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Abstract. We use the symbol calculus for foliations developed in [BH17a] to derive a cohomological formula

for the Connes-Chern character of the Type II spectral triple given in [BH17b]. The same proof works for
the Type I spectral triple of Connes-Moscovici. The cohomology classes of the two Connes-Chern characters

induce the same map on the image of the maximal Baum-Connes map in K-theory, thereby proving an
Atiyah L2 covering index theorem.
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1. Introduction

In [CM95], Connes and Moscovici developed “a general, in some sense universal, local index formula
for arbitrary spectral triples of finite summability degree, in terms of the Dixmier trace and its residue-
type extension.” Because of its extremely wide applicability, their formulas are quite complicated. See also
[CM98]. In [K97], Kordyukov considered a Type I Connes-Moscovici spectral triple naturally associated to
a compact foliated manifold with a transversely elliptic operator with holonomy invariant principal symbol.
He proved that the spectral triple is finite dimensional, and that its spectrum is simple and contained in the
set {m ∈ N | m ≤ q}, where q is the co-dimension of the foliation. In [BH17b], we extend Kordyukov’s result
to certain non-compact manifolds, including non-compact Galois coverings of compact foliated manifolds,
which yields a Type II spectral triple (also called a semi-finite spectral triple), see [B03, BF06], with the
same properties as the Type I Connes-Moscovici spectral triple.

In this paper we use the symbol calculus for foliations developed in [BH17a] to derive a cohomological
formula for the Connes-Chern characters of these Type I and Type II spectral triples. In particular, we
assume that we have a Riemannian foliation F of a compact manifold M with a transverse Dirac operator,
and that there is a complementary foliation transverse to F . The formulas we obtain are similar to that for
the classical case of a Dirac operator on a compact manifold given in [BlF90]. The same proof works for both
the Type I spectral triple of Connes-Moscovici and Kordyukov and the Type II spectral triple of [BH17b].
The Connes-Chern characters we obtain induce the same map on the image of the Baum-Connes map in
K-theory, [BC00], so we obtain an Atiyah L2 type covering index theorem for compact foliated manifolds
with transversely elliptic operators.
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It is possible to dispense with the assumption that M admits a transverse foliation. We show how to
do this in Section 7 using the standard Morita reduction to transversals, and we consider spectral triples
associated to a chosen complete transversal of F . There are several reasons why we prefer to work on
M . Working on M doesn’t involve choices while working on T does, so working on M is more natural.
Moreover, for important generalizations, see [BH17b], we want a formula in terms of characteristic classes
on the ambiant manifold M . There are natural examples where the restriction to a transversal doesn’t work,
but our techniques here do. See Example 7.2.

Acknowledgements. It is a pleasure to thank A. Carey, P. Carrillo-Rouse, T. Fack, G. Hector, and P. Piazza
for helpful discussions. We are also indebted to the referee for his cogent suggestions. MB wishes to thank
the french National Research Agency for support via the project ANR-14-CE25-0012-01 (SINGSTAR).

2. Background

We assume that the reader is familiar with the paper [BH17a], and we will freely use the notations of that
paper. In particular, F is a smooth Riemannian foliation of the smooth closed Riemannian manifold M .
Then (M,F ) is of bounded geometry, so all the leaves of F and all the bundles associated to M and F are of
bounded geometry. Denote by TM and T ∗M the tangent and cotangent bundles of M . The dimension of F
is p and the dimension of M is n, so the codimension of F is q = n− p, which we assume is even. If q is not
even, we replace M by M × S1 and F by the obvious p dimensional foliation it determines on M × S1. The
normal bundle of F is denoted ν (= TF⊥), and its conormal bundle is ν∗. The induced metrics on ν and
ν∗ are assumed to be bundle like. The leaf of F through a point x is denoted Lx. The homotopy groupoid
of F is G, with the source and target maps s, r : G → M . Fs is the foliation of G whose leaves are given by

L̃x = s−1(x), which is also denoted Gx. Fr is the foliation of G whose leaves are given by L̃y = r−1(y), which

is also denoted Gy. We denote Gx ∩Gy by Gyx . Note that r : L̃x → Lx is the simply connected covering map.
If γ ∈ Gx, the holonomy along γ from x = s(γ) to r(γ) in Lx is denoted hγ .

