) with f(x) replaced by λf(x) for a real parameter λ. In this case (1.3)
becomes ∣∣∣∣ ∫ b

a

eiλf(x)ϕ(x) dx

∣∣∣∣ ≤
BA,k(||ϕ||L∞ + ||ϕ′||L1)

(∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

λ(f ′(x))2

∣∣∣∣)dx+min
(
b− a,

1

|λ| sup[a,b] |f ′(x)|
))

(1.4)

The condition that sup[a,b] |f (k)(x)| < A inf [a,b] |f (k)(x)| means that f(x) is of ”poly-
nomial type” in the sense of [PhSt], which enables us to use properties of such functions (see
Lemma 1 of Part 2 of [PhSt]) that are key in the proof of Theorem 1.1.

One might ask what happens if we ”recreate” endpoint terms by integrating f ′′(x)
λ(f ′(x))2

to − 1
λf ′(x)

in (1.4). One sees that one gets terms of magnitude 1
|λf ′(x)| for x = a, x = b, any

x satisfying f ′′(x) = 0, or any x satisfying |λ|(f ′(x))2 = |f ′′(x)|. This last condition can
be restated as 1

|λf ′(x)| =
1

|λ|
1
2 |f ′′(x)|

1
2
. Such endpoint terms are not easily seen to behave well

under perturbations of f(x), but might be of interest in individual integrals.

1.2 A variant of Theorem 1.1 with weaker hypotheses.

If one does not have the condition that sup[a,b] |f (k)(x)| < A inf [a,b] |f (k)(x)| for some A and
some k in Theorem 1.1, sometimes one can simply divide [a, b] into several intervals for which
such a condition holds. But even if this is not the case, such as when f(x) has a zero of
infinite order, one can still obtain a statement resembling that of Theorem 1.1. But there
are endpoint terms cropping up that may not behave well under perturbations of the phase.
The theorem is as follows.

Theorem 1.2. Suppose f is a C3 function [a, b] such that {x ∈ [a, b] : f ′′′(x) = 0} is finite.
Suppose ϕ(x) is a C1 function on [a, b]. Let J denote the (finite) set of points x in [a, b] for
which f ′(x) ̸= 0 and for which either x = a, x = b, f ′′(x) = 0, or f ′′′(x) = 0. Then there is
a uniform constant B such that ∣∣∣∣ ∫ b

a

eif(x)ϕ(x) dx

∣∣∣∣ ≤
B(||ϕ||L∞ + ||ϕ′||L1)

(∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣)dx+min
(
b− a,

∑
x∈J

1

|f ′(x)|
))

(1.5)

Although the conclusion of Theorem 1.2 is weaker than that of Theorem 1.1, it can
still provide relevant information. Suppose we replace f(x) by λf(x) in (1.5), where λ is a
real parameter. Then (1.5) becomes∣∣∣∣ ∫ b

a

eiλf(x)ϕ(x) dx

∣∣∣∣ ≤
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B(||ϕ||L∞ + ||ϕ′||L1)

(∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

λ(f ′(x))2

∣∣∣∣)dx+min
(
b− a,

∑
x∈J

1

|λf ′(x)|
))

(1.6)

Note that if the decay rate of the integral term in (1.6) is slower than |λ|−1 as |λ| → ∞, as is
often the case, then the additional terms on the right will not affect the overall decay rate.

Example 1. On (0, 1
2
], let f(x) = e−(| lnx|k) for some k > 1. If we define f(0) = 0, then f(x)

is smooth on [0, 1
2
] with a zero of infinite order at x = 0. One can directly compute

f ′(x) = −ke−| lnx|k
(
| lnx|k−1

x

)
(1.7a)

f ′′(x) = k2e−| lnx|k
(
| lnx|2k−2

x2
+ o

(
| lnx|2k−2

x2

))
(1.7b)

f ′′′′(x) = −k3e−| lnx|k
(
| lnx|3k−3

x3
+ o

(
| lnx|3k−3

x3

))
(1.7c)

By (1.7b)−(1.7c), if c > 0 is sufficiently small then Theorem 1.2 applies with only an endpoint
term at x = c, where the error term is O(|λ|−1), much smaller than the contribution we will
obtain from the integral. By (1.7a)− (1.7b), we have

f ′′(x)

(f ′(x))2
=

1

e−| lnx|k (1 + o(1))

Consequently, on [0, c] for c sufficiently small, by Theorem 1.2 we have∣∣∣∣ ∫ c

0

eiλe
−| ln x|k

ϕ(x) dx

∣∣∣∣ ≤
2B(||ϕ||L∞ + ||ϕ′||L1)

(∫ c

0

min

(
1,

1

|λ|e−| lnx|k

)
dx+O(|λ|−1)

)
(1.8)

We split the integral in (1.8) dyadically as∫ c

0

min

(
1,

1

|λ|e−| lnx|k

)
dx =

|{x ∈ [0, c] : e−| lnx|k < |λ|−1}
∣∣+ ∞∑

i=0

2−i|{x ∈ [0, c] : 2i|λ|−1 ≤ e−| lnx|k < 2i+1|λ|−1}| (1.9)

Since the sublevel measure sets of e−| lnx|k grow more slowly than that of xn for any n, the
sum in (1.9) decreases rapidly in i and the overall sum is bounded by a constant times that
of the first term, which in turn is comparable to the |{x ∈ [0, c] : e−| lnx|k < |λ|−1}

∣∣ term.
Since the endpoint term is much smaller, the oscillatory integral (1.6) satisfies the sublevel
set bound∣∣∣∣ ∫ c

0

eiλe
−| ln x|k

ϕ(x) dx

∣∣∣∣ ≤ B′(||ϕ||L∞ + ||ϕ′||L1)
∣∣{x ∈ [0, c] : e−| lnx|k < |λ|−1}

∣∣ (1.10)
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This can be considered a canonical sublevel set bound since the expression |{x ∈ [0, c] :
e−| lnx|k < |λ|−1}| up to a constant gives the maximum size of a period of the phase function

eiλe
−| ln x|k

.

Working out the measure on the right-hand side of (1.10), we see that it equals the
measure of the set where −| lnx|k < − ln |λ|, which is the same as the measure of the set

where − lnx = | lnx| > (ln |λ|) 1
k , namely e−(ln |λ|)

1
k .

Example 2. On (0, 1
2
], let f(x) = e−(x−m) for some m > 0. Like in the last example, f(x)

extends to a smooth function on [0, 1
2
] with a zero of infinite order at x = 0. This time we

compute
f ′(x) = me−(x−m)x−m−1 (1.11a)

f ′′(x) = −m2e−(x−m)(x−2m−2 + o(x−2m−2)) (1.11b)

f ′′′(x) = m3e−(x−m)(x−3m−3 + o(x−3m−3)) (1.11c))

Thus we have
f ′′(x)

(f ′(x))2
=

1

e−(x−m)
(1 + o(1))

Hence similarly to the last example, on [0, c] for c sufficiently small there is just the one
negligible endpoint term in Theorem 1.2 and we have∣∣∣∣ ∫ c

0

eiλe
−(x−m)

ϕ(x) dx

∣∣∣∣ ≤
2B(||ϕ||L∞ + ||ϕ′||L1)

∫ c

0

min

(
1,

1

|λ|e−(x−m)

)
dx (1.12)

Since the sublevel set measures of e−(x−m) once again grow slower than that of any xn, exactly
as in the steps leading to (1.10) we again have the canonical sublevel set bound∣∣∣∣ ∫ c

0

eiλe
−(x−m)

ϕ(x) dx

∣∣∣∣ ≤ B′(||ϕ||L∞ + ||ϕ′||L1)
∣∣{x ∈ [0, c] : e−(x−m) < |λ|−1}

∣∣ (1.13)

This time the measure in question works out to (ln |λ|)− 1
m , which is therefore an upper bound

for the oscillatory integral.

2 A result concerning the behavior of real analytic

functions on parallel lines and some consequences.

The following theorem follows fairly quickly from Lemma 6.17 of [Mi]. But for completeness
we include a proof in section 6 which shows how it can be derived in relatively short order
from resolution of singularities (and the proof will not be all that different from the proof of
Lemma 6.17 in [Mi]).
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Theorem 2.1. Suppose g(x1, ..., xn) is a real analytic function defined on a neighborhood of
the origin, not identically zero. Then there is an n − 1-dimensional ball Bn−1(0, η) and a
k ≥ 0 such that for each (x1, ..., xn−1) in Bn−1(0, η) either g(x1, ..., xn) = 0 for all |xn| < η
or there is a 0 ≤ l ≤ k, which may depend on (x1, ..., xn−1), such that for all |xn| < η one
has

0 <
1

2
|∂lxn

g(x1, ..., xn−1, 0)| < |∂lxn
g(x1, ..., xn)| < 2|∂lxn

g(x1, ..., xn−1, 0)| (2.1)

The set of (x1, ...xn−1) for which g(x1, ..., xn) = 0 for all |xn| < η has measure zero.

