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Abstract

We investigate estimating scalar oscillatory integrals by integrating by parts in di-
rections based on (x1∂x1f(x), ..., xn∂xnf(x)), where f(x) is the phase function. We
prove a theorem which provides estimates that are uniform with respect to linear per-
turbations of the phase and investigate some consequences. When the phase function
is quasi-homogeneous the theorem gives estimates for the associated surface measure
Fourier transforms that are generally not too far off from being sharp. In addition, the
theorem provides a new proof, up to endpoints, that the well-known oscillatory inte-
gral estimates of Varchenko [V] when the Newton polyhedron of the phase function is
nondegenerate extend to corresponding bounds for surface measure Fourier transforms
when the index is less than 1

2 . A sharp version of this was originally proven in [G2].

1 Background and theorem statements.

We consider oscillatory integrals of the form

I(λ) =

∫
eiλf(x1,...,xn)ϕ(x1, ..., xn) dx1 ... dxn (1.1)

Here f(x) is a real analytic function defined on a bounded neighborhood U of the origin,
ϕ(x) is a C1 real-valued function supported in U , and λ is a real parameter. Often one seeks
estimates of the form |I(λ)| ≤ h(|λ|), where h is an appropriately decreasing function, such
as a function of the form C(1 + |λ|)−s for C, s > 0. We will always assume that ∇f(0) = 0
to ensure we are in a nontrivial situation. By subtracting a constant from f , without loss of
generality we may also assume that f(0) = 0.

This work was supported by a grant from the Simons Foundation.
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A canonical example of where oscillatory integrals (1.1) show up is in the analysis of
Fourier transforms of surface measures. If S is a surface in Rn+1 that is given by the graph
of a real analytic f(x1, ..., xn) on a bounded neighborhood U of the origin and ϕ(x) is a
real-valued C1 function supported in U , then the Fourier transform of the Euclidean surface
measure on S localized through ϕ(x), which we denote by µ, is given by

µ̂(λ1, ..., λn+1) =

∫
e−iλn+1f(x1,...,xn)−iλ1x1−...−iλnxnϕ(x1, ..., xn) dx1 ... dxn (1.2)

We always assume the surface has been translated and rotated so that like before, f(0) = 0
and ∇f(0) = 0. This time the goal is to find estimates of the form |µ̂(λ)| ≤ h(|λ|) for
appropriate decreasing h. Since Fourier transforms of surface measures appear in a range
of subjects including restriction problems, maximal averages, lattice point discrepancy, and
more, estimates of this form can help lead to developments in those subjects.

Since the phase function in (1.2) is a linear perturbation of that of (1.1), one approach
to proving such bounds on |µ̂(λ)| is to provide bounds on |I(λ)| that are uniform under linear
perturbations of the phase. In this paper we will describe one method of doing that.

To motivate what we will be doing, observe that one approach to the analysis of
oscillatory integrals (1.1) − (1.2) is to appropriately divide the domain of integration into
curves, do an appropriate integration by parts on each curve, and then integrate the result
in the remaining n−1 dimensions. The hope would be that if the curves are properly chosen
then one could obtain desirable functions h(|λ|) bounding the overall oscillatory integral. A
clue on how to select these curves is given by how oscillatory integral decay is often connected
to bounds on sublevel set measures. Namely, in many situations, the supremum of the ϵ for
which (1.1) satisfies a bound |I(λ)| ≤ C(1 + |λ|)−ϵ for some C > 0 is the same as the
supremum of the ϵ for which there is a constant C > 0 such that the following holds for all
s > 0.

m({x ∈ U : |f(x)| < s}) ≤ Csϵ (1.3)

Here m is Lebesgue measure. This suggests that one might get good results if the curves on
which one performs the integrations by parts are perpendicular to the boundaries of these
sublevel sets. In other words, one might choose these curves to be tangent to ∇f . This idea
is further bolstered by the fact that f(x) increases or decreases fastest in the direction of the
gradient, so that the phase oscillates fastest in the directions of such curves.

However the above is not the whole story, since even if the phase is oscillating quickly
in directions tangent to a curve, if the second derivative of the phase is also large these
quick oscillations might not have the desired effect; the curve might head rapidly into region
where the phase has a stationary point. Thus to add some flexibility to our activities, we
consider not just curves whose tangents are in the direction of ∇f , but also in directions
(a1(x)∂x1f(x), ..., an(x)∂xnf(x)) where the weights ai(x) are real analytic or even quotients
of real analytic functions.

Using directions of this form have an additional advantage. If one replaces f(x) by
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f(x) + b · x for some b ∈ Rn, then ai(x)
∂f
∂xi

becomes ai(x)(
∂f
∂xi

+ bi). Using resolution of
singularities one can show that, generally speaking, for the type of ai(x) under discussion if
one has sublevel set measure estimates of the form m({x ∈ U :

∑n
i=1 |ai(x)

∂f
∂xi

| < s}) ≤ Csϵ

for some C > 0 and 0 < ϵ < 1, then if U is sufficiently small the same will hold when each
ai(x)

∂f
∂xi

is replaced by ai(x)(
∂f
∂xi

+ bi). This will allow us to state our theorems in terms of
the optimal ϵ for which sublevel set bounds of the form (1.3) hold for certain functions of
the form

∑n
i=1 |ãi(x)

∂f
∂xi

| (where the ãi(x) are slightly different from the ai(x).) Hence we
will have a way of estimating |I(λ)| that is uniform under linear perturbations, providing a
way of bounding |µ̂(λ)|.

To motivate possible choices of the weight functions ai(x), we consider the case where
f(x) is a monomial axα1

1 ... xαn
n . When αi > 0, the effect of taking an xi derivative on f(x)

is to multiply it by a constant times x−1
i . This suggests that for ”balance”, one might

choose ai(x) = xi, so that the directions in which one integrates by parts are of the form
(x1∂x1f(x), ..., xn∂xnf(x)). Our main theorem, Theorem 1.1, will be based on using such
weights. We will then see in section 2.1 that this theorem provides good bounds for |µ̂(λ)|
when f(x) is a quasi-homogeneous polynomial. Then in section 2.2 we will that Theorem 1.1
can be used to show, up to endpoints, that when f(x) has nondegenerate Newton polyhedron
in the sense of [V], the optimal estimates for |I(λ)| in [V] extend to analogous bounds for
surface measure Fourier transforms. This was earlier shown (including endpoints) in [G2].

