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1) Introduction

As in [CLTaTh], in this paper we consider operators of the form

Tλ(f1, ..., fn) =
∫

Rm

eiλS(x)
n∏

j=1

fj(πj(x))η(x) dx (1.1)

Here S(x) is a smooth real-valued phase function, λ is a parameter, and η(x) is a C1 cutoff
function supported in the unit ball centered at the origin. πj denotes projection from Rm

to some subspace Vj of dimension strictly less than m, and each fj is an L∞ function. A
natural question to ask is for which {Vj}n

j=1 and which smooth phase functions S(x) do
we get an estimate of the form

|Tλ(f1, ..., fn)| ≤ C(1 + |λ|)−ε
n∏

j=1

||fj ||∞ (1.2)

Here ε > 0 is to be independent of η(x). In [CLTaTh] this question was considered in
considerable depth, and attention was focused on the case where S(x) is a polynomial.
Here we will extend several of their results to the general smooth case. When the πj are
all projections onto 1 dimensional spaces and one considers L2 norms instead of L∞ norms,
much additional work has been done, such as [PS] [PSSt] [Se].

Note that if S(x) =
∑

j pj ◦πj(x), then there can be no positive ε satisfying (1.2).
For one can let fj = e−iλpj and then (1.1) is equal to

∫
η(x), a quantity independent of λ.

In [CLTaTh], such a polynomial S(x) is referred to as degenerate relative to {Vj}n
j=1, and a

polynomial S(x) that has no realization of the form S(x) =
∑

j pj ◦πj(x), pj polynomials,
is referred to as nondegenerate relative to {Vj}n

j=1.

One way one can ensure that a polynomial is nondegenerate relative to {Vj}n
j=1

is for there to exist a differential operator L of the form L =
∏n

j=1(wj ◦ ∇), with each wj

a unit vector in V ⊥
j , such that L(S) is not the zero function. For if one applies L to a

polynomial of the form S(x) =
∑

j pj ◦ πj(x), each factor knocks out one of the terms and
one is left with zero. [CLTaTh] refers to a polynomial S for which there exists such an L
as a simply nondegenerate polynomial. Hence simply nondegenerate polynomials are all
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nondegenerate. The converse does not hold in general, as explained in [CLTaTh]. However
for several important classes of {Vj}n

j=1, simple nondegeneracy is equivalent to nondegen-
eracy. In [CLTaTh], the existence of an ε satsifying (1.2) is shown for simply nondegenerate
polynomials S(x) (among others), and therefore for all nondegenerate polynomials when
simply nondgenerate and nondegenerate are equivalent. Their estimates are uniform in
the sense that for a given family {Vj}n

j=1, ε depends only on the degree of S(x) and
max|x|≤1 |L(S(x))|, while C depends on these quantities as well as the C1 norm of η(x).

The purpose of this paper is to extend the simple nondegeneracy results of
[CLTaTh] to the case of general C∞ phase. Since the ε in the proofs in [CLTaTh] de-
pend on the degree of S(x), the results there do not carry over immediately.

Definition: Suppose S(x) is a smooth function defined in a neighborhood of a point
a. S(x) is called degenerate at a if there are smooth functions sj : Vj → R for which
S(x)−

∑n
j=1 sj(πj(x)) has a zero of infinite order at a. We say S(x) is nondegenerate at

a if there do not exist such functions.

Definition: Suppose S(x) is a smooth function defined in a neighborhood of a point a.
S(x) is called simply nondegenerate at a if there exists a differential operator L of the form
L =

∏n
j=1(wj ◦ ∇), with each wj a unit vector in V ⊥

j , such that L(S(x)) does not vanish
to infinite order at a.

As in the polynomial case, in the smooth case it is immediate that if S(x) is simply
nondegenerate at a then it is nondegenerate at a.

Our main theorem gives uniform decay for simply nondegenerate S(x) in the smooth case:

Theorem 1.1: Suppose S(x) is simply nondegenerate at 0. Let L be as above and α be a
multiindex such that ∂α(L◦S)(0) = c 6= 0. Then there is an open U containing the origin,
U depending on c, m, n, |α|, and the C |α|+n+1 norm of S, such that if η(x) is supported
in U , for ε = 2−n+1

|α|+n and any δ > 0 we have

|Tλ(f1, ..., fn)| ≤ C(1 + |λ|)−ε+δ
n∏

j=1

||fj ||∞ (1.3)

Here C depends on c, m, n, |α|, ||η||C1 , and the Cl norm of S(x) for some l depending
on δ. For fixed values of the other parameters, C is O(||η||C1). In the case where S is a
polynomial, we can take δ = 0.