It is important to note that in Theorem 2.1, l can be (and often is) equal to zero. We
next give some corollaries of interest of Theorem 2.1. As a rather immediate consequence of
Theorem 2.1 we have the following, which we point out is nontrivial only when ∂kxn

f(0, ..., 0, 0)
is zero for each k ≥ 1.

Corollary 2.1.1. Suppose f(x1, ..., xn) is a real analytic function on a neighborhood of the
origin, not identically zero. Then there is an n−1 dimensional ball Bn−1(0, η) and a positive
integer p such that if (x1, ..., xn−1) ∈ Bn−1(0, η) and s ∈ R, then either f(x1, ..., xn) = s for
all |xn| < η, or f(x1, ..., xn) = s has at most p solutions xn.

Proof. If ∂xnf(x1, ..., xn) is identically zero, then the result is immediate, so we assume it is
not identically zero. We apply Theorem 2.1 to ∂xnf(x1, ..., xn) and let η be as in that theorem.
If (x1, ..., xn−1) is such that ∂xnf(x1, ..., xn) is identically zero in xn, then f(x1, ..., xn) is
constant in xn and for each s either f(x1, ..., xn) = s for all |xn| < η or f(x1, ..., xn) = s for
no xn. If on the other hand (x1, ..., xn−1) is such that ∂xnf(x1, ..., xn) is not identically zero
in xn, then (2.1) holds on |xn| < δ for g = ∂xnf . Thus (2.1) also holds on |xn| < δ for g = f ,
where l is replaced by l + 1 ≥ 1. Thus f has a nonvanishing derivative of order between 1
and k + 1 in the xn variable. This implies f(x1, ..., xn) = s has at most k + 1 solutions in
the xn variable for this value of (x1, ..., xn−1). This completes the proof of the corollary.

As a consequence of Corollary 2.1.1, we have the following.

Corollary 2.1.2. Suppose f1(x1, ..., xn),...,fl(x1, ..., xn) are real analytic functions on a
neighborhood of the origin, none identically zero. Then there is an n − 1 dimensional ball
Bn−1(0, η) and a positive integer p such that for each s1, ..., sl and each (x1, ..., xn−1) ∈
Bn−1(0, η), the set {xn : |xn| < η and fi(x1, ..., xn) < si for each i} consists of at most p
intervals.

Proof. By simply intersecting the sets in question, it suffices to take l = 1. In this case, for
a given (x1, ..., xn−1) the intervals comprising {xn : |xn| < η and f1(x1, ..., xn) < s1} have a
uniformly bounded number of endpoints by Corollary 2.1.1 and the result follows.

The next consequence of Theorem 2.1 is of the same general type as Theorem 1.2 of
[ClMi] on decay rates of parameterized families of oscillatory integrals. Similar to Corol-
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lary 2.1.1, the statement follows relatively quickly from the Van der Corput lemma unless
∂kxn

f(0, ..., 0, 0) is zero for each k ≥ 1.

Corollary 2.1.3. Suppose f(x1, ..., xn) is a real analytic function on a neighborhood of some
closed ball B̄(0, r) centered at the origin. Suppose ϕ(x1, ..., xn) is a C

1 function supported
in B(0, r). Define I(λ) by

I(λ) =

∫
R
eiλf(x1,...,xn)ϕ(x1, ..., xn) dxn (2.2)

Then there is a positive integer p and a function A(x1, ..., xn−1), depending on f and r, such
that for all (x1, ..., xn−1) either f(x1, ..., xn) is constant in xn, or we have an inequality

|I(λ)| ≤ A(x1, ..., xn−1)
(
sup
xn

|ϕ(x1, ..., xn)|+
∫
R
|∂xnϕ(x1, ..., xn)| dxn

)
|λ|−

1
p (2.3)

Proof. If ∂2xn
f(x) is identically zero, it follows immediately from applying the first derivative

Van der Corput lemma in the form (4.3′) in the xn direction. If ∂2xn
f(x) is not identically

zero, we apply Theorem 2.1 to ∂2xn
f(x) and use the resulting statement in conjunction with

the Van der Corput lemma, again in the form (4.3′). On vertical lines where ∂2xn
f(x) = 0 we

again use the p = 1 case of the Van der Corput lemma, while on vertical lines where (2.1)
holds we use the Van der Corput lemma for p ≥ 2.

3 Averaging Theorem 1.1 over different directions.

3.1 Using polar coordinates to reduce to one-dimensional inte-
grals.

We return to the setting of (1.1). Namely we look at the integral

I(λ) =

∫
eiλf(x1,...,xn)ϕ(x1, ..., xn) dx1 ... dxn (3.1)

Here f(x1, ..., xn) is a nonconstant real-valued C
2 function on a neighborhood of a ball |x| ≤ b

with ∇f(0) = 0 and ϕ(x1, ..., xn) is a C
1 function supported in |x| < b. We integrate (3.1)

in polar coordinates, obtaining

I(λ) = cn

∫
Sn−1

∫ ∞

0

eiλf(rω)rn−1ϕ(rω) dr dω (3.2)

To deal with the rn−1 factor in (3.2), we will decompose the r integral in (3.2) dyadically in
r. Namely we let ψ(r) be a nonnegative smooth compactly supported function on [1/2, 2]
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such that
∑∞

m=−∞ ψ(2mr) = 1 on (0,∞), and we let Φm,ω(r) = ϕ(rω)(2mr)n−1ψ(2mr). Then

we have rn−1ϕ(rω) =
∑∞

m=−∞ 2−m(n−1)Φm,ω(r) and (3.2) becomes

I(λ) = cn

∞∑
m=−∞

∫
Sn−1

2−m(n−1)

∫ 2−m+1

2−m−1

eiλf(rω)Φm,ω(r) dr dω (3.3)

Note that ||Φm,ω(r)||L∞(r) and ||∂rΦm,ω(r)||L1(r) are bounded uniformly in ω and m by
C||ϕ||L∞ and C(||ϕ||L∞ + ||∇ϕ||L∞) respectively for a uniform constant C. Thus we may
apply Theorem 1.1 or 1.2 to the r integral, and the factor ||ϕ||L∞ + ||ϕ′||L1 appearing in these
theorems can be replaced by ||ϕ||L∞ + ||∇ϕ||L∞ .

3.2 The real analytic situation.

When f is real analytic and we are applying Theorem 1.1 in the above fashion, we would also
like the factor BA,k in Theorem 1.1 to be uniform in k and m. This holds for the following
reason. If one applies Theorem 2.1 to h(x1, ..., xn, r) = ∂r(f(rx1, ..., rxn)) on a neigborhood
of some (x1, ..., xn, r) with r ≥ 0 and (x1, ..., xn) ∈ Sn−1, then one obtains uniform constants
BA,k locally. Compactness will then give that these constants are uniform throughout the
domain of integration of (3.3).

At first glance, one might think that in the above we might incur some constants
jBA,1 from the p = 1 case of Theorem 1.1 that are unbounded in j, but this is not the case.
For by Theorem 2.1 applied to ∂2r (f(rx1, ..., rxn)) = ∂rh, locally there is an N such that
for each (x1, ..., xn) ∈ Sn−1 either h(x1, ..., xn, r) is constant in r (when ∂2r (f(rx1, ..., rxn)) is
identically zero in r) or is the union of at most N intervals on which ∂rh is strictly monotonic
in r (when (2.1) holds for ∂2rh.) In either case, j is always at most N here.

One technical point worth mentioning here is that for one to be able to apply Theorem
1.1 in the current setting, one needs that the set of ω ∈ Sn−1 for which f(rω) is constant in
r must have measure zero. But this is true for any nonconstant real analytic function; any
ω for which f(rω) is constant in r is such that this constant is f(0), and nonconstant real
analytic functions take any given value on a set of measure zero.

We have the following result for the real analytic situation.

Theorem 3.1. Suppose f(x) is a nonconstant real analytic function on a neighborhood of
a ball |x| ≤ b, where b ≤ 1, such that ∇f(0) = 0. Suppose ϕ(x) is C1 and supported on
|x| < 2−m0+1 for some integer m0 with 2−m0+1 < b. For a given integer m ≥ m0 and an x
with |x| ∈ [2−m−1, 2−m+1], let Jm(x) denote the line segment from 2−m−1 x

|x| to 2−m+1 x
|x| .

