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Abstract

We extend the theorems of [G1] on Lp to Lps Sobolev improvement for translation
invariant Radon and fractional singular Radon transforms over hypersurfaces, proving
Lp to Lqs boundedness results for such operators. Here q ≥ p but s can be positive,
negative, or zero. For many such operators we will have a triangle Z ⊂ (0, 1)×(0, 1)×R
such that one has Lp to Lqs boundedness for (1

p ,
1
q , s) beneath Z, and in the case of

Radon transforms one does not have Lp to Lqs boundedness for (
1
p ,

1
q , s) above the plane

containing Z, thereby providing a Sobolev space improvement result which is sharp up
to endpoints for (1

p ,
1
q ) below Z. This triangle Z intersects the plane {(x1, x2, x3) :

x3 = 0}, and therefore we also have an Lp to Lq improvement result that is also sharp
up to endpoints for certain ranges of p and q.

1 Introduction and theorem statements

As in [G1], we consider convolution operators with hypersurface measures on Rn+1. Namely,
we consider operators of the following form, where x denotes (x1, ..., xn) and t denotes
(t1, ..., tn).

Tf(x, xn+1) =

∫
Rn
f(x− t, xn+1 − S(t))K(t) dt (1.1)

Here S(t) is a real-analytic function on a neighborhood U of the origin and K(t) is a function,
supported in U , that is C1 on {t ∈ U : ti 6= 0 for all i} and which satisfies the following
estimates. Write t = (t1, ..., tm), where ti denotes (ti1, ..., tili) such that the various tij
variables comprise the whole list t1, ..., tn. Then for some 0 ≤ αi < li and some C > 0 we
assume the following.

|K(t)| ≤ C
m∏
k=1

|tk|−αk (1.2a)
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|∂tijK(t)| ≤ C
1

|tij|

m∏
k=1

|tk|−αk for all i and j (1.2b)

Operators satisfying (1.1), (1.2a), (1.2b) are sometimes referred to as fractional Radon trans-
forms or fractional singular Radon transforms. The case where each αi = 0 includes tra-
ditional Radon transform operators, by which we mean the operators where K(t) is a C1

function. By the translation and rotation invariance properties of convolution operators,
without loss of generality we may assume that

S(0, ..., 0) = 0 ∇S(0, ..., 0) = (0, ..., 0) (1.3)

To avoid trivialities, we also assume S is not identically zero.

We will make use the following terminology and results from [G1].

Definition 1.1. Let f(t) be a real analytic function defined on a neighborhood of the origin
in Rn, and let f(t) =

∑
α fαt

α denote the Taylor expansion of f(t) at the origin. For any
α for which fα 6= 0, let Qα be the octant {t ∈ Rn : ti ≥ αi for all i}. Then the Newton
polyhedron N(f) of f(t) is defined to be the convex hull of all Qα.

Definition 1.2. Where f(t) is as in Definition 1.1, define f ∗(t) by

f ∗(t) =
∑

(v1,...,vn) a vertex of N(f)

|t1|v1 ...|tn|vn (1.4)

By Lemma 2.1 of [G2], there is a neighborhood V of the origin and a constant C such that
for all t ∈ V one has |f(t)| ≤ Cf ∗(t).

Let dµ denote the measure
∏m

k=1 |tk|−αk dm, where m denotes Lebesgue measure. By
Lemma 2.1 of [G1] there is an r0 > 0, an a0 > 0, and an integer d0 satisfying 0 ≤ d0 ≤ n− 1,
such that if r < r0 then there are positive constants br and Br such that for 0 < ε < 1

2
we

have
brε

a0 | ln ε|d0 < µ({t ∈ (0, r)n : S∗(t) < ε}) < Brε
a0| ln ε|d0 (1.5)

In order to state the main theorem of [G1], we will also need the following definitions.

Definition 1.3. Suppose F is a compact face of the Newton polyhedron N(f). Then if
f(t) =

∑
α fαt

α denotes the Taylor expansion of f like above, define fF (t) =
∑

α∈F fαt
α.

Definition 1.4. For f(t) as above, we denote by o(f) the maximum order of any zero of
any fF (t) on (R− {0})n. We take o(f) = 0 if there are no such zeroes.

Definition 1.5. The Newton distance d(f) is defined to be the minimal t for which (t, ..., t)
is in the Newton polyhedron N(f).

The main theorem of [G1] is as follows.
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Theorem 1.1. Suppose S(t) is a real analytic function on a neighborhood of the origin
satisfying (1.3). Let g = min(a0, l1 − α1, ..., lm − αm), where the αi and li are as in the
beginning of this paper and a0 is as in (1.5). Then there is a neighborhood V of the origin
such that if K(t) is supported on V and satisfies (1.2a)− (1.2b) then the following hold.

1) Let A denote the open triangle with vertices (1
2
, 1

max(o(S),2)
), (0, 0), and (1, 0), and let

B = {(x, y) ∈ A : y < g}. Then T is bounded from Lp(Rn+1) to Lps(Rn+1) if (1
p
, s) ∈ B.

2) Suppose g < 1, K(t) is nonnegative, and there exists a positive constant C0 and a neigh-
borhood N0 of the origin such that K(t) > C0

∏m
k=1 |tk|−αk on {t ∈ N0 : ti 6= 0 for all i}.

Then if 1 < p <∞ and T is bounded from Lp(Rn+1) to Lps(Rn+1) we must have s ≤ g.