Other choices of ai(x) also lead to results that might be of some interest, but for
simplicity of exposition we are only focusing on the weights ai(x) = xi in this paper.

We now come to our theorem whose proof is based on using the above weighted
gradient flow. While it gives especially desirable results in the above situations, the theorem
holds generally.

Theorem 1.1. Suppose f(x) is real analytic with f(0) = 0 and ∇f(0) = 0. Suppose W is
a bounded neighborhood of the origin such that if ϵ > 0 is such that for some C > 0 and all
s > 0 we have the estimate

m({x ∈ W :

∑n
i=1 |xi

∂f
∂xi

|∏n
i=1 |xi|

< s}) ≤ Csϵ (1.4)

Then if U ⊂ W is a sufficiently small ball centered at the origin, the following hold.

1. For all δ < ϵ
ϵ+1

there is a constant A such that |I(λ)| ≤ A(1 + |λ|)−δ whenever ϕ is
supported in U . Here A depends on f , ϕ, and δ.

2. For all δ < min( ϵ
ϵ+1

, 1
2
) there is a constant B such that one has |µ̂(λ)| ≤ B(1 + |λ|)−δ

whenever ϕ is supported in U . Here B depends on f , ϕ, and δ.

It turns out that if U is a small enough neighborhood of the origin, if ϵ is such that the
sublevel set bounds (1.3) hold for some C, then one automatically has |I(λ)| ≤ C ′(1+ |λ|)−ϵ
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for some C ′ depending on f , ϕ, and U . When ϕ(x) is nonnegative with ϕ(0) > 0, then the
supremum of the ϵ for which such an estimate |I(λ)| ≤ C ′(1 + |λ|)−ϵ holds is actually equal
to the supremum of the ϵ for which (1.3) holds, unless the former supremum is a negative
integer. We refer to chapter 6 of [AGuV] for more information about these matters. This
leads to the following corollary to Theorem 1.1, which may be of interest in its own right.

Corollary 1.1.1. If W is a bounded neighborhood of the origin and ϵ1 denotes the supremum
of the ϵ for which (1.4) holds for some C, then if U ⊂ W is a sufficiently small neighborhood
of the origin and ϵ2 denotes the supremum of the ϵ for which (1.3) holds for some C, then
ϵ1

ϵ1+1
≤ ϵ2.

Although we won’t prove it here, using resolution of singularities one can show that
ϵ1 is independent of W and ϵ2 is independent of U if W and U are sufficiently small neigh-
borhoods of the origin, so that one can take U = W in Corollary 1.1.1.

There has been quite a bit of work done on scalar oscillatory integrals of the form
(1.1). In addition to [V], some notable examples include the papers [BaGuZhZo] [CaCWr]
[Gre] [Gr] [PhStS]. For the surface measure Fourier transforms (1.2) there has also been
a lot of work done, in part due to their connections with maximal averages, lattice point
discrepancy, and other areas. Much of the effort in this area has focused on either convex
surfaces or the two-dimensional case. We mention the references [BNW] [BakMVaW] [BrHoI]
[NaSeW] for the convex situation, and [IkKeMu] [IkMu] for the two-dimensional situation.

Gradient flows for scalar oscillatory integrals are often used in fields such as physics
when putting the method of steepest descent into effect. In addition, gradient flows appear
in various areas of mathematics, including partial differential equations, optimization, and
more applied fields like computer vision and machine learning. The author does not know of
any specific connection between this paper and the work in the above subjects, but it might
be a direction worth exploring.

2 Consequences of Theorem 1.1.

2.1 Quasi-homogeneous functions.

A polynomial p(x1, ..., xn) =
∑

α cαx
α is said to be quasi-homogeneous if there are positive

rational numbers k1, ..., kn such for any α = (α1, ..., αn) for which cα ̸= 0, one has
∑n

i=1 kiαi =
1. An equivalent statement is that p(tk1x1, ..., t

knxn) = tp(x1, ..., xn) for all (x1, ..., xn) ∈ Rn

and all t > 0, and this definition extends the former definition to non-polynomials. A
canonical example of a quasi-homogeneous polynomial is xl1

1 + ...+xln
n where one has ki =

1
li

for each i.

Note that if f(x) is a quasi-homogeneous polynomial, the function
∑n

i=1 |xi
∂f
∂xi

| ap-
pearing in Theorem 1.1 is also quasi-homogeneous, with the same (k1, ..., kn). Given the
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nature of the statement of Theorem 1.1 it makes sense that we would want to understand
the growth rate of the measure of the sublevel sets of quasi-homogeneous functions. Sup-
pose f(x) is a quasi-homogeneous function and k1, ..., kn are as above. Let V be a bounded
neighborhood of the origin and let ϵ0 be defined by the supremum of the ϵ such that there
is a constant C > 0 such that

m({x ∈ V : |f(x)| < s}) ≤ Csϵ (2.1)

Here as before m denotes Lebesgue measure, and we will always work with functions for
which ϵ0 > 0. Note that an equivalent definition of ϵ0 is the supremum of the ϵ such that∫

V

|f(x)|−ϵ dx < ∞ (2.2)

By the quasihomogeneity of f , the number ϵ0 is independent of V . In particular one may
take V to be the box {x : −1 < xi < 1 for all i}, which we do henceforth. If we change

variables in (2.2) from x to y, where x1 = y1 and xi = (sgnxi)|yi|
ki
k1 for i > 1, the integral in

(2.2) becomes a constant times ∫
V

|f̃(y)|−ϵ

n∏
i=1

|yi|
ki
k1

−1
dy (2.3)

Here f̃(y) is the function f(x) in the y coordinates, which has the key property that it
is homogeneous of degree 1

k1
. By conversion to polar coordinates, (2.3) is finite when two

requirements are met. First, we need that −ϵ 1
k1

+
∑n

i=1(
ki
k1

− 1) > −n. Secondly, we need

that |f̃(y)|−ϵ integrates to a finite value over the boundary sides of V , which is equivalent
to |f(x)|−ϵ integrating to a finite value over the boundary sides of V . The first condition
translates into ϵ <