There is a constant C depending on f such that the following holds, where fr denotes
the derivative of f in the radial direction.

|I(λ)| ≤ C(||ϕ||L∞ + ||∇ϕ||L∞|)
∫
|x|<2−m0+1

min

(
1,

∣∣∣∣ frr(x)

λ(fr(x))2

∣∣∣∣) dx +
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C(||ϕ||L∞ + ||∇ϕ||L∞ |)
∑

m≥m0

∫
2−m−1<|x|<2−m+1

min

(
1,

1

|λ||x| supy∈Jm(x) |fr(y)|

)
dx (3.4)

Proof. We insert (1.4) in the right-hand integrals of (3.3) and then go back from polar to
rectangular coordinates in the integral term of (1.4). We obtain

|I(λ)| ≤ C(||ϕ||L∞ + ||∇ϕ||L∞|)
∫
|x|<b

min

(
1,

∣∣∣∣ frr(x)

λ(fr(x))2

∣∣∣∣) dx
+ C(||ϕ||L∞+||∇ϕ||L∞ |)

∑
m≥m0

2−m(n−1)

∫
ω∈Sn−1

min

(
2−m+1,

1

|λ| supr∈[2−m−1,2−m+1] |fr(rω)|

)
dω

(3.5)
Here C is a constant which depends on the function f . Note that

min

(
2−m+1,

1

|λ| supr∈[2−m−1,2−m+1] |fr(rω)|

)

≤ 2

∫ 2−m+1

2−m−1

min

(
1,

1

|λ|r supr∈[2−m−1,2−m+1] |fr(rω)|

)
dr (3.6)

For x such that 2−m−1 < |x| < 2−m+1, the integral (3.6) can be rewritten as∫
Jm(x)

min

(
1,

1

|λ|r supy∈Jm(x) |fr(y)|

)
dr (3.7)

We now insert (3.7) into (3.5) and go back from polar to rectangular coordinates. The result
is (3.4) and we are done.

To use (3.4) (or (1.4) for that matter) it is helpful to have a way to bound integrals
such as the ones appearing in Theorem 3.1 by sublevel set measures. A reasonably general
statement of the type needed is given by the following relatively easy to prove lemma.

Lemma 3.2. Let (E, µ) be a finite measure space and suppose g(x) is a measurable function
on E such that for some positive constants C and δ, for all t > 0 one has µ({x ∈ E : |g(x)| <
t}) ≤ Ctδ. Suppose ϵ > 0. Then there is a constant Dδ,ϵ > 0 such that the following holds
for all λ ̸= 0.

� If δ < ϵ, then
∫
E
min(1, |λg|−ϵ) dµ < CDδ,ϵ|λ|−δ

� If δ = ϵ, then
∫
E
min(1, |λg|−ϵ) dµ < CDϵ,ϵ(1 + log+ |λ|)|λ|−ϵ + µ(E)|λ|−ϵ

� If δ > ϵ, then
∫
E
min(1, |λg|−ϵ) dµ < C(|λ|−δ +Dδ,ϵ|λ|−ϵ) + µ(E)|λ|−ϵ

As a result, we have that
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� If δ ̸= ϵ, there is a Fδ,ϵ,g,E > 0 such that
∫
E
min(1, |λg|−ϵ) dµ < Fδ,ϵ,g,E|λ|−min(δ,ϵ)

� If δ = ϵ, there is a Fϵ,g,E > 0 such that
∫
E
min(1, |λg|−ϵ) dµ < Fϵ,g,E(1 + log+ |λ|)|λ|−ϵ

Proof. It is natural to split the integral
∫
E
min(1, |λg|−ϵ) dµ into |g| ≥ 1

|λ| and |g| < 1
|λ| parts,

obtaining ∫
E

min(1, |λg|−ϵ) dµ = µ({x ∈ E : |g(x)| < 1

|λ|
}) + 1

|λ|ϵ

∫
|g|≥ 1

|λ|

|g|−ϵ dµ (3.8)

We first do the δ ≥ ϵ cases. We further divide the integral in (3.4) into |g| ≥ 1 and |g| < 1
parts. Using the bound min(1, |λg|−ϵ) ≤ |λ|−ϵ on the |g| ≥ 1 portion, we obtain∫

E

min(1, |λg|−ϵ) dµ ≤ µ({x ∈ E : |g(x)| < 1

|λ|
}) + µ(E)|λ|−ϵ +

1

|λ|ϵ

∫
1≥|g|≥ 1

|λ|

|g|−ϵ dµ (3.9)

If |λ| < 1 we take the right-hand integral in (3.9) to be zero. By our assumptions, the first
term on the right of (3.9) is bounded by C|λ|−δ. We write the last term in (3.9) as a sum in
j for 0 ≤ j ≤ ⌊log2 |λ|⌋ of the integrals over the domains where 2j|λ|−1 ≤ |g(x)| < 2j+1|λ|−1.
We obtain∫

E

min(1, |λg|−ϵ) dµ ≤ C|λ|−δ + µ(E)|λ|−ϵ +

⌊log2 |λ|⌋∑
j=0

|λ|−ϵ

∫
2j |λ|−1≤|g(x)|<2j+1|λ|−1

|g(x)|−ϵ dµ

(3.10)
Using the hypothesis µ(x ∈ E : |g(x)| < a) ≤ Caδ in each term of the sum (3.10) we get that∫

E

min(1, |λg|−ϵ) dµ ≤ C|λ|−δ + µ(E)|λ|−ϵ + C

⌊log2 |λ|⌋∑
j=0

|λ|−ϵ(2j|λ|−1)−ϵ(2j+1|λ|−1)δ (3.11)

= C|λ|−δ + µ(E)|λ|−ϵ + 2δC

⌊log2 |λ|⌋∑
j=0

2j(δ−ϵ)|λ|−δ (3.12)

If δ = ϵ, the sum is bounded by (⌊log2 |λ|⌋+ 1)|λ|−δ. Since ⌊log2 |λ|⌋ ≤ log2 e log |λ|, we get
the second statement in Lemma 3.2. If δ > ϵ, the sum is bounded by a constant depending
on δ and ϵ times 2⌊log2 |λ|⌋(δ−ϵ)|λ|−δ = |λ|−ϵ. Inserting this into the sum of (3.12) gives the
third statement in Lemma 3.2.

Now we suppose δ < ϵ. This time we do not break into |g| ≥ 1 and |g| < 1 parts and
instead just do the dyadic decomposition in |g(x)|. Equation (3.12) gets replaced by∫

E

min(1, |λg|−ϵ) dµ ≤ C|λ|−δ + 2δC
∞∑
j=0

2j(δ−ϵ)|λ|−δ (3.13)

The sum in (3.13) is bounded by a constant depending on δ and ϵ times |λ|−δ, giving the
first statement in Lemma 3.2 and we are done.
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Example. Let f(x1, ..., xn) =
∑

α cαx
α be a polynomial such that cα > 0 for all α and

α = (α1, ..., αn) where each αj is even, with no α being the zero vector. Observe that
∂rx

α = |x|−1
∑

j xj∂xj
xα = kα|x|−1xα for kα =

∑
j αj ≥ 2, so that ∂rrx

α = −|x|−2kαx
α +

|x|−2k2αx
α = lα|x|−2xα, where lα = k2α − kα > 0. Inserting these into (3.4), it is not hard to

verify that both terms of (3.4) are bounded by

C ′(||ϕ||L∞ + ||∇ϕ||L∞)

∫
|x|<b

min

(
1,

1

|λf(x)|

)
dx (3.14)

If f(x) satisfies sublevel set estimates of the form |{|x| < b : |f(x)| < t}| < Atδ for some
0 < δ < 1, then Lemma 3.2 gives that (3.14) is bounded by A′|λ|−δ. Thus in this situation,
we have the canonical bounding of an oscillatory integral by a sublevel set measure given by
|I(λ)| < A′′(||ϕ||L∞ + ||∇ϕ||L∞)|λ|−δ. If the supremum of the δ for which the sublevel set
measure bounds holds is less than 1 then one cannot do better; by resolution of singularities
the best exponent for the oscillatory integral will always be the same as the best exponent
for the sublevel set measures. We refer to the textbook [AGuV] for more information on
these issues.

3.3 A variation on a theme and some infinitely flat examples.

In (3.2) we change variables in the r integral, letting s = rn. Correspondingly we define

gω(s) = f(s
1
nω) and ψω(s) = ϕ(s

1
nω). Then (3.2) becomes

I(λ) =
cn
n

∫
Sn−1

∫ ∞

0

eiλgω(s)ψω(s) ds dω (3.15)

In the form (3.15), we may apply Theorem 1.1 or 1.2 directly to the s integral without any
dyadic decomposition, and then integrate the result over Sn−1. We will see that for certain
classes of functions with a zero of infinite order at the origin, (3.15) bounds |I(λ)| by the
appropriate sublevel set measure, analogous to the above example and the examples at the
end of section 1.