Observe that when g < 1
max(o(S),2)

, the two parts of Theorem 1.1 combined say that

for 1
p
∈ (max(o(S),2)

2
g, 1− max(o(S),2)

2
g), the amount of Lp Sobolev smoothing given by part 1, g

derivatives, is optimal except possibly missing the endpoint s = g. When g = 1
max(o(S),2)

the
same is true for p = 2.

Some motivation for the index g in Theorem 1.1 is as follows. Let ν denote the surface
measure of S, weighted by

∏m
k=1 |xk|−αk . If we are in a situation where a0 ≤ 1

max(o(S),2)
, the

Newton polyhedron of S(x) controls the decay rate of the Fourier transform ν̂(ξ) in the
(0, ..., 0, 1) direction, and in this direction the decay rate has a bound of C|ξ|−a0+ε for any
ε > 0. This can be shown a minor variation on the arguments of [V] or [G2]. On the
other hand, in any (0, ..., 0, 1, 0, ..., 0) direction, a straightforward calculation shows that
ν̂(ξ) decays at the rate of |ξ|−(li−αi), where αi is such that this direction is one of the tij
directions.

It can then be shown that in any other “diagonal” direction, the Fourier transform
decays at a rate no worse than the minimum of the above decay rates. Consequently, since
g = min(a0, l1 − α1, ..., lm − αm), g is the slowest possible decay rate of ν̂ in any direction.
Given that the L2 Sobolev space improvement for T is the largest exponent δ for which
one has |ν̂(ξ)| ≤ C|ξ|−δ, the L2 case of Theorem 1.1 says that if g < 1

max(o(S),2)
, then up

to endpoints one has such an estimate with δ = g. In other words, the directional Fourier
transform decay rates hold with a constant that is uniform over all directions. Furthermore,
the statement of Theorem 1.1 gives that one has the same level of Lp Sobolev improvement
for p in an interval containing 2.

The following is the Sobolev space estimate we will use in our interpolation with the
boundedness results of Theorem 1.1. We will be using it for p approaching 1 and for q
tending to infinity.

Theorem 1.2. For any 1 < p ≤ q <∞ and any γ > 1 +
∑m

i=1 αi, the operator T is bounded
from Lp(Rn+1) to Lq−γ(Rn+1).

Let k = 1+
∑m

i=1 αi. Observe that the plane P in 3-space containing the line {(x, y, z) :
x = y, z = g} and the point (1, 0,−k) has equation (g + k)(x − y) + z = g. Thus letting p
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approach 1 and q approach infinity in Theorem 1.2 and interpolating with Theorem 1.1 gives
the following, keeping in mind that if s1 < s2 then Lqs2(R

n+1) ⊂ Lqs1(R
n+1) continuously for

any 1 < q <∞.

Theorem 1.3.

There is a neighborhood V of the origin such that if K(t) is supported on V and
satisfies (1.2a)− (1.2b) then the following hold.

Suppose g < 1
max(o(S),2)

. Let P denote the plane with equation (g + k)(x− y) + z = g,

and let Z be the closed triangle in P whose vertices are (max(o(S),2)
2

g, max(o(S),2)
2

g, g), (1 −
max(o(S),2)

2
g, 1 − max(o(S),2)

2
g, g), and (1, 0,−k). Then if (1

p
, 1
q
, s) is such that there is a t > s

with (1
p
, 1
q
, t) in the interior of Z, then T is bounded from Lp(Rn+1) to Lqs(Rn+1).

Suppose g ≥ 1
max(o(S),2)

. Let L denote the open line segment joining (1
2
, 1

2
, 1

max(o(S),2)
)

with the point (1, 0,−k). Then if (1
p
, 1
q
, s) is such that there is a t > s with (1

p
, 1
q
, t) ∈ L, then

T is bounded from Lp(Rn+1) to Lqs(Rn+1).

The triangle Z can be visualized as follows. The segment from (max(o(S),2)
2

g, max(o(S),2)
2

g, g)

to (1− max(o(S),2)
2

g, 1− max(o(S),2)
2

g, g) is a line segment above the line y = x, at fixed height
z = g, which is symmetric about the midpoint (1/2, 1/2, g). The trangle Z is then the convex
hull of this segment and the point (1, 0,−k) that is below the lower-rightmost point in the
square [0, 1]× [0, 1].

We can interpolate Theorem 1.3 with the trivial Lp to Lp estimates for 1 < p <∞ to
obtain a larger region of Sobolev space boundedness. This can be described as follows.

Theorem 1.4.

There is a neighborhood V of the origin such that if K(t) is supported on V and
satisfies (1.2a)− (1.2b) then the following hold.

Suppose g < 1
max(o(S),2)

. Let Z1 be the closed triangle with vertices (0, 0, 0), (1, 0,−k),

and (max(o(S),2)
2

g, max(o(S),2)
2

g, g), and let Z2 be the closed triangle with vertices (1, 1, 0), (1, 0,−k),

and (1− max(o(S),2)
2

g, 1− max(o(S),2)
2

g, g). If (1
p
, 1
q
, s) is such that there is a t > s with (1

p
, 1
q
, t)

in the interior of Z ∪ Z1 ∪ Z2, then T is bounded from Lp(Rn+1) to Lqs(Rn+1).

Suppose g ≥ 1
max(o(S),2)

. Let Z3 be the closed triangle with vertices (0, 0, 0), (1, 0,−k),

and (1
2
, 1

2
, 1

max(o(S),2)
) and let Z4 be the closed triangle with vertices (1, 1, 0), (1, 0,−k), and

(1
2
, 1

2
, 1

max(o(S),2)
). If (1

p
, 1
q
, s) is such that there is a t > s with (1

p
, 1
q
, t) in the interior of

Z3 ∪ Z4, then T is bounded from Lp(Rn+1) to Lqs(Rn+1).