∑n
i=1 ki. Thus ϵ0 is the supremum of all ϵ such that ϵ <

∑n
i=1 ki and such

that for each i and a = 1,−1 we have∫
{x:xi=a,−1<xj<1 for all j ̸=i}

|f(x)|−ϵ dx1, ..., dxi−1 dxi+1, ..., dxn < ∞ (2.4)

We now investigate what Theorem 1.1 says in the quasi-homogeneous situation. As-

sume f(x) is a quasi-homogeneous polynomial. Note that the function

∑n
i=1 |xi

∂f
∂xi

|∏n
i=1 |xi|

appear-

ing in Theorem 1.1 satisfies ∑n
i=1 |xi

∂f
∂xi

|∏n
i=1 |xi|

≥
n∑

i=1

∣∣∣∣xi
∂f

∂xi

∣∣∣∣
≥ C

∣∣∣∣ n∑
i=1

kixi
∂f

∂xi

∣∣∣∣
= C|f(x)| (2.5)
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Thus whenever we are in a situation where (2.1) holds on some bounded neighborhood V

of the origin, the same will be true if we replace |f(x)| by
∑n

i=1 |xi
∂f
∂xi

|∏n
i=1 |xi|

. In particular, this

holds for every ϵ < ϵ0. Thus part 2 of Theorem 1.1 says that in the quasi-homogeneous
case, one has |µ̂(λ)| ≤ B(1 + |λ|)−δ holds for all δ < min( ϵ0

ϵ0+1
, 1
2
). So if ϵ0 < 1, whereas ϵ0

gives the supremal exponent for the scalar oscillatory integral I(λ) due to the connection
between oscillatory integrals and sublevel set measure growth, the supremal exponent for the
surface measure Fourier transform is at least ϵ0

ϵ0+1
. Hence the true exponent lies somewhere

in the interval [ ϵ0
ϵ0+1

, ϵ0]. This can be a substantial improvement over simply using stationary

phase or the Van der Corput lemma along curves (c1t
k1 , ..., cnt

kn) as in [G4], where one can
typically get an exponent no better than 1

n+1
.

It might occur to one that since the estimates in (2.5) are not that refined, we might
be able to get better results by using more careful estimates than those of (2.5). It turns
out that this often is the case if the condition ϵ <

∑n
i=1 ki is more stringent than the ones

in (2.4), so that ϵ0 =
∑n

i=1 ki. One can show that in many such situations, one will have
that the exponent given by part 2) of Theorem 1.1 is min(

∑n
i=1 ki,

1
2
), so that there is no

reduction in the exponent when it is less than 1
2
. On the other hand, if the conditions of (2.4)

are more stringent than the condition ϵ <
∑n

i=1 ki, then often one can show that Theorem
1.1 gives no better exponent than the min( ϵ0

ϵ0+1
, 1
2
) given above, while the true exponent can

be as large as ϵ0.

2.2 Estimates in terms of the Newton polyhedron.

We first provide some relevant terminology.

Definition 2.1. Let f(x) be a smooth function defined on a neighborhood of the origin in
Rn, and let f(x) =

∑
α fαx

α denote the Taylor expansion of f(x) at the origin. For any
α for which fα ̸= 0, let Qα be the octant {x ∈ Rn : xi ≥ αi for all i}. Then the Newton
polyhedron N(f) of f(x) is defined to be the convex hull of all Qα.

A Newton polyhedron may contain faces of dimensions zero through n− 1 (a vertex
is considered to be a compact face of dimension zero.) These faces can be either compact or
unbounded. In this paper, as in earlier work like [G1] [G2] [V], an important role is played
by the following functions, defined for compact faces of the Newton polyhedron.

Definition 2.2. Suppose F is a compact face of N(f). Then if f(x) =
∑

α fαx
α denotes

the Taylor expansion of f like above, we define fF (x) =
∑

α∈F fαx
α.

Definition 2.3. The Newton polyhedron of f(x) is said to be nondegenerate if for each
compact face F of N(f), the function ∇fF (x) is nonvanishing on (R− {0})n.

Definition 2.4. Assume N(f) is nonempty. Then the Newton distance d(f) of f(x) is
defined to be inf{t : (t, t, ..., t, t) ∈ N(f)}.
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The following is a well-known theorem of Varchenko [V]. We include the condition |λ| ≥ 2
in the statement since the result is immediate for |λ| < 2 and we want to avoid situations
where ln |λ| is near zero.

Theorem 2.1. (Varchenko) Suppose f(x) is real analytic on a neighborhood of the origin
with f(0) = 0 and N(f) is nondegenerate. Let k denote the dimension of the face of N(f)
intersecting the line x1 = ... = xn in its interior. There is a neighborhood U of the origin
such that if ϕ is supported in U then the following hold .

1. There is a constant C > 0 depending on f and ϕ such that |I(λ)| ≤ C|λ|−
1

d(f) (ln |λ|)n−1−k

for all |λ| ≥ 2.

2. If ϕ(x) is nonnegative, ϕ(0) > 0, and d(f) > 1, then there is a C ′ > 0 depending on f

and ϕ such that |I(λ)| ≥ C ′|λ|−
1

d(f) (ln |λ|)n−k−1 if |λ| is sufficiently large.

In [G2], among other things Theorem 2.1 was extended to surface measure Fourier
transforms when d(f) > 2. This follows from parts a) and b) of the following consequence
of Theorem 1.5 of [G2].

Theorem 2.2. (Theorem 1.5 of [G2]). Suppose f(x) is real analytic on a neighborhood of
the origin with f(0) = 0 and ∇f(0) = 0. Let k denote the dimension of the face of N(f)
intersecting the line x1 = ... = xn in its interior. There is a neighborhood U of the origin
such that if ϕ is supported in U the following hold for |λ| ≥ 2, where C denotes a constant
depending on f and ϕ.

a) If d(f) < 2, and each zero of each fF (x) on (R − {0})n has order at most 2, then there

is a constant C such that |µ̂(λ)| ≤ C|λ|− 1
2 .

b) If d(f) ≥ 2 and each zero of each fF (x) on (R − {0})n has order at most d(f), then

there is a constant C such that |µ̂(λ)| ≤ C|λ|−
1

d(f) (ln |λ|)n−k. If d(f) is not an integer, the
exponent n− k can be improved to n− k − 1.

c) If the maximum order m of any zero of any fF (x) on (R−{0})n satisfies m > max(d(f), 2)

then there is a constant C such that |µ̂(λ)| ≤ C|λ|− 1
m .