Example 1. Let f(x) = e−(| ln |x||k), where k > 1. Then gω(s) = e−(
| ln s|

n
)k . This time we

have the formulas
∂gω
∂s

= − k

ns
e−(

| ln s|
n

)k
(
| ln s|
n

)k−1

(3.16a)

∂2gω
∂s2

=
k2

n2s2
e−(

| ln s|
n

)k
(
| ln s|
n

)2k−2

+ o

(
k2

n2s2
e−(

| ln s|
n

)k
(
| ln s|
n

)2k−2)
(3.16b)

∂3gω
∂s3

= − k3

n3s3
e−(

| ln s|
n

)k
(
| ln s|
n

)3k−3

+ o

(
k3

n3s3
e−(

| ln s|
n

)k
(
| ln s|
n

)3k−3)
(3.16c)

By (3.16a)− (3.16c), if c is sufficiently small then
∂gω
∂s

,
∂2gω
∂s2

, and
∂3gω
∂s3

are nonzero on [0, c]

except at s = 0. Therefore if ϕ is supported in |x| < c, in each s integral of (3.15) we can
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apply Theorem 1.2 and the only endpoint term appearing will come from the right-hand
endpoint, which will be O(|λ|−1). After integrating the result in ω we obtain

|I(λ)| ≤ C(||ϕ||L∞ + ||∇ϕ||L∞)

(∫ c

0

min

(
1,

1

|λ|e−(
| ln s|

n
)k

)
ds+O(|λ|−1)

)
(3.17)

We have a ||∇ϕ||L∞ factor here due to the presence of the ψω(s) factor. Similar to the case
of Example 1 at the end of section 1, the O(|λ|−1) term in (3.17) is negligible compared to
the integral term, and like before due to the slow growth rate of the measures of the sublevel

sets of e−(
| ln s|

n
)k , the integral is bounded by a constant times the measure of the set where

one takes the left component in the the minimum. Putting this all together we obtain the
following, where m denotes one-dimensional Lebesgue measure.

|I(λ)| ≤ C ′(||ϕ||L∞ + ||∇ϕ||L∞)m(s : e−(
| ln s|

n
)k < |λ|−1) (3.18)

We unwrap the measure on the right side of (3.18). It is the same as the measure of the

s for which −( | ln s|
n

)k < − ln |λ|, which in turn is the same as the measure of the set where
| ln s|
n

> (ln |λ|) 1
k . Since | ln s| = − ln s here, this is the same as the measure of the set where

− ln s > n[(ln |λ|) 1
k ], a set of measure e−n[(ln |λ|)

1
k ].

We next examine the n-dimensional measure of the set where f(x) = e−| ln |x||k is less
than |λ|−1. We have that e−| ln |x||k < |λ|−1 exactly when −| ln |x||k < − ln |λ|, which happens

when | ln |x|| > (ln |λ|) 1
k . Since | ln |x|| = − ln |x|, this occurs when ln |x| < −[(ln |λ|) 1

k ], or

|x| < e−[(ln |λ|)
1
k ], a set of measure a constant times e−n[(ln |λ|)

1
k ]. This is exactly the measure

appearing in the last paragraph. So (3.18) implies that the oscillatory integral I(λ) satsifies
the following natural sublevel set bounds for sufficiently large |λ|, where mn denotes n-
dimensional Lebesgue measure

|I(λ)| ≤ C ′′(||ϕ||L∞ + ||∇ϕ||L∞)mn({x : e−| ln |x||k < |λ|−1}) (3.19)

As in the one-dimensional case, the oscillatory integral is seen to be bounded by a constant

times the maximal measure of the set for which the exponential eiλe
−| ln |x||k

is in a single
period.

Example 2. Let f(x) = e−(|x|−m) for some m > 0. We proceed as in the last example. This

time gω(s) = e−(s−
m
n ) and we have the formulas

∂gω
∂s

= −m
n

e−(s−
m
n )

s
m
n
+1

(3.20a)

∂2gω
∂s2

=
m2

n2

e−(s−
m
n )

s2
m
n
+2

+ o

(
m2

n2

e−(s−
m
n )

s2
m
n
+2

)
(3.20b)

∂3gω
∂s3

= −m
3

n3

e−(s−
m
n )

s3
m
n
+3

+ o

(
m3

n3

e−(s−
m
n )

s3
m
n
+3

)
(3.20c)
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Equations (3.20a) − (3.20c) show that on a small enough neighborhood of the origin, the

functions
∂gω
∂s

,
∂2gω
∂s2

, and
∂3gω
∂s3

are nonzero except at s = 0. So like in the last example, in

each s integral of (3.15) we may apply Theorem 1.2 and the only endpoint term appearing
is the O(|λ|−1) term from the right endpoint. After integrating the result in ω, in analogy
with (3.17) we have

|I(λ)| ≤ C(||ϕ||L∞ + ||∇ϕ||L∞)

(∫ c

0

min

(
1,

1

|λ|e−(s−
m
n )

)
ds+O(|λ|−1)

)
(3.21)

Again the O(|λ|−1) term will be negligible compared to the integral term, and like before due

to the slow growth rate of the sublevel sets of e−(s−
m
n ), the integral is bounded by a constant

times the measure of the set where one takes the left component in the the minimum. As a
result, in place of (3.18) we get

|I(λ)| ≤ C ′(||ϕ||L∞ + ||∇ϕ||L∞)m(s : e−(s−
m
n ) < |λ|−1) (3.22)

Unwrapping the measure on the right of (3.22), we have that it equals the measure of the set
where −(s−

m
n ) < − ln |λ|, or equivalently the set where s−

m
n > ln |λ|, which is the same as

s < (ln |λ|)− n
m . So the measure on the right-hand side of (3.22) is (ln |λ|)− n

m . On the other
hand, the n dimensional measure of the set where f(x) = e−(|x|−m) satisfies |f(x)| < |λ|−1

is the same as the measure of the set where −(|x|−m) < − ln |λ|, which is the same as the

measure of the set where |x|−m > ln |λ|, or equivalently where |x| < (ln |λ|)− 1
m . Since this

is in n dimensions, the measure here is a constant times (ln |λ|)− n
m , same as above. So in

analogy with (3.19), for large enough |λ| we have the following, where once again mn denotes
n-dimensional Lebesgue measure.

|I(λ)| ≤ C ′′(||ϕ||L∞ + ||∇ϕ||L∞)mn({x : e−|x|−m

< |λ|−1}) (3.23)

These are the natural bounds for an oscillatory integral in terms of the sublevel set measures
of its phase function.

4 Efficiency of Theorems 1.1 and 1.2.

In this section we describe a few ways in which Theorems 1.1 and 1.2 can be viewed as
efficient. For one, Theorem 1.1 minimizes the presence of endpoint terms that appear in
integrations by parts for such one-dimensional oscillatory integrals, having just the one term
on the right of (1.4).

Next, suppose we are in the setting of Theorem 1.1 and f ′(x0) = 0 for some x0 ∈
[a, b]. Let p denote the order of the zero of f ′ at x0; by the assumptions of Theorem
1.1 we must have 1 ≤ p ≤ k − 1 where k is as in the theorem. Thus near x0 one has
f ′(x) = β(x− x0)

p + o((x− x0)
p) for some nonzero constant β. We examine the effect this

14



zero of f ′ has on the right-hand side of (1.3). Note that f ′′(x) = βp(x−x0)p−1+o((x−x0)p−1).
Thus near x0 we have

f ′′(x)

(f ′(x))2
=
p

β

1

(x− x0)p+1
+ o

(
1

(x− x0)p+1

)
(4.1)

Thus as |λ| → ∞ the portion of the integral term in (1.4) near x0 behaves as the following
expression for a small but fixed δ > 0.∫

|x−x0|<δ

min

(
1,

p

|β|
1

|λ||x− x0|p+1

)
dx (4.2)

Note that
p

β

1

|λ||x− x0|p+1
= 1 when |x− x0| =

(
p

β

) 1
p+1

|λ|−
1

p+1 . Thus as |λ| → ∞, the

integral (4.2) is of the same order as |β|−
1

p+1 |λ|−
1

p+1 . So the critical point at x0 contributes

C(||ϕ||L∞ + ||ϕ′||L1)|β|−
1

p+1 |λ|−
1

p+1 to the right-hand side of (1.4). This is the correct order
of decay for the contribution this critical point makes to the oscillatory integral of (1.4) as
λ→ ∞, as long as ϕ(x0) ̸= 0. Thus the right-hand side of (1.4) properly takes into account
a critical point, as |λ| → ∞. Although we still have the factor ||ϕ||L∞ + ||ϕ′||L1 , if we replace
the interval [a, b] by an appropriately small interval containing x, the factor ||ϕ||L∞ + ||ϕ′||L1

will more closely approximate the correct coefficient |ϕ(x0)|.

We should point out that the above discussion also holds for the variant of Theorem
1.1 given by Theorem 1.2.

Another way in which Theorem 1.1 can be viewed as efficient is in the context of the
Van der Corput lemma. One version of the standard form of the Van der Corput lemma can
be stated as follows (see p.334 of Chapter 8 of [St]).