We will see in Lemma 1.4 below that if {Vj}n
j=1 is such that simple nondegeneracy

is equivalent to nondegeneracy for polynomial S(x), then simple nondegeneracy is also
equivalent to nondegeneracy for smooth S(x) at any point. As a result, by Proposition
3.1 and Lemma 3.5 of [CLTaTh], Theorem 1.1 immediately implies the following smooth
analogues of Theorem 2.2 and Theorem 2.4 of [CLTaTh]:
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Theorem 1.2: Suppose each Vj has codimension 1. Then (1.2) holds for some ε > 0 for
all η with sufficiently small support if and only if S(x) is nondegenerate at the origin.

Theorem 1.3: Suppose {Vj : 1 ≤ j ≤ n} are each of dimension k < n. Suppose
the orthocomplements V ⊥

j together span a space of dimension at most (m − k)n, and
(m− k)n ≤ m. Then (1.2) holds for some ε > 0 for all η with sufficiently small support if
and only if S(x) is nondegenerate at the origin.

In view of Theorem 1.1, Theorems 1.2 and 1.3 are uniform in the sense that ε
depends only on n and the order of vanishing of L ◦ S at the origin.

Lemma 1.4: Suppose {Vj}n
j=1 are such that simple nondegeneracy is equivalent to non-

degeneracy for any polynomial S(x). Then for smooth S(x), simple nondegeneracy is
equivalent to nondegeneracy at any point.

Proof: Since simple nondegeneracy readily implies nondegeneracy, we assume that S(x)
is not simply nondegenerate at a point a, and we will show that S(x) is degenerate at a.
Clearly it suffices to assume that a = 0. Let

∑
α Sαxα denote the (possibly divergent)

Taylor expansion of S(x) about the origin. For each positive integer i, we define

Ri(x) =
∑
|α|=i

Sαxα (1.4)

Suppose wj ∈ V ⊥
j for 1 ≤ j ≤ n. Analogous to (1.4) we can write

n∏
j=1

(wj ◦ ∇)S =
∑

i

n∏
j=1

(wj ◦ ∇)Ri(x) (1.5)

Note that
∏n

j=1(wj ◦∇)Ri(x) is the sum of the terms of (1.5) of degree i−n. Since S(x) is
not simply nondegenerate at the origin, for any such wj the right hand side of (1.5) must
have no nonvanishing terms. In other words, for all i and all choices of wj we have

n∏
j=1

(wj ◦ ∇)Ri(x) = 0 (1.6)

Since we are assuming simple nondegeneracy is equivalent to nondegeneracy for polyno-
mials, this means we can write

Ri(x) =
n∑

j=1

pij ◦ πj(x) (1.7)

Here pij are polynomials. Since the terms of Ri(x) are all of degree i, the terms of the
righthand sum of all other degrees must add to zero. Hence we may replace each pij by
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the sum of its monomials of degree i if necessary, and assume each pij is homogeneous of
degree i.

Next, for a given j we let rj be a rotation such that the image of rj ◦ πj is
{(y, z) ∈ Rkj × Rm−kj : z = 0}. Since pij ◦ πj = pij ◦ r−1

j ◦ (rj ◦ πj) and pij ◦ πj is
homogeneous of degree i, pij ◦ r−1

j is a homogeneous polynomial in the y variables of
degree i. Thus the monomials of pij ◦ r−1

j (y) for different i’s do not overlap. As a result,
it makes sense to write

∑
i pij ◦ r−1

j (y) as a (possibly nonconvergent) power series in the y
variables.

By a famous theorem of Borel (see p.16 of [H]), we can let qj(y) be a C∞ function
whose Taylor series about the origin is given by

∑
i pij ◦ r−1

j (y). So for a fixed i0, qj(y)−∑
i<i0

pij ◦r−1
j (y) has a zero of order i0 at the origin. Similarly, qj ◦rj ◦πj(x)−

∑
i<i0

pij ◦
πj(x) has a zero of order i0 at the origin. Adding this over all j, we get that

∑
j qj ◦

rj ◦ πj(x) −
∑

i<i0
Ri(x) has a zero of order i0 at the origin. By (1.4), this means that∑

j qj ◦ rj ◦πj(x)−S(x) has a zero of infinite order at the origin. Since each qj ◦ rj is C∞,
this means that S(x) is degenerate to infinite order at the origin, and we are done.