We now investigate what Theorem 1.1 says in the case where f(x) has nondegenerate
Newton polyhedron. The statement (1.4) is equivalent to the statement that

m({x ∈ W :

∑n
i=1(xi

∂f
∂xi

)2∏n
i=1 x

2
i

< s}) ≤ Cs
ϵ
2 (2.6)

Let g(x) =
∑n

i=1(xi
∂f
∂xi

)2. Then the Newton polyhedron N(g) is the double 2N(f) = {2x :
x ∈ N(f)}, the faces F ′ of N(g) are the sets {2x : x ∈ F} for faces F of N(f). The
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statement that N(f) is nondgenerate, namely that for each compact face F of N(f) the
function ∇fF (x) is nonvanishing on (R − {0})n, translates into the statement that each
compact face F ′ of N(g), gF ′(x) has no zeroes at all in (R− {0})n.

Suppose d(f) > 1, so that d(g) > 2. Let h(x) =

∑n
i=1(xi

∂f
∂xi

)2∏n
i=1 x

2
i

=
g(x)∏n
i=1 x

2
i

. Then one

can define N(h), d(h), and hF (x) for faces F of N(h) analogously to Definitions 2.2-2.4. So
we have d(h) = d(g)− 2 = 2d(f)− 2 > 0. Due to the analogous statement holding for g(x),
if F is a compact face of N(h) then the function hF (x) has no zeroes in (R− {0})n.

Note that the vertices of N(h) may now have components as low as −2. Nonetheless
many of the arguments of [G1] extend to h(x), in particular the proof of Theorem 1.2 of [G1]
which implies that since each for each compact face F of N(h) the function hF (x) has no
zeroes in (R− {0})n, equation (2.6) holds for all ϵ

2
< 1

d(h)
= 1

2d(f)−2
. This can also be shown

using toric resolution of singularities similarly to the arguments in [AGuV]. Consequently,

(1.4) holds for any ϵ < 1
d(f)−1

, or equivalently when
ϵ

ϵ+ 1
<

1
d(f)−1

1
d(f)−1

+ 1
=

1

d(f)
.

As a result, the second part of Theorem 1.1 says that |µ̂(λ)| ≤ B(1 + |λ|)−δ for each
δ < min(1

2
, 1
d(f)

). Up to endpoints, these are the estimates provided by Theorem 2.2. Such
estimates are best possible since by taking λk = 0 for k < n+1, one reduces to the oscillatory
integral I(λ) for which one has sharpness by [V] (part 2 of Theorem 2.1 here.) Thus we see
that Theorem 1.1 provides another approach to proving such estimates, modulo endpoints.

3 The proof of Theorem 1.1.

3.1 Some preliminary lemmas.

We will make use of the following relatively easy lemma which follows from Lemma 3.2 of
[G3].

Lemma 3.1. (Lemma 3.2 of [G3]) Let (E, µ) be a finite measure space and suppose g(x) is
a measurable function on E such that for some positive constants C and δ, for all t > 0 one
has µ({x ∈ E : |g(x)| < t}) ≤ Ctδ. There is a constant Dδ > 0 such that the following holds
for all M ̸= 0.

� If δ < 1, then
∫
E
min(1, |Mg|−1) dµ < CDδ|M |−δ

� If δ = 1, then
∫
E
min(1, |Mg|−1) dµ < CD1(1 + log+ |M |)|M |−1 + µ(E)|M |−1

� If δ > 1, then
∫
E
min(1, |Mg|−1) dµ < C(|M |−δ +D1|M |−1) + µ(E)|M |−1
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For the non-polynomial case, we will also need the following lemma from [G3].

Lemma 3.2. (Corollary 2.1.2 of [G3]) Suppose f1(y1, ..., ym),...,fl(y1, ..., ym) are real analytic
functions on a neighborhood of the origin, none identically zero. Then there is an m − 1
dimensional ball Bm−1(0, η) and a positive integer p such that for each s1, ..., sl and each
(y1, ..., ym−1) ∈ Bm−1(0, η), the set {ym : |ym| < η and fi(y1, ..., ym) < si for each i} consists
of at most p intervals.

3.2 The beginning of the proof of Theorem 1.1.

The size of the domain U will be determined by our arguments; at certain junctures U will
have to be sufficiently small for the arguments to be valid. Also, we will always prove bounds
of the form C|λ|−δ for |λ| ≥ 2 rather than C(1 + |λ|)−δ for all λ since the latter will always
hold for |λ| < 2 simply by taking absolute values inside the integral and integrating. The
exposition is somewhat easier if we prove estimates in the former form. In addition, we will
always be bounding |µ̂(λ)|; bounds for |I(λ)| will follow by setting λk = 0 for k < n+ 1.

To start the proof, we observe that we may assume that |(λ1, ..., λn)| < |λn+1|, for if
U is sufficiently small, if |(λ1, ..., λn)| ≥ |λn+1| then the gradient of the phase function is of
magnitude at least C|λ| and one may obtain far better estimates than what is needed by
simply repeatedly integrating by parts. Hence in our arguments we will always assume that
|(λ1, ..., λn)| < |λn+1|. This in particular implies that |λn+1| ≥ 1√

2
|λ|.

We next define the sets Ui by

Ui = {x ∈ U : |xi∂xi
f(x)| > |xj∂xj

f(x)| for j ̸= i} (3.1)

As long as no two functions xj∂xj
f(x) are the same, up to a set of measure zero we will have

∪n
i=1Ui = U . In the rare event that two functions xj∂xj

f(x) are in fact the same, we simply
remove redundant xi∂xi

f(x) from the list when defining the Ui in (3.1), so that we always
have ∪iUi = U up to a set of measure zero. The idea now is that since we are trying to
integrate in directions based on the weighted gradient flow along (x1∂x1f(x), ..., xn∂xnf(x)),
on each Ui we will integrate by parts in the xi direction, since in this direction |xi∂xi

f(x)|
is at least c|(x1∂x1f(x), ..., xn∂xnf(x))| for c = n− 1

2 . To this end, we correspondingly define
the integrals Ii(λ) by

Ii(λ) =

∫
Ui

e−iλn+1f(x1,...,xn)−iλ1x1−...−iλnxnϕ(x1, ..., xn) dx1 ... dxn (3.2)

Since ∪iUi = U up to a set of measure zero, we have µ̂(λ) =
∑

i Ii(λ), and in order to prove
Theorem 1.1 it suffices to show that each |Ii(λ)| is bounded by the appropriate of A|λ|−δ or
B|λ|−δ as in the statement of the theorem.