Van der Corput Lemma. Suppose p is a positive integer and f(x) is a Cmax(p,2) function
on an interval [a, b] such that |f (p)(x)| > 1 on [a, b]. If p = 1 also assume f ′ is monotonic.
Suppose ϕ(x) is a C1 function on [a, b]. Then there is a constant cp > 0 such that∣∣∣∣ ∫ b

a

eiλf(x)ϕ(x) dx

∣∣∣∣ ≤ cp(||ϕ||L∞ + ||ϕ′||L1)|λ|−
1
p (4.3)

Sometimes, the Van der Corput Lemma is stated under the assumption that |f (p)(x)| > A
for some A > 0 instead of |f (p)(x)| > 1. In this case one may replace f(x) by Af(x) in the
above, and the resulting conclusion is that∣∣∣∣ ∫ b

a

eiλf(x)ϕ(x) dx

∣∣∣∣ ≤ cp(||ϕ||L∞ + ||ϕ′||L1)A− 1
p |λ|−

1
p (4.3’)

There is also a sublevel set measure version of the Van der Corput lemma with a very similar
proof which can be found in [C]. It can be stated as follows.
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Van der Corput lemma II. Suppose p is a positive integer and f(x) is a Cp function on
an interval [a, b] such that |f (p)(x)| > B on [a, b], where B > 0. Then there is a constant
c′p > 0 such that for each ϵ > 0 we have

|{x ∈ I : |f(x)| < ϵ}| < c′p

(
ϵ

B

) 1
p

(4.4)

Another notion of Theorem 1.1 being efficient is given by the following theorem pertaining
to the right hand side of (1.4).

Theorem 4.1. Suppose that f(x) is a polynomial and p ≥ 1 is such that |f (p)(x)| > 1 on
[a, b]. Let l denote the degree of f(x). Then there is a positive constant Cp such that∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

λ(f ′(x))2

∣∣∣∣)dx+min

(
b− a,

1

|λ| sup[a,b] |f ′(x)|

)
≤ lCp|λ|−

1
p (4.5)

Note that in the polynomial case, the k in (1.4) can be taken to be the degree l of
f(x). Thus Theorem 4.1 can be viewed as saying that for polynomials, the estimate given
by (1.4) contains the information given by the Van der Corput lemma, other than the fact
that the constant appearing may depend on the degree of the polynomial as well as p. This
dependence gibes with the condition in Theorem 1.1 that sup[a,b] |f (k)(x)| < A inf [a,b] |f (k)(x)|.

Proof of Theorem 4.1.

We first focus on the term min(b − a, 1
|λ| sup[a,b] |f ′(x)|) in (4.5). If p = 1, this term is

bounded by 1
|λ| , which gives the estimate we need. So we assume p > 1. We apply (4.4) to

f ′(x), specifically that {x ∈ [a, b] : |f ′(x)| < 1
(c′p−1)

p−1 (b− a)p−1} has measure less than b− a.

Thus sup[a,b] |f ′(x)| ≥ 1
(c′p−1)

p−1 (b− a)p−1. Hence we have

min(b− a,
1

|λ| sup[a,b] |f ′(x)|
) ≤ min(b− a,

(c′p−1)
p−1

|λ|(b− a)p−1
) (4.6)

Viewed as functions of b− a for fixed λ, the left term in the minimum is increasing and the

right term is decreasing. The two terms are equal when b − a = (c′p−1)
p−1
p |λ|−

1
p . Thus we

have the desired estimate

min(b− a,
1

|λ| sup[a,b] |f ′(x)|
) ≤ (c′p−1)

p−1
p |λ|−

1
p (4.7)

We now move on to the integral term
∫ b

a
min

(
1,
∣∣ f ′′(x)
λ(f ′(x))2

∣∣)dx in (4.5). Again we first do the
case p = 1 separately. When p = 1, we have∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

λ(f ′(x))2

∣∣∣∣)dx ≤ 1

|λ|

∫ b

a

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣dx (4.8)
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Since f(x) is a polynomial, f ′(x) is piecewise monotonic, and the integral in (4.8) can be
integrated over each piece to obtain the sum of ± 1

f ′(x)
at the two endpoints. Thus by the

condition that |f ′| > 1, the integral over each piece less than 2, and thus the overall integral
is bounded by 2l, where we recall l is the degree of f(x). Thus for the case where p = 1 we
have the desired estimate ∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

λ(f ′(x))2

∣∣∣∣)dx ≤ 2l
1

|λ|
(4.9)

Henceforth we assume p > 1 and focus on bounding
∫ b

a
min(1, | f ′′(x)

λ(f ′(x))2
|)dx when p > 1.

Note that the degree l of the polynomial f(x) is at least 2. Thus we may factorize f ′(x) =

γ
∏l−1

i=1(x−ri), where the ri are the roots of f ′(x) and γ ̸= 0. Note that f ′′(x)
f ′(x)

is the logarithmic

derivative of f ′(x), or
∑l−1

i=1
1

x−ri
, so that we have

f ′′(x)

(f ′(x))2
=

l−1∑
i=1

1

(x− ri)f ′(x)
(4.10)

Due to the elementary inequality min(a, b + c) ≤ min(a, b) + min(a, c) for nonnegative a, b,
and c, we then get∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

λ(f ′(x))2

∣∣∣∣)dx ≤
l−1∑
i=1

∫ b

a

min

(
1,

1

|λ(x− ri)f ′(x)|

)
(4.11)

By (4.4), for each ϵ > 0 one has

|{x ∈ [a, b] : |f ′(x)| < ϵ}| < c′p−1ϵ
1

p−1 (4.12)

This implies corresponding bounds for each |{x ∈ [a, b] : |(x − ri)f
′(x)| < ϵ}|. To see why,

note that

{x ∈ [a, b] : |(x− ri)f
′(x)| < ϵ} ⊂ {x ∈ [a, b] : |(x−Re(ri))f

′(x)| < ϵ}

⊂ ∪∞
j=−∞{x ∈ [a, b] : |x−Re(ri)| < 2j, |f ′(x)| < ϵ

2j
} (4.13)

Note that |{x ∈ [a, b] : |x−Re(ri)| < 2j}| < 2j+1, while by (4.12) we have

|{x ∈ [a, b] : |f ′(x)| < ϵ

2j
}| ≤ c′p−1ϵ

1
p−12−

j
p−1 (4.14)

Thus (4.13) gives

|{x ∈ [a, b] : |(x− ri)f
′(x)| < ϵ}| ≤

∞∑
j=−∞

min(2j+1, c′p−1ϵ
1

p−12−
j

p−1 ) (4.15)
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One computes that the terms 2j+1 and c′p−1ϵ
1

p−12−
j

p−1 in the minimum of (4.15) are equal

when 2j = (
c′p−1

2
)
p−1
p ϵ

1
p . Since 2j increases exponentially in j and c′p−1ϵ

1
p−12−

j
p−1 decreases

exponentially in j, we conclude that for some constant dp we have

|{x ∈ [a, b] : |(x− ri)f
′(x)| < ϵ}| ≤ dpϵ

1
p (4.16)

Equation (4.16) holds for all ϵ > 0. Thus by Lemma 3.2, there is a constant ep such that for
each i we have ∫ b

a

min

(
1,

1

|λ(x− ri)f ′(x)|

)
dx ≤ ep|λ|−

1
p (4.17)

In view of (4.11), adding (4.17) over all i gives∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

λ(f ′(x))2

∣∣∣∣)dx ≤ (l − 1)ep|λ|−
1
p (4.18)

This gives us the desired bound for the term
∫ b

a
min(1, | f ′′(x)

λ(f ′(x))2
|)dx in (4.5) and we are

done.

5 Proofs of Theorems 1.1 and 1.2.

5.1 Proof of Theorem 1.1.

We will do the case when k = 1 separately at the end. So for now we assume the hypotheses
of Theorem 1.1 hold for some k ≥ 2. Let Z be the set {x ∈ [a, b] : x = a, x = b, or
f ′(x) = 0}. Since the assumptions of the theorem imply that |f (k)(x)| ̸= 0 on [a, b], the set

Z is finite. We next write [a, b] = G∪H, where G = {x ∈ [a, b] : x ∈ Z or
∣∣ f ′′(x)
(f ′(x))2

∣∣ ≥ 1}, and
H = {x ∈ [a, b] : x /∈ Z and

∣∣ f ′′(x)
(f ′(x))2

∣∣ < 1}. Note that H is open and therefore G is closed.

Since the integrand of (1.1) has magnitude at most ||ϕ||L∞ , the portion of the integral (1.1)
over G is bounded by ||ϕ||L∞|G|, which equals

||ϕ||L∞

∫
G

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣)dx (5.1)

As a result we have∣∣∣∣ ∫
G

eif(x)ϕ(x) dx

∣∣∣∣ ≤ ||ϕ||L∞

∫
G

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣)dx (5.2)

This is the only bound we will need for the portion of the oscillatory integral over G.