2) Proof of Theorem 1.1

Case 1: n = 1, S(x) a polynomial:

Let g denote the degree of S(x) and let k1 denote the dimension of V1. Rotate
coordinates such that V1 = {x = (y, z) ∈ Rk1 × Rm−k1 : z = 0}, and such that the vector
w1 in the definition of simply nondegenerate is in the z1 direction. Our arguments will
resemble the proof of the Van der Corput lemma in the z1 direction. Namely, for some
a > 0 to be determined we divide the domain of (1.1) into 2 parts. The first part is where
|∂z1S(x)| < |λ|−a, and the second where |∂z1S(x)| ≥ |λ|−a. On the first part, we take
absolute values and integrate, obtaining a term of absolute value at most

m{x ∈ supp(η) : |∂z1S(x)| < |λ|−a}||f1||∞||η||∞

Here m denotes Lebesgue measure. This in turn is bounded by

m{x ∈ supp(η) : |∂z1S(x)| < |λ|−a} ||f1||∞||η||C1 (2.1)

On the second part we do an integration by parts in z1 on the oscillatory factor. We get

1
iλ

∫
|Sz1 (y,z)|≥|λ|−a

eiλS(y,z)[
Sz1z1(y, z)
Sz1(y, z)2

η(y, z)− ηz1(y, z)]f1(y) dy dz (2.2)

The expression (2.2) is of absolute value at most

1
|λ|
||f1||∞||η||∞(

∫
|(y,z)|<1, |Sz1 (y,z)|≥|λ|−a

|Sz1z1(y, z)
Sz1(y, z)2

| dy dz) +
1
|λ|
||f1||∞||η||C1 (2.3)
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For fixed y and (z2, ..., zn), the domain of integration of (2.3) can be written as the union
of at most g− 1 intervals on which Sz1 is monotonic as a function of z1. Consequently, on
each of these intervals, one may perform the integration of |Sz1z1 (y,z)

Sz1 (y,z)2 | as in the proof of

the Van der Corput lemma, obtaining the difference of 1
Sz1 (y,z) at the endpoints, so that

(2.3) is at most

(2g − 2)|λ|a−1||f1||∞||η||∞ +
1
|λ|
||f1||∞||η||C1

≤ (2g − 1)|λ|a−1||f1||∞||η||C1 (2.4)

Combining (2.1) and (2.4), in the current situation the oscillatory integral (1.1) is bounded
in absolute value by:

[m{x ∈ supp(η) : |∂z1S(x)| < |λ|−a}+ (2g − 1)|λ|a−1] ||f1||∞||η||C1 (2.5)

By the simple nondegeneracy of S, there is some multiindex α for which ∂α∂z1S(0) = c 6= 0.
As a result, by [C1] for example, if the support of η is sufficiently small, one has

m{x ∈ supp(η) : |∂z1S(x)| < |λ|−a} < C|λ|−
a
|α| (2.6)

Here C depends on c, |α|, m, and the C |α|+2 norm of S. As a result, we can select
a = |α|

|α|+1 , and (2.5) is at most

(C + 2g − 1)|λ|−
1

1+|α| ||f1||∞||η||C1 (2.7)

This gives us the estimate required by Theorem 1.1 and we are done when n = 1 and S(x)
is a polynomial.

Case 2: n > 1, S(x) a polynomial.