Where ϵ is such that (1.4) holds, we write Ui = D1 ∪D2, where

D1 = {x ∈ Ui : |∂xi
P (x)| ≤ |λ|−

1
ϵ+1

∏
j ̸=i

|xj|}

9



D2 = {x ∈ Ui : |∂xi
P (x)| > |λ|−

1
ϵ+1

∏
j ̸=i

|xj|} (3.3)

We correspondingly write Ii(λ) = J1(λ) + J2(λ), where

J1(λ) =

∫
D1

e−iλn+1f(x1,...,xn)−iλ1x1−...−iλnxnϕ(x1, ..., xn) dx1 ... dxn (3.4a)

J2(λ) =

∫
D2

e−iλn+1f(x1,...,xn)−iλ1x1−...−iλnxnϕ(x1, ..., xn) dx1 ... dxn (3.4b)

To bound |J1(λ)|, we will simply take absolute values of the integrand and integrate in all
variables, but it will take some effort to properly analyze the result. To bound |J2(λ)|, we
will perform integrations by parts in the xi variable. For this, we will need that each domain
of integration in the xi variable consists of a number of intervals that is uniformly bounded.
When f(x) is a polynomial this is immediate, and for general real analytic f(x) this follows
from applying Lemma 3.2 as follows.

We take the ym variable in that lemma to be the xi variable here, and the remaining
yk variables to be the xj for j ̸= i along with two additional variables which we call z1
and z2. We take the si of the lemma to be zero in all cases, and we let the fi(y) of the
lemma to be the functions (xj∂xj

f(x))2 − (xi∂xi
f(x))2 for j ̸= i along with the functions

z1
∏

j ̸=i x
2
j − (∂xi

f(x) + z2)
2 which we need for z1 = |λ|−

2
ϵ+1 and z2 =

λi

λn+1
.

Although Lemma 3.2 is a local statement, by compactness one may extend the above
application of Lemma 3.2 to the whole domain of integration here, so that there exists an N
such that for all |λ| ≥ 2 and all xj for j ̸= i, the xi domain of integration of J2(λ) consists
of at most N intervals.

We will bound |J1(λ)| and |J2(λ)| separately, starting with |J2(λ)|.

3.3 The analysis of J2(λ).

Since the exponents δ appearing in Theorem 1.1 satisfy δ < 1, we can remove the regions
where |xj| > |λ|−1 for some j from the domains of integration when bounding |J2(λ)|. In
other words, it suffices to bound |J ′

2(λ)|, where J ′
2(λ) is given by

J ′
2(λ) =

∫
{x∈D2: |xj |>|λ|−1 for all j}

e−iλn+1f(x1,...,xn)−iλ1x1−...−iλnxnϕ(x1, ..., xn) dx1 ... dxn (3.5)

For each k = (k1, ..., kn) such that the set {x : 2−kj−1 < |xj| ≤ 2−kj for all j} intersects
the domain of integration of (3.5), we define Jk,2(λ) by

Jk,2(λ) =

∫
{x∈D2: |xj |>|λ|−1, 2−kj−1<|xj | ≤ 2−kj for all j}

e−iλn+1f(x1,...,xn)−iλ1x1−...−iλnxnϕ(x) dx1 ... dxn

(3.6)
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Hence J ′
2(λ) =

∑
k Jk,2(λ). Without loss of generality, we may assume U is a subset of the

unit ball, so that each kj ≥ 0 and there at most C(ln |λ|)n terms Jk,2(λ) to consider.

In accordance with the weighted gradient flow concept, since we are on Ui, where
|xi∂xi

f(x)| ≥ n− 1
2 |(x1∂x1f(x), ..., xn∂xnf(x))|, a given term Jk,2(λ) will be analyzed using an

integration by parts in the xi direction. Let P (x) be the function f(x1, ..., xn) +
λ1

λn+1
x1 +

...+ λn

λn+1
xn, so that the phase function in (3.6) is given by λn+1P (x). The function P (x) is

sensible to use here since |λn+1| ∼ |λ| and for our arguments it is helpful to view the phase
function as a perturbation of the phase function when λk = 0 for all k < n+ 1.

In (3.6), we now integrate by parts in the xi variable over in any of the at most N
intervals of integration for fixed other variables. Suppose L = [l1, l2] is one such interval.
Then the exponential appearing in (3.6) can be written as e−iλn+1P (x), which we may write
as −iλn+1∂xi

P (x)(e−iλn+1P (x)/ − iλn+1∂xi
P (x)). Note that the denominator −iλn+1∂xi

P (x)
is never zero by the definition of D2. We integrate by parts in xi over L, integrating
−iλn+1∂xi

P (x)e−iλn+1P (x) to e−iλn+1P (x) and differentiating the rest. Taking absolute val-
ues in the result, we get the following, where P0(xi) denotes P (x) as a function of xi with
all other variables fixed.∣∣∣∣ ∫

L

e−iλn+1f(x1,...,xn)−iλ1x1−...−iλnxnϕ(x1, ..., xn) dxi

∣∣∣∣
≤ C

1

|λn+1|

(
1

|∂xi
P0(l1)|

+
1

|∂xi
P0(l2)|

+

∫
L

|∂2
xixi

P0(xi)|
(∂xi

P0(xi))2
dxi +

∫
L

1

|∂xi
P0(xi)|

dxi

)
(3.7)

We would like to integrate the first integral in (3.7) back to get terms similar to the endpoint
terms of (3.7). For this to work, we need that ∂2

xixi
P0(xi) changes sign at boundedly many

points in a given interval L. Since ∂2
xixi

P0(xi) = ∂2
xixi

f(x1, ..., xn), we may show this by
once again invoking Lemma 3.2, this time for one function −(∂2

xixi
f(x1, ..., xn))