So in Theorem 1.4, Z1 is the convex hull of the left side of Z with (0, 0, 0) and Z2 is
the convex hull of the right side of Z with (1, 1, 0), so that Z1 and Z2 are symmetric about
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the plane x + y = 1. Similarly, Z3 is the convex hull of (0, 0, 0) and the line segment from
(1

2
, 1

2
, 1

max(o(S),2)
) to (1, 0,−k) on the plane x + y = 1, and Z4 is the convex hull of (1, 1, 0)

and the line segment from (1
2
, 1

2
, 1

max(o(S),2)
) to (1, 0,−k). Again, Z3 and Z4 are symmetric

about the plane x+ y = 1, this time with a common edge on this plane.

The following theorem tells us when Theorem 1.3 gives the best possible amount of
Sobolev smoothing, up to endpoints. Since Theorem 1.1 can only be sharp up to endpoints in
situations where g ≤ 1

max(o(S),2)
this is the only situation when we can hope for such a result.

In the following theorem we will see that if each αi = 0, such as in the case of (nonsingular)
Radon transforms, if g ≤ 1

max(o(S),2)
one never gets a (1

p
, 1
q
, s) boundedness theorem above the

plane P for any 1 < p, q < ∞ (including when p > q.) Thus if g < 1
max(o(S),2)

, Theorem 1.3

gives the optimal s up to endpoints for (1
p
, 1
q
) beneath the triangle Z, and when g = 1

max(o(S),2)

Theorem 1.3 gives the optimal s up to endpoints for (1
p
, 1
q
) beneath the open line segment

joining (1, 0,−k) and (1
2
, 1

2
, 1

max(o(S),2)
).

Theorem 1.5. Suppose g ≤ 1
max(o(S),2)

and αi = 0 for all i, such as in the case of (nonsingu-

lar) Radon transforms. Suppose further that there is a C1 > 0 and a neighborhood N0 of the
origin such that K(t) > C1 on N0. Then for any 1 < p, q <∞, if (1

p
, 1
q
, s) is such that there

is a t < s with (1
p
, 1
q
, t) on the plane P , then T is not bounded from Lp(Rn+1) to Lqs(Rn+1).

Extensions.

Observe that by the translation invariance of T , whenever one has an Lp(Rn+1) to
Lqs(Rn+1) boundedness theorem, for any b ∈ R one also has the corresponding Lpb(Rn+1) to
Lqb+s(Rn+1) boundedness theorem.

The Sobolev embedding theorem can sometimes be used to extend the range of bound-
edness in Theorems 1.3 and 1.4 if k is sufficiently close to its maximum possible value of
n + 1. Namely, it turns out that if k > n + 1 − 2g in the case where g < 1

max(o(S),2)
, or if

k > n+ 1− 2
max(o(S),2)

in the case when g ≥ 1
max(o(S),2)

, one can sometimes extend Theorems
1.3 and 1.4 beyond Z1 ∪ Z2 or Z3 ∪ Z4 respectively in this fashion. If k > n + 1 − g and
g < 1

max(o(S),2)
, then one can also sometimes extend beyond the triangle Z. The sharpness

theorem, Theorem 1.5, will be false in the latter situations.

2 Some background

There has been quite a bit of work done on the boundedness properties of Radon transforms
and fractional singular Radon transforms on function spaces, so we focus our attention on
Sobolev space improvement and Lp to Lq improvement results for Radon transforms over
hypersurfaces. For curves in R2, [S] provides comprehensive Lpα to Lqβ boundedness results
for Radon transforms that are sharp up to endpoints. These results include general non-
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translation invariant operators. For higher-dimensional hypersurfaces, there is the author’s
recent paper [G6], where instead of using the Newton polyhedron-based resolution of singu-
larities methods of this paper, one uses the results of [G7] to prove Lpα to Lqβ boundedness
theorems that can be viewed as complementing the ones of this paper.

For translation invariant Radon transforms, L2 to L2
β Sobolev space improvement is

equivalent to a surface measure Fourier transform decay rate estimate. When n = 2, the
stability theorems of Karpushkin [Ka1] [Ka2] combined with [V] give such sharp decay rate
results, again for the case of (nonsingular) Radon transforms. For situations where not all
αi are zero, the author has some results [G3] [G4] in this area.

For higher dimensional hypersurfaces, in addition to the above-mentioned [G1], it
follows from [St] that if the density functions are singular enough in the sense that the αi
are close enough to li, then there will be an interval containing 2 on which sharp Lp to Lpβ
Sobolev smoothing holds. This extends the author’s paper [G5]. We also mention the paper
[Cu] which deals with Lp to Lpβ improvement for fractional singular Radon transforms where
the surface is relatively nondegenerate.

For specifically Lp to Lq improvement for Radon transforms over hypersurfaces, there
have been a number of other results for Radon transforms. The case of surfaces with nonva-
nishing Gaussian curvature are covered in [L][Ste2][Str]. The situation where the S(t) is a
homogeneous or mixed homogeneous function has been considered in [FGoU1] [FGoU2] [DZ]
[ISa]. Convex surfaces were considered in [ISaS]. Also, there have been papers considering
weighted Radon transforms, where instead of singular K(t) as in this paper one considers
surfaces damped by a bounded K(t) with zeroes on a set chosen to be natural for the surfaces
at hand. We mention [Gr] and [O] as examples of such results.