To prove Theorem 1.1 in this case we will need the following procedure. Given
a smooth function Q(x) defined in a neighborhood of the origin, we successively define
functions Q1(y, z), Q2(y, z, ζ2) , ..., Qn(y, z, ζ2, ..., ζn). Let Q1(y, z) be Q(x) in rotated
coordinates such that V1 is {(y, z) ∈ Rk1 × Rm−k1 : z = 0} and such that w1 is the z1

direction. Once Qj−1 is defined, one defines Qj as follows. Consider coordinates such
that Vj = {(y, z) ∈ Rkj × Rm−kj : z = 0} with wj being the z1 direction. Letting
Qζ(y, z) = Q(y, z + ζ) − Q(y, z) in these coordinates, we define Qj(y, z, ζ2, ..., ζj) to be
(Qζj )j−1(y, z, ζ2, ..., ζj−1). I claim that inductively we have

∂j−1Qj

∂ζj
1
....∂ζ2

1

(y, z, 0) =
j∏

i=2

(wi ◦ ∇)Q(y, z) (2.8)

For if we know the j − 1 case (the case j = 1 is a tautology) we have the following:

∂j−2Qj

∂ζj−1
1

....∂ζ2
1

(y, z, 0, .., 0, ζj) =
∂j−2(Qζj )j−1

∂ζj−1
1

....∂ζ2
1

(y, z, 0) =
j−1∏
i=2

(wi ◦ ∇)Qζj (y, z)
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=
j−1∏
i=2

((wi ◦ ∇)Q)(y, z + ζj)−
j−1∏
i=2

((wi ◦ ∇)Q)(y, z)

Then taking directional derivatives in the ζj
1 direction gives (2.8). We will be most inter-

ested in (2.8) when Q = (w1 ◦∇)S. In fact, Theorem 1.1 in the polynomial case will follow
readily from the following lemma:

Lemma 2.1: Suppose Tλ is of the form (1.1) with S(x) a polynomial. Let δ be such that
|x| < δ for all x ∈ supp(η). Let s(x) denote (w1 ◦∇)S(x), and let m{sn(y, z, ζ2, ...ζn) < b}
denote m{(y, z, ζ2, ...ζn) ∈ [−2δ, 2δ]m+

∑
j>1

(m−kj) : sn(y, z, ζ2, ...ζn) < b}. For any a > 0
we have |Tλ(f1, ..., fn)| <

[m{(sn(y, z, ζ2, ...ζn) < |λ|−a}+ (2g − 1)|λ|a−1]2
1−n

||η||C1

n∏
j=1

||fj ||∞ (2.9)

Proof: The case n = 1 follows from (2.5), so we can assume the lemma for n − 1 and
prove it for n. We work in the general setup used in the inductive step in Theorem 2.3 of
[CLTaTh], originating in [CaCW]. Like above and in [CLTaTh], we rotate to coordinates
such that Vn = {(y, z) ∈ Rkn ×Rm−kn : z = 0}. As above, we assume the direction wn in
the definition of simply nondegenerate is the z1 direction. We now have

Tλ(f1, ..., fn) =
∫

fn(y)(
∫

eiλS(y,z)
n−1∏
j=1

fj(πj(y, z))η(y, z) dz) dy (2.10)

This equals < Uλ(f1, ..., fn−1), f̄n > for an appropriate operator Uλ. Hence we have

|Tλ(f1, ..., fn)| ≤ ||fn||2||Uλ(f1, ..., fn−1)||2 ≤ ||fn||∞||Uλ(f1, ..., fn−1)||2 (2.11)

As in [CLTaTh], we write ||Uλ(f1, ..., fn−1)||22 as∫
Rm−kn

[
∫
Rm

eiλ(S(y,z)−S(y,z+ζ))
∏
j<n

fj(πj(y, z))f̄j(πj(y, z + ζ))η(y, z)η̄(y, z + ζ)dz dy] dζ

(2.12)
For fixed ζ, the integral inside the brackets is of the form (1.1), with phase S(y, z)−S(y, z+
ζ) and acting on the n − 1 functions fj(πj(y, z))f̄j(πj(y, z + ζ)) for j < n. Thus one can
apply the inductive hypothesis to the bracketed integral and say it is bounded in absolute
value by

[m{(sζ)n−1(y, z, ζ2, ..., ζn−1) < |λ|−a}+ (2g − 1)|λ|a−1]2
2−n

||η||2C1

∏
j<n

||fj ||2∞ (2.13)

Here sζ(y, z) = s(y, z + ζ)− s(y, z) = (w1 ◦ ∇)(S(y, z + ζ)− S(y, z)). We integrate (2.13)
in ζ, using Jensen’s inequality to push the exponent 22−n to the outside. Given that
(sζ)n−1(y, z, ζ2, ...ζj−1) = sn(y, z, ζ2, ...ζj−1, ζ), we get that (2.12) is bounded by

[m{sn(y, z, ζ2, ..., ζn) < |λ|−a}+ (2g − 1)|λ|a−1]2
2−n

||η||2C1

∏
j<n

||fj ||2∞ (2.14)

6



Putting this upper bound for ||Uλ(f1, ..., fn−1)||22 into (2.11) gives the lemma and we are
done.