Denote by E → M a smooth complex vector bundle over M with a Hermitian structure. We assume
that E is basic, which means that there is an action on it by the holonomy groupoid and hence also by
the homotopy groupoid, and that the Hermitian connection on it, denoted ∇E , is locally projectable, so its
curvature ΩE is basic, that is locally a pull-back from a transversal.

Assume that F is transversely spin. Fix a spin structure on ν∗, and denote by Sν = S+
ν ⊕S−ν the associated

spin bundle, with its natural splitting. The bundles S±ν are automatically basic vector bundles over M . The
Hilbert space of L2-sections of the bundle Sν ⊗E over M is denoted H, which is Z2 graded since Sν ⊗E is
Z2-graded.

The Levi-Civita connection on ν∗ (respectively ν) is denoted ∇ν , which is locally the pull-back of the
Levi-Civita connection on a transversal. It is also known as a Bott or basic connection. The connection ∇ν
induces a connection on Sν , which when combined with the connection ∇E on E gives a connection, also
denoted ∇ν , on Sν ⊗ E. The context should make clear on which bundle ∇ν is acting.

The transverse Dirac operator D on H is given as follows. Choose a local orthonormal basis f1, ..., fq of
ν∗ with dual orthonormal basis e1, ..., eq of ν. For u ∈ H, set

D̃(u) =
∑

1≤i≤q

fi · ∇νeiu,

where fi· is the operator c(fi), Clifford multiplication by fi. In general, D̃ is not self-adjoint. The mean
curvature vector field of F is µ =

∑p
j=1 pν(∇XjXj) where X1, ..., Xp is a local orthonormal framing of TF ,

∇ is the Levi-Civita connection on M , and pν : TM → ν is the projection. When we think of µ as a covector
(the isomorphism ν ' ν∗ being given by the inner product), then we denote Clifford multiplication by it by
c(µ), and it is given by, see [BH17a],

c(µ) =

p∑
j=1

q∑
i=1

〈[ei, Xj ], Xj〉fi.
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The transverse Dirac operator D associated to F is

D = D̃ − 1

2
c(µ),

which is self-adjoint. See [K07, GlK91].

3. Statement of the main result

Recall the type I spectral triple introduced in [CM95] and [K97]:

Definition 3.1. The Connes-Moscovici Type I spectral triple associated to F is (C∞c (G),H, D). The usual
operator trace yields the super-trace, denoted Trs, constructed using the Berezin integral [G83, BGV92], and
a ∈ C∞c (G) acts on H by

a(u)(x) =

∫
Gx
a(γ−1)hγ−1(u(r(γ))dγ.

The main theorem of [K97] is (see also [CM95]),

Theorem 3.2. (C∞c (G),H, D) is a regular even spectral triple with simple dimension spectrum contained in
the set {k ∈ N | k ≤ q}.

We now recall an important special case of the main result of [BH17b], which will be used in the sequel.

In [BH17b], we were concerned with a general bounded geometry foliation (M̂, F̂) endowed with a proper
action of a discrete group Γ, and with the associated transverse noncommutative geometry as provided by
Connes’ formalism of regular spectral triples, [C87], and their semi-finite version as introduced in [BF06].
By using a classical reduction method, we were led to the corresponding problem for the class of Riemannian

bifoliations (M̂, F̂ ⊂ F̂ ′), see again [BH17b].

In the case of a free and proper action, we get a bounded geometry Γ-covering (M̂, F̂ ⊂ F̂ ′)→ (M,F ⊂ F ′)
of bounded geometry bifoliations. The main result of [BH17b] is the following.

Theorem 3.3. Assume that D̂ is a transversely elliptic Γ-invariant pseudodifferential operator in the

Connes-Moscovici sense for the larger foliation F̂ ′, which is essentially self-adjoint with holonomy invari-

ant transverse principal symbol. Then the triple (C∞c (G), (M, τ), D̂) is a semi-finite spectral triple which is

finitely summable of dimension equal to the Beals-Greiner codimension of F̂ ′.