We move on to H. Since H is open we may write H = ∪jIj where Ij = (cj, dj) are
disjoint open intervals. By definition of H, one has f ′(x) ̸= 0 for each x ∈ Ij. We claim that
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f ′(cj) and f
′(dj) are nonzero, so we have that 1

f ′(x)
is a C1 function on [cj, dj] for which we

may apply integrations by parts such as in (1.2). To see why f ′(cj) and f
′(dj) are nonzero,

first note that for small ϵ1, ϵ2 > 0 we have

1

f ′(dj − ϵ2)
− 1

f ′(cj + ϵ1)
= −

∫ dj−ϵ2

cj+ϵ1

f ′′(x)

(f ′(x))2
dx (5.3)

Since
∣∣ f ′′(x)
(f ′(x))2

∣∣ < 1 on (cj, dj), we must therefore have∣∣∣∣ 1

f ′(dj − ϵ2)
− 1

f ′(cj + ϵ1)

∣∣∣∣ < (dj − cj) (5.4)

If f ′(cj) were zero, we could take limits as ϵ1 → 0 in (5.4) and get a contradiction. Similarly
if f ′(dj) were zero we could take limits as ϵ2 → 0 in (5.4) and get a contradiction. Thus we
have that f ′(cj) and f

′(dj) are nonzero as needed.

Next we divide the intervals Ij into two types. We say Ij is of type 1 if supIj
|f ′(x)| >

2 infIj |f ′(x)|, and we say Ij is of type 2 if supIj
|f ′(x)| ≤ 2 infIj |f ′(x)|. We start with the

analysis on intervals of type 1. We integrate by parts in the integral
∫ dj
cj
eif(x)ϕ(x) dx, writing

eif(x) = if ′(x)eif(x) × 1
if ′(x)

, then integrating if ′(x)eif(x) to eif(x) and differentiating the rest.
The result is ∫ dj

cj

eif(x)ϕ(x) dx =
eif(dj)

if ′(dj)
ϕ(dj)−

eif(cj)

if ′(cj)
ϕ(cj)

+
1

i

∫ dj

cj

eif(x)
f ′′(x)

(f ′(x))2
ϕ(x) dx− 1

i

∫ dj

cj

eif(x)
1

f ′(x)
ϕ′(x) dx (5.5)

We now bound (5.5) by the absolute values of each term of (5.5), putting the absolute values
inside the integrals and bounding the occurrences of ϕ by ||ϕ||L∞ . We obtain∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ ||ϕ||L∞

(
1

|f ′(dj)|
+

1

|f ′(cj)|
+

∫ dj

cj

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx)+

∫ dj

cj

1

|f ′(x)|
|ϕ′(x)| dx

(5.6)
To analyze (5.6) further we use the following lemma.

Lemma 5.1. If Ij = (cj, dj) is any type 1 interval, then each y ∈ [cj, dj] satisfies

1

|f ′(y)|
< 3

∫ dj

cj

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx (5.7)

Proof. Let x0 ∈ [cj, dj] be such that |f ′(x0)| = inf [cj ,dj ] |f ′(x)|. Recall by the earlier discussion

that f ′(x0) ̸= 0. Then by the fundamental theorem of calculus, 1
f ′(y)

= 1
f ′(x0)

−
∫ y

x0

f ′′(x)
(f(x))2

dx,
so that

1

|f ′(y)|
≤ 1

|f ′(x0)|
+

∫ dj

cj

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx (5.8)
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Now let x1 ∈ [cj, dj] be such |f ′(x1)| = sup[cj ,dj ]
|f ′(x)|. Since Ij is type 1, one has

1

|f ′(x1)|
<

1

2|f ′(x0)|
. As a result we have

1

|f ′(x0)|
< 2

∣∣∣∣ 1

f ′(x0)
− 1

f ′(x1)

∣∣∣∣ (5.9)

Again using the fundamental theorem of calculus, (5.9) leads to

1

|f ′(x0)|
< 2

∫ dj

cj

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx (5.10)

Inserting (5.10) into (5.8) gives (5.7) and we are done.

Next, we insert (5.7) into the first two terms on the right of (5.6), obtaining∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ 7 ||ϕ||L∞

∫ dj

cj

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx+ ∫ dj

cj

1

|f ′(x)|
|ϕ′(x)| dx (5.11)

Inserting (5.7) into the rightmost term of (5.11) now gives∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ (7 ||ϕ||L∞ + 3||ϕ′||L1)

∫ dj

cj

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx (5.12)

Since
∣∣ f ′′(x)
(f ′(x))2

∣∣ < 1 on (cj, dj), the
∣∣ f ′′(x)
(f ′(x))2

∣∣ appearing in (5.12) is equal to min(1,
∣∣ f ′′(x)
(f ′(x))2

∣∣).
As a result, (5.12) can be rewritten as∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ (7 ||ϕ||L∞ + 3||ϕ′||L1)

∫ dj

cj

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣) dx (5.12’)

The estimate (5.12′) gives the bounds we need for the portion of the oscillatory integral over
(cj, dj) when it is an interval of type 1.

We now assume (cj, dj) is an interval of type 2. We do the case where (cj, dj) is the
entire interval (a, b) first. This is the only situation where we contribute to the right-hand
term of (1.3). We integrate by parts as in (5.5), and once again have the estimate (5.6).
Instead of using (5.7), this time we use the fact that (a, b) is an interval of type 2 and thus
have a bound 1

|f ′(x)| ≤ 2 1
sup[a,b] |f ′| holding on [a, b]. We insert this bound into (5.6), both in

the two endpoint terms and in the integral of the rightmost term. We get∣∣∣∣ ∫ b

a

eif(x)ϕ(x) dx

∣∣∣∣ ≤ (4 ||ϕ||L∞ + 2||ϕ′||L1)
1

sup[a,b] |f ′(x)|
+ ||ϕ||L∞

∫ b

a

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx
≤ (4 ||ϕ||L∞ + 2||ϕ′||L1)

(
1

sup[a,b] |f ′(x)|
+

∫ b

a

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣ dx) (5.13)
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Since min(1,
∣∣ f ′′(x)
(f ′(x))2

∣∣) =
∣∣ f ′′(x)
(f ′(x))2

∣∣ in the situation at hand, the right-hand side of (5.13) is
the same as

(4 ||ϕ||L∞ + 2||ϕ′||L1)

(
1

sup[a,b] |f ′(x)|
+

∫ b

a

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣) dx) (5.14)

The estimate (5.14) gives the bounds we need for the portion of the oscillatory integral over
(cj, dj) if (cj, dj) = (a, b) is an interval of type 2.

Next we assume that (cj, dj) is an interval of type 2, and (cj, dj) is not the whole
interval (a, b). Thus there is at least one endpoint e of [cj, dj] which is neither a nor b. Since
|f ′′(x)|
(f ′(x))2

< 1 on (cj, dj) and f ′(e) ̸= 0, we must have |f ′′(e)|
(f ′(e))2

≤ 1. We cannot have a strict

inequality |f ′′(e)|
(f ′(e))2

< 1; if this were true then x would have to be an interior point of (cj, dj)

instead of an endpoint. So we must have |f ′′(e)|
(f ′(e))2

= 1.

Since for all x ∈ [cj, dj] one has
|f ′′(x)|
(f ′(x))2

≤ 1 and |f ′| varies by a factor of at most 2 on

an interval of type 2, if x ∈ [cj, dj] we therefore have

|f ′′(x)| ≤ |f ′(x)|2 ≤ 4|f ′(e)|2 = 4|f ′′(e)|

Hence we have

|f ′′(e)| ≥ 1

4
sup
[cj ,dj ]

|f ′′| (5.15)

Next, we use the condition that sup[a,b] |f (k)(x)| < A inf [a,b] |f (k)(x)| for some constant A,
where we recall we are assuming k ≥ 2. First suppose k ≥ 3. Then we may apply part 2 of
Lemma 1 of the famous paper [PhSt] of Phong and Stein to f ′′(x) and conclude that there
is a constant LA,k such that on [cj, dj] we have the following, where |Ij| denotes the length
dj − cj of |Ij|.

|f ′′′(x)| ≤ LA,k
1

|Ij|
sup
[cj ,dj ]

|f ′′| (5.16)

In view of (5.15), equation (5.16) implies that there is a constantMA,k such that if x ∈ [cj, dj]
satisfies |x− e| < MA,k|Ij|, then one has

|f ′′(x)| ≥ 1

8
sup
[cj ,dj ]

|f ′′| (5.17)

In particular, for such x one has |f ′′(x)| ≥ 1
8
|f ′′(e)| = 1

8
|f ′(e)|2 ≥ 1

32
|f ′(x)|2. The final

inequality follows from the fact that (cj, dj) is an interval of type 2, so that |f ′| varies by a
factor of at most 2 on it. We conclude that for |x− e| < MA,k|Ij| one has

|f ′′(x)|
(f ′(x))2

≥ 1

32
(5.18)
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Now on Ij, min(1, |f ′′(x)|
(f ′(x))2

) = |f ′′(x)|
(f ′(x))2

. Thus (5.18) implies that for some constant NA,k > 0
one has ∫

Ij

min

(
1,

|f ′′(x)|
(f ′(x))2

)
dx > NA,k|Ij| (5.19)

The above assumed that k = 3, but (5.19) will also hold when k = 2. For when k = 2,
not only does |f ′(x)| vary by a factor of at most 2 on Ij, but the condition sup[a,b] |f ′′(x)| <
A inf [a,b] |f ′′(x)| implies that |f ′′(x)| varies by a factor of at most A on Ij. Thus |f ′′(e)|

(f ′(e))2
= 1

implies that |f ′′(x)|
(f ′(x))2

is bounded below by 1
4A

and once again (5.19) will hold.