We now may prove Theorem 1.1 in the polynomial case. Applying (2.8) to s(x)
for j = n, the simple nondenegeracy hypothesis implies that for some α we have

∂α(
∂n−1sn

∂ζn
1
....∂ζ2

1

)(0, 0, 0) = c 6= 0

Thus sn has a zero of order |α|+n−1 at the origin. Using [C] again for example, assuming
the support of η is sufficiently small, depending on c, m, n, |α| and the C |α|+n+1 norm of
S, we have that

m{sn(y, z, ζ1, ..., ζn) < |λ|−a} < C|λ|−
a

|α|+n−1 (2.15)

Here C is a function of m, |α|, n, and c. We choose a = |α|+n−1
|α|+n in (2.15). Then (2.9)

gives

|Tλ(f1, ..., fn)| < C ′|λ|−
21−n

|α|+n ||η||C1

n∏
j=1

||fj ||∞ (2.16)

Here C ′ is a function m, |α|, n, c, and g. This completes the proof of Theorem 1.1 in the
polynomial case.

Case 3: General smooth S(x)

Because the ε obtained in the polynomial case of Theorem 1.1 did not depend on
the degree of S(x), we will be able to extend to general smooth S(x) by dividing the domain
into cubes of radius |λ|−e for small e, and then approximating S(x) by polynomials of
sufficiently high degree on each of these cubes. To be precise, let l be some positive integer,
and write the cutoff function η(x) as

∑I
i=1 ηi(x), where each ηi(x) is supported on a set

of diameter < |λ|− 1
l and where I < C0|λ|

m
l . We may also assume ||ηi||C1 < C0|λ|

1
l ||η||C1 .

Here C0 is a uniform constant. We correspondingly write Tλ =
∑I

i=1 T i
λ, where

T i
λ(f1, ..., fn) =

∫
Rm

eiλS(x)
n∏

j=1

fj(πj(x))ηi(x) dx (2.17)

We break each term (2.17) into two parts. For some fixed i, let x0 be a point in the support
of ηi. Let S̄(x) be the sum of the first 2l terms of the Taylor expansion of S(x) taken about
x = x0. We write T i

λ = T i,1
λ + T i,2

λ , where

T i,1
λ (f1, ..., fn) =

∫
Rm

eiλS̄(x)
n∏

j=1

fj(πj(x))ηi(x) dx (2.18a)

T i,2
λ (f1, ..., fn) =

∫
Rm

[eiλS(x) − eiλS̄(x)]
n∏

j=1

fj(πj(x))ηi(x) dx (2.18b)
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We can apply the polynomial case treated above to (2.18a), and get that

|T i,1
λ (f1, ..., fn)| ≤ C|λ| 1l |λ|−ε||η||C1

n∏
j=1

||fj ||∞ (2.19)

Here ε = 21−n

|α|+n , and C is a constant depending on c, l, m, n, and |α|. For (2.18b), we use
Taylor’s theorem on the difference of exponentials, obtaining

|eiλS(x) − eiλS̄(x)| ≤ C ′(|λ|− 1
l )2l = C ′|λ|−2

Here C ′ depends on the C2l+1 norm of S. Hence we have

|T i,2
λ (f1, ..., fn)| ≤ C ′|λ|−2+ 1

l ||η||C1

n∏
j=1

||fj ||∞ (2.20)

Adding up (2.19) and (2.20) over all i, we obtain

|Tλ(f1, ..., fn)| ≤ C ′′(|λ|
m+1

l |λ|−ε + |λ|−2+ m+1
l )||η||C1

n∏
j=1

||fj ||∞ (2.21)

Here C ′′ depends on c, l, m, n, |α|, and the C2l+1 norm of S. Given δ > 0, by picking l large
enough, one can make (2.21) bounded by 2C ′′|λ|−ε+δ||η||C1

∏n
j=1 ||fj ||∞ This completes

the proof of Theorem 1.1.
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