Here D̂ acts on the Hilbert space Ĥ of L2-sections of a bundle over M̂ . G is the monodromy groupoid of

F ,M = B(Ĥ)Γ is the Atiyah von Neumann algebra of Γ-invariant operators on Ĥ, with its semi-finite trace
τ as defined for instance in [At76].

For the special case of a Γ-covering (M̂, F̂) → (M,F), (so F̂ ′ = F̂), of a Riemannian foliation, this
theorem becomes

Theorem 3.4. Assume that D̂ is a transversely elliptic Γ-invariant pseudodifferential operator on M̂ , which

is essentially self-adjoint with holonomy invariant transverse principal symbol. Then the triple (C∞c (G), (M, τ), D̂)
is a type II spectral triple which is finitely summable of dimension equal to the codimension of the foliation,
with simple semi-finite dimension spectrum contained in the set {k ∈ N | k ≤ q}.

For technical reasons which will be explained later, we now assume that the normal bundle ν is integrable,
that is M has a q dimensional foliation which is transverse to F . This foliation is denoted Ft. Since F is
transversely spin, Ft is a spin foliation.

Now suppose again that ρ : M̂ →M is a Galois covering, and consider M ⊂ M̂ as a fundamental domain.

Set F̂ = ρ−1F , with leaves L̂, ν̂ = ρ∗ν, and ν̂∗ = ρ∗ν∗. We also have the corresponding pulled back objects

Ŝν ⊗ Ê, Ĥ = L2(M̂, Ŝν ⊗ Ê), D̂, Ĝ, etc.

Note that in general the inverse image of a leaf L of F may consist of a number of leaves of F̂ , and that

for each of those leaves ρ : L̂→ L is a connected covering of L. Since the simply connected covering
˜̂
L→ L̂

of the covering L̂→ L is just the simply connected covering L̃→ L, the following is obvious.
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Lemma 3.5. Given γ ∈ Gρ(x̂), there exists a unique γ̂ ∈ Ĝx̂ so that ρ ◦ γ̂ = γ.

This lemma is not true in general if we use holonomy groupoids instead of homotopy groupoids.

Definition 3.6. Let a ∈ C∞c (G) act on û ∈ Ĥ by

a(û)(x̂) =

∫
Gρ(x̂)

a(γ−1)hγ̂−1(û(r̂(γ̂)))dγ =

∫
Ĝx̂
a((ρ ◦ γ̂)−1)hγ̂−1(û(r̂(γ̂)))dγ̂.

Definition 3.7. The Atiyah-Connes spectral triple associated to a (possibly non-compact) Galois foliation

cover ρ : (M̂, F̂ )→ (M,F ), with covering group Γ as above, is (C∞c (G), B(Ĥ)Γ, D̂). The trace is the Atiyah-
trace which yields the super trace, denoted τs, constructed using the Berezin integral, but restricted to the

fundamental domain M ⊂ M̂ .

Note the following.
1) Since we are using the homotopy groupoid, we want the algebra of smooth functions on the homotopy

groupoid Ĝ of F̂ , which are Γ-invariant and Γ-compactly supported. This is precisely the algebra downstairs,
that is C∞c (G).

2) The von Neumann algebra B(Ĥ)Γ is the algebra used by Atiyah in the L2 covering index theorem.

3) The Dirac operator D̂ on M̂ is defined with respect to Γ-invariant data and hence is Γ-invariant.
4) For a compact covering, this is a slight modification of the Type I Connes-Moscovici spectral triple

above.
Denote by dν the transverse de Rham differential for the foliated manifold (G, Fs), [T97], and by dxF the

volume form along the leaves of F . Our main result is the following.

Theorem 3.8. Let (M̂, F̂ ) be a covering foliation of (M,F ). Assume that F has even codimension, is
transversely spin, and that its normal bundle ν is integrable. Let a0, . . . , ak ∈ C∞c (G). The sequences

(φk)k≥0, and (φ̂k)k≥0, k even, where

φk(a0, . . . , ak) =
1

k!