3 Examples

Example 1.

We consider the case of curves in two dimensions. So S(t) = ctl + O(tl+1) for some
nonzero c and some l ≥ 2. Here m = 1, and there is one αk in (1.2a)−(1.2b) which we denote
by simply α, where 0 < α < 1. Then S∗(t) = tl. The index a0 of (1.5) is the exponent of ε

in the measure of
∫ ε 1l

0
t−α dt or a0 = 1−α

l
. The Newton polyhedron N(S) here has the one

vertex l, and there is one polynomial SF (t) as in Definition 1.4, given by tl. Hence o(S) = 0
here. Thus the quantity max(o(S), 2) in Theorem 1.1 is just 2, and the upper vertex of A is
(1/2, 1/2). The quantity g of Theorem 1.1 is then given by min(1−α

l
, 1− α) = 1−α

l
.

Looking at what Theorem 1.4 says here, we see that Z1 has vertices (0, 0, 0), (1, 0,−1−
α), and (1−α

l
, 1−α

l
, 1−α

l
), and Z2 has vertices (1, 1, 0), (1, 0,−1−α), and (1− 1−α

l
, 1− 1−α

l
, 1−α

l
).

The triangle Z has vertices (1−α
l
, 1−α

l
, 1−α

l
), (1 − 1−α

l
, 1 − 1−α

l
, 1−α

l
), and (1, 0,−1 − α). (In

the case where α = 0 and l = 2 the triangle Z reduces to a line and we are in the second
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case of Theorem 1.4.) Theorem 1.4 then says that one has Lp to Lqs boundedness for (1
p
, 1
q
, s)

below the interior of Z ∪ Z1 ∪ Z2.

To specify the above to (nonsingular) Radon transforms one inserts α = 0 into the
above. Specifying further to Lp to Lq estimates, when l > 2 we look at the intersection of Z
with the x-y plane. Observe that X1 = l

l+1
(1
l
, 1
l
, 1
l
) + 1

l+1
(1, 0,−1) and X2 = l

l+1
(1 − 1

l
, 1 −

1
l
, 1
l
) + 1

l+1
(1, 0,−1) have third coordinate zero. As a result these two points will be on the

intersection of Z with the x-y plane. Note that X1 = ( 2
l+1
, 1
l+1
, 0) and X2 = ( l

l+1
, l−1
l+1
, 0).

Thus we have Lp to Lq boundedness for (1
p
, 1
q
) in the interior of trapezoid with vertices

(0, 0), ( 2
l+1
, 1
l+1

), ( l
l+1
, l−1
l+1

), and (1, 1). In the case that l = 2 this reduces to the triangle

with vertices (0, 0), (2
3
, 1

3
), and (1, 1) and the second part of Theorem 1.4 gives Lp to Lq

boundedness for (1
p
, 1
q
) in the interior of triangle. Theorem 1.5 then says that one does not

have Lp to Lq boundedness for (1
p
, 1
q
) below the line containing the segment joining ( 2

l+1
, 1
l+1

)

to ( l
l+1
, l−1
l+1

), namely the line y = x− 1
l+1

. In fact, it follows from [S] that the trapezoid above
is optimal up to endpoints, but this requires an additional argument.

Example 2.

We move to the situation where n ≥ 2 and consider the situation where each αi = 0,
such as in the case of (nonsingular) Radon transforms, and where the order of each zero of
each SF (t) on (R − {0})n is at most two. This includes the situation where the Newton
polyhedron of S is nondegenerate in the sense of Varchenko [V] and various other papers.
Then as in the previous example, max(o(S), 2) = 2. By [V] the quantity a0 is given by 1

d(S)
,

where d(S) is the Newton distance of S as in Definition 1.5. Since the stronger first part of
Theorem 1.4 holds when g < 1

2
here, we focus our attention on the situation where d(S) > 2

and therefore g = 1
d(S)

< 1
2
. Also, since each αi = 0, the quantity k of Theorems 1.3 and 1.4

is just 1.

In the situation at hand, Z has vertices ( 1
d(S)

, 1
d(S)

, 1
d(S)

), (1 − 1
d(S)

, 1 − 1
d(S)

, 1
d(S)

),

and (1, 0,−1). The triangle Z1 has vertices (0, 0, 0), (1, 0,−1), and ( 1
d(S)

, 1
d(S)

, 1
d(S)

), and

the triangle Z2 has vertices (1, 1, 0), (1, 0,−1), and (1 − 1
d(S)

, 1 − 1
d(S)

, 1
d(S)

). Theorem 1.4

gives Lp to Lqs boundedness for (1
p
, 1
q
, s) below the interior of Z ∪ Z1 ∪ Z2, and since each

αi = 0, Theorem 1.5 says one cannot get Lp to Lqs boundedness for (1
p
, 1
q
, s) above the plane

containing Z.

The intersection of Z with the x-y plane can be computed to be the line segment
joining ( 2

d(S)+1
, 1
d(S)+1

, 0) and ( d(S)
d(S)+1

, d(S)−1
d(S)+1

, 0). Thus we have Lp to Lq boundedness for

(1
p
, 1
q
) in the interior of the trapezoid with vertices (0, 0), ( 2

d(S)+1
, 1
d(S)+1

), ( d(S)
d(S)+1

, d(S)−1
d(S)+1

), and

(1, 1). In the case where d(S) is exactly two, similar to the previous example the second
part of Theorem 1.4 gives Lp to Lq boundedness in the interior of the triangle with vertices
(0, 0), (2

3
, 1

3
), and (1, 1). Theorem 1.5 then says that one does not have Lp to Lq boundedness

for (1
p
, 1
q
) below the line containing the segment joining ( 2

d(S)+1
, 1
d(S)+1

) to ( d(S)
d(S)+1

, d(S)−1
d(S)+1

),
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which is the line y = x− 1
d(S)+1

.