Next, note that by simply taking absolute values on the inside and integrating, we
have ∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ ||ϕ||L∞|Ij| (5.20)

Combining this with (5.19) we get that∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ (NA,k)
−1||ϕ||L∞

∫
Ij

min

(
1,

|f ′′(x)|
(f ′(x))2

)
dx (5.21)

Equation (5.21) is what we need for the portion of the oscillatory integral over Ij.

We now simply add the estimate (5.2) for G to the estimates (5.12′) and (5.14) or
(5.21) over all intervals Ij of H, and we obtain (1.3). (One can take the minimum with
b− a in the right-hand term of (1.3) since that is given by the bound one obtains by simply

taking absolute values in the integrand of
∫ b

a
eif(x)ϕ(x) dx and integrating.) This completes

the proof of Theorem 1.1 for k > 1.

Lastly, we consider the case where k = 1. We write [a, b] as the finite union of j
intervals Ji = [ci, di], disjoint except at endpoints, such that on each Ji, f

′(x) is monotonic.
Then by k = 1 case of the Van der Corput lemma (4.3′), for some constant c one has∣∣∣∣ ∫ di

ci

eiλf(x)ϕ(x) dx

∣∣∣∣ ≤ c(||ϕ||L∞ + ||ϕ′||L1)
1

inf [ci,di] |f ′(x)|
(5.22)

By the condition that sup[a,b] |f ′(x)| < A inf [a,b] |f ′(x)|, we see that (5.22) is bounded by

cA(||ϕ||L∞ + ||ϕ′||L1)
1

sup[a,b] |f ′(x)|
(5.23)

Adding this over all i gives the desired inequality∣∣∣∣ ∫ b

a

eiλf(x)ϕ(x) dx

∣∣∣∣ ≤ cjA(||ϕ||L∞ + ||ϕ′||L1)
1

sup[a,b] |f ′(x)|
(5.24)

This completes the proof for the k = 1 case; one can take the minimum with b − a in the
right-hand term of (1.3) exactly as before. This completes the proof of Theorem 1.1.
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5.2 Proof of Theorem 1.2.

Suppose the assumptions of Theorem 1.2 hold. We let α1 < ... < αN denote the points in J ,
where J is as in Theorem 1.2. We will show that there is a constant B such that for each
l < N we have ∣∣∣∣ ∫ αl+1

αl

eif(x)ϕ(x) dx

∣∣∣∣ ≤
B(||ϕ||L∞ + ||ϕ′||L1)

(∫ αl+1

αl

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣)dx+ 1

|f ′(αl)|
+

1

|f ′(αl+1)|

)
(5.25)

Then (1.6) follows by adding (5.25) over all l; as in the proof of Theorem 1.1 one can take
the minimum with b− a in the right-hand term of (1.6) since that is given by the bound one

obtains by simply taking absolute values in the integrand of
∫ b

a
eif(x)ϕ(x) dx and integrating.

We proceed to the proof of (5.25). We start as in the proof of Theorem 1.1, replacing
the interval [a, b] by [αl, αl+1]. Namely we let Z be the set {x ∈ [αl, αl+1] : x = αl, x = αl+1,
or f ′(x) = 0}. Since f ′′′(x) ̸= 0 on (αl, αl+1), the set Z is finite. Analogous to before,

we write [αl, αl+1] = G ∪ H, where G = {x ∈ [αl, αl+1] : x ∈ Z or
∣∣ f ′′(x)
(f ′(x))2

∣∣ ≥ 1}, and
H = {x ∈ [a, b] : x /∈ Z and

∣∣ f ′′(x)
(f ′(x))2

∣∣ < 1}. Precisely as in the proof of Theorem 1.1, (5.2)
holds, providing the desired estimate for the integral over G.

Next, like in the proof of Theorem 1.1 we write H = ∪jIj, where Ij = (cj, dj) are open
intervals. Exactly as in the proof of Theorem 1.1 we have that f ′(x) ̸= 0 on each [cj, dj].
We again divide the intervals Ij into type 1 and type 2 intervals, where type 1 intervals are
those on which |f ′(x)| varies by more than a factor of 2 and type 2 intervals are those on
which |f ′(x)| varies by at most a factor of 2. The analysis of the type 1 intervals is exactly
as in the proof of Theorem 1.1, leading to (5.12′) once again holding.

For type 2 intervals, the argument changes from that of Theorem 1.1, and accounts
for the presence of the right-hand terms in (5.25). We further subdivide the type 2 intervals
into two subtypes. We say Ij is an interval of subtype 2A if cj = αl, dj = αl+1, or both. We
say Ij is an interval of subtype 2B if neither endpoint of Ij is an endpoint of [αl, αl+1]. We
first suppose Ij is an interval of type 2A. Thus we may let e denote an endpoint of [cj, dj]
that is also an endpoint of [αl, αl+1]. Since Ij is an interval of type 2, |f ′(x)| varies by a
factor of at most 2 on [αl, αl+1]. As a result, if x ∈ Ij we have

1

|f ′(x)|
≤ 2

|f ′(e)|
(5.26)

We now perform the integration by parts leading to (5.6). We insert (5.26) into (5.6) anal-
ogously to the argument leading to (5.14). Analogously to (5.14), we obtain∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ (4||ϕ||L∞ + 2||ϕ′||L1)

(
1

|f ′(e)|
+

∫ dj

cj

min

(
1,

∣∣∣∣ f ′′(x)

(f ′(x))2

∣∣∣∣) dx) (5.27)
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This is the estimate we need for the integral over an Ij of type 2A.

We now consider the case where Ij is an interval of type 2B. Since neither cj nor dj
is an endpoint of [αl, αl+1] nor a point where f ′ = 0, by the definition of H one must have
that

|f ′′(cj)|
(f ′(cj))2

=
|f ′′(dj)|
(f ′(dj))2

= 1 (5.28)

The αl include all points where f
′′ or f ′′′ are zero and f ′ is nonzero. Because f ′ is nonzero on

[cj, dj], this means that both f ′′ and f ′′′ are either positive on (cj, dj) or negative on (cj, dj).
Thus f ′ and f ′′ are monotonic on [cj, dj]. Hence there are endpoints e1 and e2 of [cj, dj]
(which may or may not be the same) such that |f ′(x)| ≤ |f ′(e1)| and |f ′′(x)| ≥ |f ′′(e2)| for
x ∈ Ij. Thus on Ij we have

|f ′′(x)|
(f ′(x))2

≥ |f ′′(e2)|
(f ′(e1))2

(5.29)

But recall |f ′(x)| varies by a factor of at most 2 on Ij. Thus we have

|f ′′(e2)|
(f ′(e1))2

≥ 1

4

|f ′′(e2)|
(f ′(e2))2

=
1

4
(5.30)

Thus on Ij we have
|f ′′(x)|
(f ′(x))2

≥ 1

4
(5.31)

Since min(1, |f ′′(x)|
(f ′(x))2

) =
∣∣ f ′′(x)
(f ′(x))2

∣∣ on Ij, analogously to (5.19) we have∫
Ij

min

(
1,

|f ′′(x)|
(f ′(x))2

)
dx >

1

4
|Ij| (5.32)

Exactly as in (5.20), by taking absolute values on the inside and integrating one has∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ ||ϕ||L∞|Ij| (5.33)

Combining (5.32) and (5.33) we thus have∣∣∣∣ ∫ dj

cj

eif(x)ϕ(x) dx

∣∣∣∣ ≤ 4||ϕ||L∞

∫
Ij

min

(
1,

|f ′′(x)|
(f ′(x))2

)
dx (5.34)

Equation (5.34) is the estimate we need for the portion of the oscillatory integral over an
Ij of type 2B. We can now add up the estimates for the intervals of different types, namely
(5.12′), (5.27), and (5.34), and add the result to the estimate (5.2) for the integral over G.
The result is (5.25). This concludes the proof of Theorem 1.2.
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6 Proof of Theorem 2.1.