∫
M

∑
γ∈Gxx

(a0dνa1 · · · dνak)(γ−1) ∧ ch(E) ∧ Â(ν∗) ∧ dxF ,

and

φ̂k(a0, . . . , ak) =
1

k!

∫
M⊂M̂

∑
γ̂∈Ĝxx

(a0dνa1 · · · dνak)((ρ ◦ γ̂)−1) ∧ ch(Ê) ∧ Â(ν̂∗) ∧ dxF

are cocycles in the (b, B) bicomplex for C∞c (G).

The cohomology classes of (φk) and (φ̂k) are respectively the Connes-Chern characters of (C∞c (G),H, D)

and (C∞c (G), B(Ĥ)Γ, D̂). These classes induce the same map on the image of the maximal Baum-Connes
assembly map in K∗(C

∗
max(G)), [BC00]. That is, we have an Atiyah L2 covering index theorem for foliation

coverings.

Remark 3.9. The maximal assembly map referred to in this paper is the map induced by leafwise index
maps, see for instance [C94]. If G is torsion-free, this map is conjectured to be an isomorphism, see [BC00].
When G has torsion, it has a modified definition, and it is not an isomorphism in general. See again [BC00]
and also [Tu99].

Note that the sums
∑
Gxx

and
∑
Ĝxx

are all finite since a0dνa1 · · · dνak has compact support. Note also that

the product in a0dνa1 · · · dνak is the convolution wedge product on the groupoid, while the wedges are the

simple pointwise wedge product. Finally note that the periodic cyclic cohomology classes of (φk) and (φ̂k)

do not depend on either the metric on M (so also on M̂), nor the choice of normal bundle ν.
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4. Symbols and the transverse symbol space

To begin, we construct a generalized exponential function êxpx : TMx → M . Suppose X = (Xν , XF ) ∈
νx ⊕ TFx. The leaves of F and Ft through x are denoted Lx and Lt

x , and their leafwise exponentials are
denoted expF and expt. Denote parallel translation from x to expF (XF ) along expF (tXF ), t ∈ [0, 1], in Lx
of the leafwise flat bundle ν by hexpF (XF ). Set

êxp(X) = expt(hexpF (XF )(Xν)).

What we are doing is exponentiating first in the leaf direction using the usual exponential function for Lx,
and then exponentiating in the transverse direction using the usual exponential for Lt

expF (XF ).

Remark 4.1. The map êxp has the essential properties of the usual exponential function: it is a local
diffeomorphism from 0 ∈ TMx to a neighborhood of x, whose differential at 0 is the identity. For X ∈ νx,
êxp(X) is a geodesic in the leaf of Ft through x.

There are two natural foliations on TMx, namely the planes parallel to TFx and νx respectively. Since F
is Riemannian, êxp maps these foliations onto the foliations F and Ft, respectively.

The results of [BH17a] still hold for the transverse symbol space SC`t(M,E) defined below if êxp is used
in place of the usual exponential function.

Choose a smooth bump function α on M ×M which is supported in a neighborhood of the diagonal, and
equals one on a neighborhood of the diagonal. We require that the support of α is close enough to the diagonal
that (πM , êxp)−1 : Supp(α)→ TM is a diffeomorphism onto the component of (πM , êxp)−1(Supp(α)) which
contains the zero section, where πM : TM → M is the projection. Suppose that x′ = êxp(X) where
X ∈ TMx. Given ux ∈ (Sν ⊗ E)x, denote by Tx,x′(ux) the parallel translation of ux along the radial line
t→ êxp(tX) from x to x′.

Definition 4.2. Given an operator P on sections of Sν ⊗ E, its symbol ς(P ) is defined as follows. Let
x ∈M , ξ ∈ T ∗Mx, and ux ∈ (Sν ⊗ E)x. Set

ς(P )(x, ξ)(ux) = P
(
x′ 7→ ei〈êxp−1

x (x′),ξ〉α(x, x′)Tx,x′(ux)
)
|x′=x.

Similarly for P̂ acting on sections of Ŝν ⊗ Ê.