Example 3.

Suppose now that each li = 1 so that each ti is one dimensional. Like in the previous
example we assume that o(S) ≤ 2. Then the quantities a0 and d0 of (1.5) are defined by the
condition that if r is small enough there exist constants br and Br such that for 0 < ε < 1

2

we have

brε
a0| ln ε|d0 <

∫
{t∈(0,r)n:S∗(t)<ε}

n∏
i=1

t−αii dt < Brε
a0| ln ε|d0 (3.1)

We change variables ti = u
1

1−αi
i in (3.1), so that up to a constant, tαii dti = dui. Then (3.1)

becomes

b′rε
a0 | ln ε|d0 < m({u ∈ (0, r)n : S∗(u

1
1−α1
1 , ..., u

1
1−αn
n ) < ε}) < B′rε

a0| ln ε|d0 (3.2)

Herem denotes Lebesgue measure. LetR(u1, ..., un) = S(sgn(u1)|u1|
1

1−α1 , ..., sgn(un)|un|
1

1−αn ).
Observe that (β1, ..., βn) → ( 1

1−α1
β1, ...,

1
1−αnβn) takes the Newton polyhedron N(S) to

the Newton polyhedron N(R) with faces getting mapped to corresponding faces. Since

(u1, ..., un)→ (u
1

1−α1
1 , ..., u

1
1−αn
n ) is a diffeomorphism on (0, r)n, the maximum order of a zero

of a given SF (t) on (R−{0})n is the same as the maximum order of the corresponding RF̄ (t)
on (R−{0})n , where F̄ is the face of N(R) corresponding to F . Hence o(R) = o(S), which
by our assumptions is at most 2.

Next, observe that R∗(u) = S∗(|u1|
1

1−α1 , ..., |un|
1

1−αn ), where we define R∗(u) analo-
gously to (1.4). Thus by an immediate modification of the argument for S(t), the quan-
tity a0 of (3.2) is given by 1

d(R)
. So the quantity g of our theorems is given by g =

min( 1
d(R)

, 1− α1, ..., 1− αn).

Most of the time, the quantity 1
d(R)

will be smaller than each 1 − αi. For example,

suppose each αi = α for some 0 < α < 1. Then since the terms of S∗(u) have degree at least
2, one has that d(R) > C(1−α)−2 for some constant C. Hence 1

d(R)
< C ′(1−α)2, so that if

α is close enough to 1 then we have g = min( 1
d(R)

, 1− α) = 1
d(R)

.

Motivated by the above, we now add the assumption that g = 1
d(R)

. We also add

the assumption d(R) > 2 so that we are in the g < 1
2

case where the results are strongest.
Since we are also assuming that o(R) = o(S) ≤ 2, we are in the setting of the first parts
of Theorems 1.3-1.4. The plane P has equation ( 1

d(R)
+ 1 +

∑n
i=1 αi)(x − y) + z = 1

d(R)
,

and the triangles Z, Z1, and Z2 are determined as in example 2, if we replace d(S) in that
example by d(R) and the vertex (1, 0,−1) by (1, 0,−k) where k = 1 +

∑n
i=1 αi. So Z has

vertices ( 1
d(R)

, 1
d(R)

, 1
d(R)

), (1− 1
d(R)

, 1− 1
d(R)

, 1
d(R)

), and (1, 0,−k). The triangle Z1 has vertices
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(0, 0, 0), (1, 0,−k), and ( 1
d(R)

, 1
d(R)

, 1
d(R)

), and the triangle Z2 has vertices (1, 1, 0), (1, 0,−k),

and (1− 1
d(R)

, 1− 1
d(R)

, 1
d(R)

).

Like in example 2, we have Lp to Lqs boundedness for (1
p
, 1
q
, s) below the interior of

Z ∪Z1∪Z2. However unlike in example 2, if any αi 6= 0 the sharpness statement of Theorem
1.5 cannot be assumed to hold. However, the sharpness statements of [G1] for Lp to Lps
boundedness tell us that one can not have an Lp to Lps boundedness theorem when s is
above the line connecting the vertices ( 1

d(R)
, 1
d(R)

, 1
d(R)

) and (1 − 1
d(R)

, 1 − 1
d(R)

, 1
d(R)

) of Z,

namely the line {(t, t, 1
d(R)

) : 0 < t < 1}.

4 The proof of Theorem 1.2

The inclusion relations amongst Sobolev spaces imply that it suffices to show Theorem 1.2
for 1 +

∑m
i=1 αi < γ < n+ 1, so this is what we will assume.

The operator T is a convolution operator taking f to f ∗ ρ for some measure ρ. Then
given any γ satisfying 1 +

∑m
i=1 αi < γ < n + 1 , (I −∆)−

γ
2Tf is given by f ∗ σγ where σγ

is the convolution of ρ with the inverse Fourier transform of (1 + |ξ|2)−
γ
2 . Theorem 1.2 for

such γ will immediately follow from Young’s inequality once we prove the following lemma.