2, letting the
ym variable be xi and y1, ..., ym−1 the remaining xj variables, and s1 = 0. Again, due to
compactness it suffices to have the local result of Lemma 3.2 (or alternatively, one could just
assume U is a sufficiently small neighborhood of the origin.) In any event, there is an N0

such that ∂2
xixi

P0(xi) changes sign at most N0 times on any interval L. Consequently, one
may write the integral in (3.7) as the union of at most N0 intervals on which ∂2

xixi
P0(xi) is

either nonnegative or nonpositive, and integrate back to terms similar to the endpoint terms.
Specifically, one may bound (3.7) by

C
1

|λn+1|

(
1

∂xi
P0(l1)|

+
1

|∂xi
P0(l2)|

+
∑
l

1

|∂xi
P0(jl)|

+

∫
L

1

|∂xi
P0(xi)|

dxi

)
(3.8)

Here there are at most N0 terms in the sum of (3.8). Since the domain of integration of

Jk,2 consists of points where |∂xi
P (x)| > |λ|−

1
ϵ+1

∏
j ̸=i |xj| and since |λn+1| ≥ 1√

2
|λ| in the

situation at hand, we have that (3.8) is bounded by

C ′|λ|−
ϵ

ϵ+1 (
∏
j ̸=i

|xj|)−1 (3.9)
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Equation (3.9) bounds the xi integral over a single interval L. There are at most N such
intervals, so the overall integral of (3.6) in the xi direction is also bounded by a constant
times |λ|−

ϵ
ϵ+1 (

∏
j ̸=i |xj|)−1. If one integrates in the remaining n − 1 variables, keeping in

mind that the size of the domain of integration in each xj direction for j ̸= i is bounded by
a constant times |xj|, we obtain that

|Jk,2(λ)| ≤ C ′′|λ|−
ϵ

ϵ+1 (3.10)

Because there are at most a constant times (ln |λ|)n possible values of k, the sum of all
|Jk,2(λ)| is at most C3(ln |λ|)n|λ|−

ϵ
ϵ+1 . This is less than C4|λ|−δ for any δ < ϵ

ϵ+1
, so |J2(λ)| ≤∑

k |Jk,2(λ)| will always satisfy the bounds needed for Theorem 1.1. Thus we may focus our
attention henceforth on bounding |J1(λ)|, which we must show is bounded by the appropriate
quantity in Theorem 1.1.

3.4 The analysis of J1(λ).

Taking absolute values of the integrand in (3.4a) and integrating (recalling the definition
(3.3) of D1) leads to

|J1(λ)| ≤ Cm({x ∈ Ui : |xi∂xi
P (x)| ≤ |λ|−

1
ϵ+1

n∏
j=1

|xj|}) (3.11)

Here as beforem denotes Lebesgue measure. Suppose we are in the special case where λk = 0
for k < n + 1, the setting of part 1 of Theorem 1.1. Here P (x) = f(x). Since Ui is the set
of points where |xi∂xi

f(x)| > |xj∂xj
f(x)| for all j ̸= i, (3.11) leads to

|J1(λ)| ≤ Cm({x ∈ U :
n∑

j=1

|xj∂xj
f(x)| ≤ n|λ|−

1
ϵ+1

n∏
j=1

|xj|}) (3.12)

By the assumption (1.4), we have that (3.12) is bounded by a constant times |λ|−
ϵ

ϵ+1 . This
is better than what is needed for part 1 of Theorem 1.1, so we have now shown part 1 of
Theorem 1.1.

We focus our attention on proving part 2 of the theorem. We will show that if the
neighborhood U of the origin is sufficiently small, the right-hand side of (3.11) is bounded
by C|λ|−δ whenever δ < min( ϵ

ϵ+1
, 1
2
).

Since ∂xi
P (x) = ∂xi

f(x) − c where c = λi

λn+1
satisfies |c| ≤ 1, we can rewrite the

measure on the right-hand side of (3.11) as

m({x ∈ Ui :

∣∣∣∣∂xi
f(x)− c∏
j ̸=i xj

∣∣∣∣ ≤ |λ|−
1

ϵ+1}) (3.13)
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The idea behind bounding (3.13) is that using resolution of singularities, one can show that
if ϵ < 1 then the measure in (3.13) is bounded by the measure when c = 0, while if ϵ ≥ 1

one at least has a uniform bound of C|λ|−
1

ϵ+1 . In the former case, one uses the c = 0 case
exactly above to get an overall bound of C|λ|−

ϵ
ϵ+1 , while in the latter case since ϵ ≥ 1, (1.4)

holds if one replaces ϵ = 1 and thus one can use the ϵ = 1 case to say that we have an overall
bound of C|λ|− 1

2 .

We use resolution of singularities, first proved by Hironaka [H1][H2], as follows. Let
W be as in Theorem 1.1. Assuming U is a sufficiently small neighborhood of the origin, by
resolution of singularities there exists an open U ′ ⊂ W containing the closure U and a finite
collection {gl}Ll=1 of proper real analytic mappings gl : Vl → U ′, where each Vl is open and

contains g−1
l (U), with the following properties.

Each gl is one to one outside a set of measure zero. Let {hm(x)}Mm=1 denote the list
of functions consisting of each ∂xj

f(x), each nonzero difference (xj∂xj
f(x))2 − (xk∂xk

f(x))2,
and each coordinate function xj. Then on Vl each function hm ◦ gl(x) and the Jacobian
determinant Jac l(x) of each gl(x) is of the form alm(x)plm(x), where plm(x) is a monomial
and alm(x) never vanishes; in fact one will have |alm(x)| > δ for some δ > 0. For any bounded
measurable function F (x) on U one has∣∣∣∣ ∫

U

F (x) dx

∣∣∣∣ ≤ L∑
l=1

∫
g−1
l (U)

|F ◦ gl(x)Jac l(x)| dx (3.14)

Because of our assumption that ∇f(0) = 0, the monomials plm(x) are never just the constant
monomial 1.