If we write T ∗M = ν∗ ⊕ T ∗F , then ξ ∈ T ∗M may be written as ξ = (η, ζ), and we may also write
ς(P )(x, ξ) = ς(P )(x, η, ζ). Denote by π : ν∗ →M the projection.

Definition 4.3. The symbol space S`t(M,E) consists of all p(x, η) ∈ C∞(ν∗, π∗(End(Sν ⊗E))) so that, for
any multi-indices α and β, there is a constant Cα,β > 0, such that

|| ∂αη ∂βxp(x, η) || ≤ Cα,β(1 + |η|)`−|α|.

The topology on S`t(M,E) is given by the semi-norms

ρα,β = inf
{
Cα,β | || ∂αη ∂βxp(x, η) || ≤ Cα,β(1 + |η|)`−|α|

}
.

If we replace the variable η with the variable σ, this is a subspace of the space S0,`(M,E) of [BH17a], for
the transverse foliation Ft. We shall consider it so, while retaining the use of the variable η.

Of course, ∂αη ∂
β
xp(x, η) only makes sense if we specify local coordinates. We will use the so-called “normal

coordinates” on M . Normal coordinates at a point x ∈ M are given by choosing a neighborhood Ux of
0 ∈ TMx on which êxp : TMx →M is a diffeomorphism, and orthonormal bases of νx and TFx, which define
coordinates (x1, . . . , xn) on νx ⊕ TFx = TMx. This then defines coordinates (also denoted (x1, . . . , xn)) in
the neighborhood êxp(Ux) of x. In addition, it also induces coordinates on ν∗x, T ∗Fx, and T ∗Mx.

Denote by ∧∗ν∗ the complexified Grassmann algebra bundle. Then

C∞(ν∗, π∗(End(Sν ⊗ E))) ∼= C∞(ν∗, π∗(∧∗ν∗ ⊗ End(E))),

as ∧∗ν∗ ∼= Cliff(ν∗), where Cliff(ν∗) is the Clifford algebra. Since q is even, End(Sν) ∼= Cliff(ν∗). The
reader should note carefully that when we represent endomorphisms of Sν as elements of C∞(∧∗ν∗) and we
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compose them, the operation we use is Clifford multiplication and not wedge product. Note also that we
use the convention ω · ω = −〈ω, ω〉 = −||ω||2 for co-vectors.

Following [G83], we treat Clifford multiplication by a normal k-co-vector as a differential operator of order

k. Thus if p ∈ C∞(ν∗, π∗(∧kν∗ ⊗ End(E))) ∩ S`−kt (M,E), we say p has grading `.

Definition 4.4. The transverse symbol space SC`t(M,E) is

SC`t(M,E) =

q∑
k=0

C∞(ν∗, π∗(∧kν∗ ⊗ End(E))) ∩ S`−kt (M,E).

Set SC∞t (M,E) =
⋃
` SC

`
t(M,E) and SC−∞t (M,E) =

⋂
` SC

`
t(M,E).

In the notation of [BH17a], SC`t(M,E) is a subspace of the space SC0,`(M,E) for the foliation Ft. Thus
the results of [BH17a] apply to SC`t(M,E).

Remark 4.5. Recall the quantization map θα of [BH17a], which involves an exponential function. If we use
êxp in defining θα, and p ∈ SC∞t (M,E) and u is a section of Sν ⊗ E, then (θα(p)(u))(x) depends only on
u restricted to Lt

x . This is not true in general if we use the usual exponential function. In particular,

θα(p)(u)(x) = (2π)−q
∫
νx×ν∗x
e−i〈X,η〉p(x, η)α(x, êxpx(X))T −1

x,êxpx(X)(u(êxpx(X))) dXdη.

Definition 4.6. A family p(t) ∈ SC`t(M,E) is an asymptotic symbol if there are symbols pk ∈ SC`−kt (M,E),
so that the following asymptotic expansion holds as t→ 0,

p(t) ∼
∞∑
k=0

tkpk.

The leading symbol of p(t) is p0.