Assume that the conditions of Theorem 2.1 are satisfied. If ∂kxn
g(0) ̸= 0 for some k the theo-

rem is immediate, so we assume that ∂kxn
g(0) = 0 for each k. Equivalently, g(0, ..., 0, xn) = 0

for each xn. We Taylor expand g(x) on a neighborhood of the origin as

g(x) =
∞∑
i=0

gi(x1, ..., xn−1)x
i
n (6.1)

Note that each gi(x) satisfies gi(0) = 0. Thus the ideal J in R[[x1, ..., xn−1]] generated by
all of the gi(x) is a proper ideal. Note that the ideals Ji = ⟨g0, ..., gi⟩ satisfy the ascending
chain condition and their union is J . So since R[[x1, ..., xn−1]] is Noetherian, for some i0 one
has Ji = Ji0 for all i ≥ i0 and therefore J = Ji0 .

We now apply resolution of singularities in n− 1 dimensions to the nonzero g0, ..., gi0
as well as all nonzero differences gi − gi′ for 0 ≤ i, i′ ≤ i0. Hironaka’s theorem in [H1] [H2]
more than suffices for our purposes. As a consequence of these theorems, we may say the
following. If s > 0 is sufficiently small, then the n− 1 dimensional closed ball B̄n−1(0, s) can
be written as ∪N

j=1Kj, where Kj are (overlapping) compact sets containing the origin such
that to each Kj there is a Uj containing Kj such that the following hold.

� ∪N
j=1Uj ⊂ Bn−1(0, s

′) for some s′ > s such that g(x) is real analytic on a neighborhood
of the closed ball B̄n−1(0, s

′).

� There is a bounded open U ′
j ⊂ Rn−1 containing the origin and a surjective ϕj : U

′
j → Uj

whose components are real analytic functions such that each nonzero gi ◦ ϕj(y) and
each nonzero (gi − gi′) ◦ ϕj(y) for 0 ≤ i, i′ ≤ i0, can be written in the form a(y)m(y)
on U ′

j, where m(y) is a nonconstant monomial and a(y) is a nonvanishing real analytic
function.

� There is a compact Lj ⊂ U ′
j such that ϕj(Lj) = Kj.

Next, we define ϕ̄j(y1, ..., yn) = (ϕj(y1, ..., yn−1), yn). We examine each g ◦ ϕ̄j(y) as a
function of n variables on U ′

j × [−t, t], where t is small enough to ensure that each g ◦ ϕ̄j(y)
is defined on U ′

j × [−t, t]. We may write

g ◦ ϕ̄j(y) =
∞∑
i=0

gi ◦ ϕj(y1, ..., yn−1)y
i
n (6.2)

Let y0 = (y′0, 0) be any point in Lj × {0} such that ϕ̄j(y0) = 0. Equivalently, ϕ(y′0) = 0. We
shift coordinates in the y variables so that y0 becomes the origin. Namely, we let y = z+ y0.
Then gi◦ϕj(y1, ..., yn−1) becomes gi◦ϕj((z1, ..., zn−1)+y

′
0), which we denote by hij(z1, ..., zn−1).

We then have

g ◦ ϕ̄j(z + y0) =
∞∑
i=0

hij(z1, ..., zn−1)z
i
n (6.3)
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Because ϕ̄j(y0) = 0 and each gi(0) = 0, we must have that each hij(0) = 0. Furthermore,
each nonzero hij(z) and each nonzero difference hij(z) − hi′j(z) for i, i′ ≤ i0 is still of the
form a(z)m(z) on a neighborhood of the origin, where m(z) is nonvanishing and a(0) ̸= 0.
In addition, since g0, ..., gi0 generate the ideal generated by all gi on a neighborhood of the
origin, given j we also have that h0j, ..., hi0j generate the ideal generated by all hij.

Next, we write a nonzero hij(z) in the form aij(z)mij(z), where aij(z) is nonvanish-
ing near the origin and mij(z) is a monomial z

αij1

1 ...z
αij n−1

n−1 . Because we monomialized the
nonzero differences hij − hi′j for i, i′ ≤ i0, for a given j we have that for each i, i′ ≤ i0 we
either have αij ≤ αi′j or αi′j ≤ αij. Thus given j there is at least one i1 ≤ i0 such that for
all i ≤ i0 we have αi1j ≤ αij. As a result, mi1j(z) divides mij(z) for all i ≤ i0. Thus each
hij(z) for i ≤ i0 can be written as mi1j(z)qij(z) for a real analytic function qij(z). Since
h0j, ..., hi0j generate the ideal generated by all hij, for our fixed j each hij(z) for i > i0 can
also be written as mi1j(z)qij(z) for some real analytic function qij(z).

In summary, given j one has hi1j(z) = ai1j(z)mi1j(z) where ai1j(0) ̸= 0, while for all
i ̸= i1 we have that hij(z) = qij(z)mi1j(z) for a real analytic function qij(z). Thus in view
of (6.3), we have that ∂i1zn(g ◦ ϕ̄j(z + y0)) is of the form r(z1, ..., zn)mi1j(z1, ..., zn−1) for some
real analytic r(z) with r(0) ̸= 0. Write q(z) = g ◦ ϕ̄j(z + y0). Hence if we are in a small
enough neighborhood V of the origin so that |r(z1, ..., zn)| is with a factor of 2 of r(0, ..., 0),
then for z ∈ V we either have that q(z) is identically zero on the vertical line containing z
(corresponding to mi1j(z1, ...zn−1) = 0), or for lj = i1 one has

1

2
|∂ljznq(z1, ..., zn−1, 0)| < |∂lznq(z1, ..., zn)| < 2|∂ljznq(z1, ..., zn−1, 0)| (6.4)

Since y0 was an arbitrary point of ϕ̄−1
j (0)∩ (Lj ×{0}), a compact subset of Lj ×{0}, we may

cover ϕ̄−1
j (0) ∩ (Lj × {0}) by finitely many balls Vjl on which (6.4) holds for each l except

on vertical lines where q is identically zero, and such that ∪lVjl ⊂ U ′
j × [−t, t] for our small

t that ensures g ◦ ϕ̄j(y) is well-defined. There is an open set Wj containing ϕ
−1
j (0) ∩ Lj and

an ϵj ∈ (0, t) such Wj × [−ϵj, ϵj] ⊂ ∪lVjl. Thus (6.4) holds on Wj × [−ϵj, ϵj].

If y is in ((Wj)
c ∩ Lj) × [−ϵj, ϵj], then |ϕ̄j(y)| > 0 since ϕj

−1(0) ∩ Lj is a subset of
Wj. Since ((Wj)

c ∩Lj)× [−ϵj, ϵj] is compact, there is in fact a δj > 0 such that |ϕ̄j(y)| ≥ δj
on ((Wj)

c ∩ Lj) × [−ϵj, ϵj]. As a result, ϕ̄−1
j (B(0, δj)) ∩ (Lj × [−ϵj, ϵj]) ⊂ Wj × [−ϵj, ϵj], a

set on which (6.4) holds except on vertical lines on which q is identically zero. Since (6.4)
is invariant under coordinate changes in the first n − 1 variables such as ϕj, we then have
that the corresponding statement to (6.4) holds on B(0, δj) ∩ (ϕj(Lj) × [−ϵj, ϵj]). Namely,
on this set, on a vertical line either g is identically zero or one has

1

2
|∂ljxn

g(x1, ..., xn−1, 0)| < |∂lxn
g(x1, ..., xn)| < 2|∂ljxn

g(x1, ..., xn−1, 0)| (6.5)

Since ϕj(Lj) = Kj, if we let η < δj, ϵj for all j, then by taking the union of the above over all
j we see that on B(0, η)∩ ((∪jKj)× [−η, η]), on a vertical line either g is identically zero or
one has that (6.5) holds for at least one lj . Since ∪jKj is the original closed ball B̄n−1(0, s)
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on which we performed the resolution of singularities, there is an η′ for which the same is
true on all of Bn−1(0, η

′)× [−η′, η′] as is needed.

As for the final statement of Theorem 2.1, as long as g(x) is not identically zero,
there is some m such that ∂mxn

g(x1, ..., xn−1, 0) is not identically zero on Bn−1(0, η
′). Then

{(x1, ..., xn−1) ∈ Bn−1(0, η
′) : ∂mxn

g(x1, ..., xn−1, 0) = 0} has measure zero. Since the set of
(x1, ...xn−1) where g(x1, ..., xn) = 0 for all |xn| < η′ is a subset of the above set, this set too
has measure zero. This completes the proof of Theorem 2.1.
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