Let m0 be such that hm0(x) = ∂xi
f(x) for the i being used above and let j0 be any

index such that such that plm0(x) contains xj0 to at least the first power. Then for some
d ̸= 0 one has

∂xj0
(alm0(x)plm0(x)) =

(
∂xj0

alm0(x) +
d

xj0

alm0(x)
)
plm0(x) (3.15)

As long as U is a sufficiently small neighborhood of the origin, then the term d
xj0

alm0(x) will

dominate ∂xj0
alm0(x) in absolute value for at least one choice of j0 since we will be near

enough to g−1
l (0). So we may work under the assumption that at each x there is always

some j0 and some constant d′ > 0 so that we have

|∂xj0
(alm0(x)plm0(x))| ≥

d′

|xj0|
|alm0(x)plm0(x)| (3.16)

In order to bound (3.13), we will apply (3.14), letting F (x) be the characteristic function of

{x ∈ Ui :

∣∣∣∣∂xi
f(x)− c∏
j ̸=i xj

∣∣∣∣ ≤ |λ|−
1

ϵ+1}, or equivalently the characteristic function of

{x ∈ Ui : c− |λ|−
1

ϵ+1

∏
j ̸=i

|xj| < ∂xi
f(x) < c+ |λ|−

1
ϵ+1

∏
j ̸=i

|xj|} (3.17)
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Let qi(x) =
∏

j ̸=i xj. Then qi ◦ gl(x) is of the form bil(x)ril(x) where ril(x) is a monomial and
|bil(x)| > δ for some positive δ. Then F ◦ gl(x) the characteristic function of

{x ∈ g−1
l (Ui) : c− |λ|−

1
ϵ+1 |bil(x)ril(x)| < alm0(x)plm0(x) < c+ |λ|−

1
ϵ+1 |bil(x)ril(x)|} (3.18)

Denote the set in (3.18) by Eilλc. Then for the above F (x), equation (3.14) leads to

m({x ∈ Ui :

∣∣∣∣∂xi
f(x)− c∏
j ̸=i xj

∣∣∣∣ ≤ |λ|−
1

ϵ+1}) ≤
L∑
l=1

∫
Eilλc

|Jac l(x)| dx (3.19)

Thus we turn our attention to bounding a given term
∫
Eilλc

|Jac l(x)| dx. We examine
the intersection of the domain of integration Eilλc with a given dyadic rectangle which we
denote by R. Because Jac l(x), bil(x)ril(x), and alm0(x)plm0(x) are comparable to monomials,
on Eilλc ∩R the functions |Jac l(x)|, |bil(x)ril(x)|, and |alm0(x)plm0(x)| are within a constant
factor of the functions |Jac l(x

∗)|, |bil(x∗)ril(x
∗)|, and |alm0(x

∗)plm0(x
∗)| respectively where

x∗ ∈ Eilλc ∩R is fixed.

As long as the neighborhood of U is sufficiently small, not only does (3.16) hold, but
also for each R there will necessarily be a single j0 for which (3.16) holds throughout R,
since we will be close enough to g−1

l (0) for this to be true. By (3.16) and (3.18), the width
of the xj0 cross section of Eilλc ∩R is bounded by

C|λ|−
1

ϵ+1 |bil(x∗)ril(x
∗)|

∣∣∣∣alm0(x
∗)plm0(x

∗)

x∗
j0

∣∣∣∣−1

(3.20)

The width of this cross section is also trivially bounded by x∗
j0
. These can be combined by

saying the width of this cross section is bounded by the following, where R0 denotes the
cross section of R in the xj0 direction.

C

∫
R0

min(1, |λ|−
1

ϵ+1 |bil(x∗)ril(x
∗)||alm0(x

∗)plm0(x
∗)|−1) dxj0 (3.21)

Integrating this in the remaining n − 1 variables and inserting the Jacobian factor, we see
that∫

Eilλc∩R
|Jac l(x)| dx ≤ C

∫
R

|Jac l(x
∗)|min(1, |λ|−

1
ϵ+1 |bil(x∗)ril(x

∗)||alm0(x
∗)plm0(x

∗)|−1) dx

(3.22)
Since the various factors in (3.22) stay within a bounded factor on R, we may replace (3.22)
by ∫

Eilλc∩R
|Jac l(x)| dx ≤ C

∫
R

|Jac l(x)|min(1, |λ|−
1

ϵ+1 |bil(x)ril(x)||alm0(x)plm0(x)|−1) dx

(3.23)
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We next add (3.23) over all R intersecting g−1
l (Ui). Letting Wil denote the union of all R

intersecting g−1
l (Ui), we get∫

Eilλc

|Jac l(x)| dx ≤ C

∫
Wil

|Jac l(x)|min(1, |λ|−
1

ϵ+1 |bil(x)ril(x)||alm0(x)plm0(x)|−1) dx

(3.24)
By shrinking U if necessary, we can always assume that Wil ⊂ g−1

l (U ′), where U ′ is the open
set containing U of the resolution of singularities procedure. Thus (3.24) becomes∫

Eilλc

|Jac l(x)| dx ≤ C

∫
g−1
l (U ′)

|Jac l(x)|min(1, |λ|−
1

ϵ+1 |bil(x)ril(x)||alm0(x)plm0(x)|−1) dx

(3.25)
Now going back into the original coordinates using the coordinate change map gl, (3.25)
leads to ∫

Eilλc

|Jac l(x)| dx ≤ C

∫
U ′
min(1, |λ|−

1
ϵ+1 (

∏
j ̸=i

|xj|)|∂xi
f(x)|−1) dx (3.26)

We can refine (3.26) as follows. Since each nonzero difference (xj∂xj
f(x))2 − (xk∂xk

f(x))2

was monomialized, in particular (xi∂xi
f(x))2−(xj∂xj

f(x))2 is monomialzed for each j. Thus
in the blown up coordinates of g−1

l (U ′), the set of points where |xi∂xi
f(x)| > |xj∂xj

f(x)| for
a given j, which is the same as the set where (xi∂xi

f(x))2− (xj∂xj
f(x))2 > 0, consists of the

points in g−1
l (U ′) where a certain monomial is positive. This consists of the set of points in

g−1
l (U ′) that are in a certain collection of octants. Thus in the blown up coordinates, the set
of points in g−1

l (U ′) where |xi∂xi
f(x)| > |xj∂xj

f(x)| for all j are also the points in g−1
l (U ′)

that are in certain octants. Furthermore, the above dyadic rectangles R will be contained in
these octants. Hence the relation |xi∂xi

f(x)| > |xj∂xj
f(x)| for j ̸= i will still hold when we

return the union of all such R to the original coordinates as in (3.26). Thus we may amend
(3.26) to∫
Eilλc

|Jac l(x)| dx ≤ C

∫
{x∈U ′:|xi∂xif(x)|> |xj∂xj f(x)| for j ̸=i}

min(1, |λ|−
1

ϵ+1 (
∏
j ̸=i

|xj|)|∂xi
f(x)|−1) dx

(3.27)