Lemma 4.1. For any γ with 1 +
∑m

i=1 αi < γ < n + 1, the measure σγ is a function hγ(x)
satisfying

|hγ(x)| ≤ Cγe
−|x| (4.1)

Proof. The inverse Fourier transform of (1 + |ξ|2)−
γ
2 is the well known Bessel kernel Gγ(x)

which satisfies the following bounds for some C ′γ > 0.

|Gγ(x)| < C ′γ|x|−n−1+γ (|x| < 1) (4.2a)

|Gγ(x)| < C ′γe
−|x| (|x| ≥ 1) (4.2b)

We refer to [AS] for more information about such estimates. Thus hγ(x) = ρ ∗ Gγ(x), and
we will show that (4.1) is satisfied using (4.2a)− (4.2b).

First, note that since ρ is a finite measure which we may assume is supported on
{x : |x| < 1}, (4.2b) implies that if |x| > 2 then hγ(x) = ρ ∗ Gγ(x) satisfies (4.1). Thus it
suffices to consider showing (4.1) is satisfied for |x| < 2. In other words, we must show that
hγ(x) is bounded on |x| < 2. We will actually end out proving hγ(x) is bounded on all of
Rn+1.

Write Gγ(x) = G1
γ(x) + G2

γ(x) where G1
γ(x) = Gγ(x)χ{x:|x|<1}(x) and G2

γ(x) =
Gγ(x)χ{x:|x|≥1}(x). Note that by (4.2a) the function Gγ(x) is bounded on {x : |x| ≥ 1}.
Hence ρ∗G2

γ(x) is the convolution of a finite measure with a bounded function, and thus is a

9



bounded function. Hence to show Lemma 4.1 it suffices to show that ρ ∗G1
γ(x) is a bounded

function. If as before x denotes (x1, ..., xn) and t denotes (t1, ..., tn), we have

ρ ∗G1
γ(x) =

∫
Rn
G1
γ(x− t, xn+1 − S(t))K(t) dt (4.3)

By (4.2a) one has |Gγ(x)| < C ′γ|x|−n−1+γ for |x| < 1. Let ψ(x) be a bump function on R that
is nonnegative, even, decreasing on x ≥ 0, equal to 1 on (−1, 1) and supported on (−2, 2).
Then |G1

γ(x)| ≤ C ′γ|x|−n−1+γψ(|x|). Furthermore, by (1.2a) one has |K(t)| ≤ C
∏m

k=1 |tk|−αk .
Substituting these bounds in (4.3) gives the following, where X denotes the support of K(t).

|ρ ∗G1
γ(x)| ≤

∫
X

ψ(|(x− t, xn+1 − S(t))|)× |(x− t, xn+1 − S(t))|−n−1+γ

m∏
k=1

|tk|−αk dt (4.4)

Since |x|−n−1+γψ(|x|) is decreasing in |x|, the integrand in (4.4) is increased if we replace
xn+1 − S(t) by 0. Hence we have

|ρ ∗G1
γ(x)| ≤

∫
X

ψ(|x− t|)|x− t|−n−1+γ

m∏
k=1

|tk|−αk dt (4.5)

Since X is compact, there are constants Bk such that the right-hand side of (4.5) is bounded
by ∫

Rn
ψ(|x− t|)|x− t|−n−1+γ

m∏
k=1

ψ(Bk|tk|)|tk|−αk dt (4.6)

The assumed condition that γ > 1 +
∑m

i=1 αi implies that −n − 1 + γ > −n +
∑m

i=1 αi =∑m
i=1(αi − li) =

∑m
i=1−(li − αi). The assumed condition that γ < n+ 1 simply means that

−n − 1 + γ < 0. Hence we may write −n − 1 + γ =
∑m

k=1−βk where each βk satisfies
0 < βk < (lk − αk). We rewrite (4.6) as∫

Rn
ψ(|x− t|)

( m∏
k=1

|x− t|−βk
)
ψ(Bk|tk|)|tk|−αk dt (4.7)

Since the functions |y|−βk are decreasing in y, this is bounded by∫
Rn
ψ(|x− t|)

( m∏
k=1

|xk − tk|−βk
)
ψ(Bk|tk|)|tk|−αk dt (4.8)

Furthermore, there are bump functions ψk such that

ψ(|x− t|) ≤
m∏
k=1

ψk(|xk − tk|) (4.9)
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Inserting this into (4.8) provides an upper bound of

m∏
k=1

∫
Rli
ψk(|xk − tk|)|xk − tk|−βkψ(Bk|tk|)|tk|−αk dtk (4.10)

I claim that since 0 < αk+βk < lk, each integral in the product (4.10) is uniformly bounded in
xk. One way to see this is to view the integral as a convolution of two functions, one of whose
Fourier transforms is bounded by C(1 + |ξ|)−(lk−βk) an the other whose Fourier transform is
bounded by C(1 + |ξ|)−(lk−αk). Hence the Fourier transform of the convolution is bounded
by C ′(1 + |ξ|)−(2lk−αk−βk). Since αk + βk < lk, the exponent 2lk − αk − βk is greater than
lk, which means the Fourier transform of the convolution is integrable. Hence the inverse
Fourier transform of this Fourier transform is uniformly bounded. In other words, each
integral in (4.10) is uniformly bounded. Hence looking back to (4.4) we see that |ρ ∗G1

γ(x)|
is uniformly bounded in x, completing the proof of Lemma 4.1.

5 The proof of Theorem 1.5

Motivation.

We now assume that the hypotheses of Theorem 1.5 are satisfied. Since we are
assuming each αi = 0, by definition of g we have that g = min(a0, l1, ..., lm). Since each li is
a positive integer and we are assuming that g ≤ 1

max(o(S),2)
< 1, we must have a0 = g.

It suffices to prove Theorem 1.5 in the case where s > 0. To see why, suppose we
know Theorem 1.5 for s > 0, and s ≤ 0 is such that we have boundedness theorem for some
(1
p
, 1
q
, s) above the plane P . Then we get a contradiction by interpolating this result with

a boundedness theorem for an (1
p
, 1
q
, s) provided by Theorem 1.4 with s > 0 that is a small

distance beneath the plane P ; the result is a boundedness theorem for (1
p
, 1
q
, s) above the

plane P but with s > 0, contradicting Theorem 1.5 for s > 0. So in the following argument
we can always assume s > 0.

We will prove Theorem 1.5 by testing T on approximations to characteristic functions
of rectangular boxes defined as follows. Let d be the Newton distance of S, which we
recall is given by the minimal t for which (t, ..., t) is in the Newton polyhedron N(S). Let
b = (b1, ..., bn) be a vector of nonnegative numbers for which the infimum of b · α over all
vertices α of N(S) is given by b · (d, ..., d) = d

∑n
i=1 bi. In other words, we let b be such that

there is a supporting hyperplane of N(S) with normal b containing (d, ..., d). The boxes we
will use to test T will have dimensions comparable to rb1 × ... × rbn × rd

∑n
i=1 bi and we will

let r → 0. Here if some bi = 0 then we replace rbi with a constant dimension ci that is
stipulated to be sufficiently small for our arguments to work.
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To help understand the significance of such rectangular boxes, we go back to (1.5) and
examine S∗(t) on the box (1

2
rb1 , rb1)×...×(1

2
rbn , rbn). Then S∗(t) is comparable in magnitude

to the largest term rα·b for α ∈ N(S), which in turn is given by r(d,...,d)·b = rd
∑n
i=1 bi . On

the other hand the volume of the box is comparable to r
∑n
i=1 bi . Thus if ε > 0 is such

that S∗(t) ∼ ε on the box, then r ∼ ε
1

d
∑n
i=1

bi and the volume of the box is comparable to

r
∑n
i=1 bi ∼ ε

1
d . As mentioned earlier, by Varchenko’s [V] and other papers, a0 = 1

d
. Hence in

terms of (1.5), for any ε > 0 the associated box contains a large chunk of the points where
S∗(t) < ε, in the sense that we are off at most by a constant times a logarithmic factor.

By the nature of the arguments used to prove the Lp to Lps estimates, the above
considerations imply that the boxes of the previous paragraph are natural for testing Lp

to Lps estimates. On the other hand, one has a lot of flexibility in testing the L1+ε to
Lq−γ−ε estimates for ε→ 0 and q →∞, and effectively one can interpolate between the two
situations so that the boxes can also be used to show that one can never get an Lp to Lqs
estimate above the plane P in Theorems 1.3-1.4.

The main argument.

Let ψ(x) be a nonnegative bump function on R supported on (−2, 2) such that ψ(x) ≤
1 with ψ(x) = 1 on (−1, 1). Let ψ1(x) be a nonzero Schwartz function on R whose Fourier
transform is supported in (1, 2). Let bn+1 = d

∑n
i=1 bi and for r,N > 0 let fr,N(x) be defined

by

fr,N(x) = ψ1(r−bn+1xn+1)
n∏
i=1

ψ(Nr−bixi) (5.1)

As above we replace r−bixi by c−1
i xi for an appropriately small constant ci in the event that

bi = 0.

Let Ds denote the operator with Fourier multiplier |ξn+1|s. We will show that given
p, q, s with 1 < p, q < ∞ such that (1

p
, 1
q
, t) is on the plane P of Theorem 1.5 for some

t < s, then if N is sufficiently large we have the following estimate for some ε > 0, for all
sufficiently small r > 0.

||Ds(Tfr,N)||Lq/||fr,N ||Lp > Cr−ε (5.2)

I claim that this suffices to prove that one cannot have an estimate of the form ||Tfr,N ||Lqs ≤
C||fr,N ||Lp . For if we did have such an estimate, we could compose it with the operator with
multiplier of the form φ(rbn+1ξn+1)|ξn+1|s/(1 + |ξ|2)

s
2 , where φ is a bump function supported

on (1/2, 3) and equal to 1 on (1, 2). This multiplier is uniformly bounded in r on Lq by the
Marcinkiewicz multiplier theorem (see p. 108 of [Ste1]). Since the Fourier transform of ψ1

is supported on (1, 2), this composition acting on Tfr,N is just DsTfr,N and we obtain that
||DsTfr,N ||Lq ≤ C ′||fr,N ||Lp . This contradicts (5.2) as r → 0. Hence it will suffice to prove
(5.2).

Next, by the translation invariance of T we have Ds(Tfr,N) = T (Dsfr,N) and we
examine the effect of Ds on fr,N . Since ψ1 has Fourier transform supported on the interval
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(1, 2), Dsfr,N(x) is of the form

Dsfr,N(x) = r−sbn+1Ψs(r
−bn+1xn+1)

n∏
i=1

ψ(Nr−bixi) (5.3)

Here Ψs(xn+1) is of the same form as ψ1(xn+1), but has been modified due to the multiplier.
Let p be such that Ψs(p) 6= 0. Then there are some ε0, δ0 > 0 such that |Ψs(p

′)| > ε0 and
| arg(Ψs(p))− arg(Ψs(p

′))| < π
4

when |p′ − p| < 2δ0.