Since (
∏

j ̸=i |xj|)|∂xi
f(x)|−1 =

(
|xi∂xi

f(x)|∏n
j=1 |xj|

)−1

and |xi∂xi
f(x)| > |xj∂xj

f(x)| for all j ̸= i in

the domain of integration of (3.27), we may let r(x) =

∑n
i=1 |xi

∂f
∂xi

|∏n
i=1 |xi|

(the function in Theorem

1.1) and then (3.27) implies∫
Eilλc

|Jac l(x)| dx ≤ C

∫
U ′
min(1, |λ|−

1
ϵ+1 |r(x)|−1) dx (3.28)

Combining with (3.19) leads to

m({x ∈ Ui :

∣∣∣∣∂xi
f(x)− c∏
j ̸=i xj

∣∣∣∣ ≤ |λ|−
1

ϵ+1}) ≤ C ′
∫
U ′
min(1, |λ|−

1
ϵ+1 |r(x)|−1) dx (3.29)
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Since the left hand side of (3.29) is the right-hand side of (3.13), which by (3.11) is an upper
bound for |J1(λ)|, we conclude that

|J1(λ)| ≤ C ′
∫
U ′
min(1, |λ|−

1
ϵ+1 |r(x)|−1) dx (3.30)

We now apply Lemma 3.1, using the definition (1.4) of ϵ and the fact that U ′ ⊂ W . If ϵ < 1,
the first part of Lemma 3.1 gives that the right hand side of (3.30) is bounded by a constant
times |λ|−

ϵ
ϵ+1 , which provides the bound we need for |J1(λ)| to give the correct exponent

in part 2 of Theorem 1.1. On the other hand if ϵ ≥ 1, then (1.4) still holds for ϵ = 1, in

which case the second part of Lemma 3.1 gives a bound of C ′|λ|− 1
2 ln |λ|, which is better

than C ′′|λ|−δ for all δ < 1
2
, which is what we need for part 2 of Theorem 1.1 when ϵ ≥ 1.

Thus we see that in all cases that |J1(λ)| is bounded by the appropriate quantity in part 2
of Theorem 1.1. This completes the proof of Theorem 1.1.

4 References.

[AGuV] V. Arnold, S Gusein-Zade, A Varchenko, Singularities of differentiable maps Volume
II, Birkhauser, Basel, 1988.

[BakMVaW] J. Bak, D. McMichael, J. Vance, S. Wainger, Fourier transforms of surface area
measure on convex surfaces in R3, Amer. J. Math.111 (1989), no.4, 633-668.

[BaGuZhZo] S. Basu, S. Guo, R. Zhang, P. Zorin-Kranich, A stationary set method for
estimating oscillatory integrals, to appear, J. Eur. Math. Soc.

[BrHoI] L. Brandolini, S. Hoffmann, A. Iosevich, Sharp rate of average decay of the Fourier
transform of a bounded set, Geom. Funct. Anal. 13 (2003), no. 4, 671-680.

[BNW] J. Bruna, A. Nagel, and S. Wainger, Convex hypersurfaces and Fourier transforms,
Ann. of Math. (2) 127 no. 2, (1988), 333-365.

[CaCWr] A. Carbery, M. Christ, J. Wright, Multidimensional van der Corput and sublevel
set estimates, J. Amer. Math. Soc. 12 (1999), no. 4, 981-1015.

[Gre] J. Green, Lower bounds on Lp quasi-norms and the uniform sublevel set problem,
Mathematika 67 (2021), no. 2, 296-323.

[G1] M. Greenblatt, Oscillatory integral decay, sublevel set growth, and the Newton polyhe-
dron, Math. Annalen 346 (2010), no. 4, 857-895.

[G2] M. Greenblatt, Maximal averages over hypersurfaces and the Newton polyhedron, J.
Funct. Anal. 262 (2012), no. 5, 2314-2348.

[G3] M. Greenblatt, A method for bounding oscillatory integrals in terms of non-oscillatory
integrals, submitted.

[G4] M. Greenblatt, Fourier transforms of irregular mixed homogeneous hypersurface mea-
sures, Math. Nachr. 291 (2018), no.7, 1075-1087.

[Gr] P. Gressman, Scalar oscillatory integrals in smooth spaces of homogeneous type, Rev.
Mat. Iberoam. 31 (2015), no. 1, 215–244.

16



[H1] H. Hironaka, Resolution of singularities of an algebraic variety over a field of charac-
teristic zero I, Ann. of Math. (2) 79 (1964), 109-203.

[H2] H. Hironaka, Resolution of singularities of an algebraic variety over a field of charac-
teristic zero II, Ann. of Math. (2) 79 (1964), 205-326.

[IkKeMu] I. Ikromov, M. Kempe, and D. Müller, Estimates for maximal functions associated
to hypersurfaces in R3 and related problems of harmonic analysis, Acta Math. 204 (2010),
no. 2, 151–271.

[IkMu] I. Ikromov, D. Müller, Uniform estimates for the Fourier transform of surface-carried
measures in R3 and an application to Fourier restriction, J. Fourier Anal. Appl, 17 (2011),
no. 6, 1292-1332.

[NaSeW] A. Nagel, A. Seeger, and S. Wainger, Averages over convex hypersurfaces, Amer.
J. Math. 115 (1993), no. 4, 903-927.

[PhStS] D. H. Phong, E. M. Stein, J. Sturm, On the growth and stability of real-analytic
functions, Amer. J. Math. 121 (1999), 519-554.

[V] A. N. Varchenko, Newton polyhedra and estimates of oscillatory integrals, Functional
Anal. Appl. 18 (1976), no. 3, 175-196.

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
322 Science and Engineering Offices
851 S. Morgan Street
Chicago, IL 60607-7045
greenbla@uic.edu

17