We examine Ds(Tfr,N)(x) = T (Dsfr,N(x)) for a fixed x such that |xn+1 − rbn+1p| <
δ0r

bn+1 and |xi| < 1
2N
rbi for each i ≤ n. Observe that T (Dsfr,N(x)) is the average of

Dsfr,N(x′) in x′ over a surface centered at x, which by the assumptions of Theorem 1.5 is
weighted by a nonnegative function which is bounded below by some C1 > 0 near x . Since
|xi| < 1

2N
rbi for each i ≤ n, the portion of the average corresponding to x′ on the surface

with |x′i − xi| < 1
2N
rbi for 1 ≤ i ≤ n will be such that the ψ(Nr−bix′i) factors in (5.3) will all

be 1.

Next, by Lemma 2.1 of [G2] there is a constant C0 such that |S(t)| ≤ C0|S∗(t)| for
all t in a sufficiently small neighborhood of the origin. Thus when |ti| < 1

2N
rbi for each i,

one has
|S(t)| ≤ C0|S∗(t)|

≤ C0 sup
{t:|ti|< 1

2N
rbi for all i}

|S∗(t)|

≤ C0
1

2N
sup

{t:|ti|<rbi for all i}
|S∗(t)| (5.4)

As described in the motivation section above, sup{t:|ti|<rbi for all i} |S∗(t)| ≤ C1r
d
∑n
i=1 bi =

C1r
bn+1 . As a result, if N is large enough, we can ensure that if |ti| < 1

2N
rbi for each i then

we have
|S(t)| ≤ δ0r

bn+1 (5.5)

Thus when averaging Dsfr,N(x′) over x′ on the surface centered at x, the portion correspond-
ing to where |x′i − xi| < 1

2N
rbi for all i will have always have its final coordinate satisfying

|x′n+1 − xn+1| < δ0r
bn+1 , so that |x′n+1 − rbn+1p| ≤ |x′n+1 − xn+1|+ |xn+1 − rbn+1p| < 2δ0r

bn+1 .
Hence by definition of δ0, |Ψs(r

−bn+1x′n+1)| > ε0 and the argument of Ψs(r
−bn+1x′n+1) is within

π
4

of that of Ψs(r
−bn+1xn+1).

Therefore, when viewing Ds(Tfr,N)(x) = T (Dsfr,N(x)) as the average of Dsfr,N(x′)
along a surface centered at x, the portion where |x′i − xi| < 1

2N
rbi for each i corresponds

to points where the ψ(Nr−bix′i) factors in (5.3) are all 1, where |Ψs(r
−bn+1x′n+1)| > ε0, and

where the argument of Ψs(r
−bn+1x′n+1) is within π

4
of that of Ψs(r

−bn+1xn+1). As a result, we
have |Dsfr,N(x′)| > ε0r

−sbn+1 at such points.

Hence when averaging Dsfr,N(x′) over the x′ with |x′i − xi| < 1
2N
rbi for all 1 ≤ i ≤ n,

one obtains a contribution to this average of absolute value at least ( 1
N

)n ε0
2
C1r

(
∑n
i=1 bi)−sbn+1
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coming from these points. While it is true that there is also a contribution from other x′

where |x′i−xi| < 5
2N
rbi for each i, if N is large enough we will still have |Ψs(r

−bn+1x′n+1)| > ε0
and | arg(Ψs(r

−bn+1x′n+1))− arg(Ψs(r
−bn+1xn+1))| < π

4
, so this contribution will only amplify

the previous contribution. In summary, if N is large enough, there is a constant ε1 > 0
(which can depend on s and N) such that if |xn+1 − rbn+1p| < δ0r

bn+1 and |xi| < 1
2N
rbi for

each i ≤ n then
|Ds(Tfr,N)(x)| > ε1r

(
∑n
i=1 bi)−sbn+1 (5.6)

The Lq norm of Ds(Tfr,N)(x) is at least the Lq norm of Ds(Tfr,N)(x) as a function on the
set of points where |xn+1 − rbn+1p| < δ0r

bn+1 and |xi| < 1
2N
rbi for each i ≤ n, so we have

||Ds(Tfr,N)||q > ε2r
(
∑n
i=1 bi)−sbn+1 × r

∑n+1
i=1

bi
q (5.7a)

Recalling that bn+1 = d
∑n

i=1 bi, where d is the Newton distance of S, (5.7a) can be rewritten
as

||Ds(Tfr,N)||q > ε2r
(
∑n
i=1 bi)(1−sd+ 1+d

q
) (5.7b)

On the other hand, the Lp norm of fr,N(x) satisfies

||fr,N ||p ∼ r

∑n+1
i=1

bi
p = r(

∑n
i=1 bi)

(1+d)
p (5.8)

Thus we have
||Ds(Tfr,N)||q/||fr,N ||p > ε3r

(
∑n
i=1 bi)(1−sd+ d+1

q
− d+1

p
) (5.9)

The exponent here is negative exactly when s > 1
d

+ d+1
d

1
q
− d+1

d
1
p
. Confirming that this is

in fact does correspond to the equation of the plane P , we observe that since each αi = 0
we have k = 1 in the definition of P . Furthermore, as described in the beginning of the
motivation section above, we have a0 = g, and as mentioned before, by [V] or [G2] we also
have a0 = 1

d
. So g = 1

d
here. Hence the plane z = 1

d
+ d+1

d
y − d+1

d
x is the same as the plane

(g+ k)(x− y) + z = g. Therefore the condition s > 1
d

+ d+1
d

1
q
− d+1

d
1
p

is equivalent to (1
p
, 1
q
, s)

lying above P as needed. This completes the proof of Theorem 1.5.
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