Note that p(t) ∼
∑∞
k=0 t

kpk means that given any N > 0, limt→0 t
−N
(
p(t) −

∑N
k=0 t

kpk

)
= 0 in

SC`−N−1
t (M,E). It does not imply that

∑∞
k=0 t

kpk converges.
If the family p(t) ∈ C∞(ν∗, π∗(∧kν∗ ⊗ End(E))) ∩ S∞t (M,E), then for t > 0, we set

p(η, t)t = tkp(tη, t),

and extend to all of SC∞t (M,E) by linearity.

Definition 4.7. A transverse asymptotic pseudodifferential operator (tAΨDO) is a family of operators Pt
on sections of Sν ⊗ E so that there is an asymptotic symbol p(t) ∈ SC`t(M,E), with Pt ∼ θα(p(t)t).

If p(t) ∼
∑∞
k=0 t

kpk, the leading symbol of Pt is the symbol p0.

Recall that Pt ∼ Qt if for all N ≥ 0, and all s, k, limt→0 t
−N ||Pt − Qt||s,k = 0, where, || · ||s,k is the

norm of an operator from the usual s Sobolev space associated to Sν ⊗ E to the usual k Sobolev space.

Of course, as all these constructions are local, we may also make them for M̂ , F̂ and Ê.

5. Preliminary Results

Our calculations here are local so work equally well for both (M,F ) and (M̂, F̂ ). For simplicity of notation,
we will work on (M,F ).

For a ∈ C∞c (G;∧kr∗(ν∗)), set at = tka. Below we will encounter expressions of the form aD, where D is
a transverse differential operator of order ` exacltly, that is it will differentiate exactly ` times, no more and
no fewer. For such operators, we set (aD)t = tk+`aD. The reader should note that with this definition we
have ς(D)t = t`ς(D), since ς(D) will be a polynomial in η homogenous of degree `.

Suppose a0, · · · , ak ∈ C∞c (G). To prove Theorem 3.8, we need certain facts about

tk+2|`|(a0(δa1)(`1) · · · (δak)(`k)
)

1/t
and ς(e−t

2D2

)1/t.
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Here, ` = (`1, ..., `k) ∈ Nk, δaj = [D, aj ], D(aj) = [D2, aj ], and (δaj)
(`j) = D`j (δaj). If we set

ak,`(D) = a0(δa1)(`1) · · · (δak)(`k),

then,

tk+2|`|a0(δa1)(`1) · · · (δak)(`k) = ak,`(tD).

5.1. Results on δa = [D, a].

First we recall some notation. For x ∈ M , Gx = s−1(x), that is homotopy equivalence classes of paths,
with end points fixed, in the leaf Lx starting at x. The holonomy along an element γ ∈ G is denoted hγ . So
hγ transports objects at s(γ) to r(γ) along the path γ in the leaf Ls(γ). An element a ∈ C∞c (G;∧kr∗(ν∗))
acts on sections of Sν ⊗ E by

a(u)(x) =

∫
Gx
a(γ−1)hγ−1u(r(γ))dγ.

The operator D̃ acts on a as follows. Choose double foliation coordinate charts U, (y, z) and V, (y′, z′)
respectively of s(γ) and r(γ), where y and y′ are transverse coordinates and z and z′ are tangential coor-
dinates. The neighborhood (U, γ, V ) of γ consists of all leafwise paths which start in U , end in V , and are
parallel with γ. See [HL90] for more details. Coordinates on (U, γ, V ) are given by (y, z, z′). In essence, we

identify the transverse coordinates using the holonomy hγ of γ. The operator D̃ is preserved by hγ , since hγ
preserves the metrics on ν and ν∗ and the connection ∇ν . In addition, D̃ is completely determined by its

restriction to the leaves of the transverse foliation. So D̃ does not depend on the tangential coordinates at
all, and we may assume that γ, so also γ−1 ∈ (V, γ−1, U), depends only on the coordinate y, that is we may

view a as a section of ∧kν∗ defined on the transverse leaf through x ∈ U . Then D̃(a)(γ−1) is well defined,
and by definition equals dνa(γ−1).

Recall that c(µ) is Clifford multiplication by the mean curvature vector field of F (thought of as a co-
vector), and set c̃(γ) = hγ(c(µ)(s(γ)))− c(µ)(r(γ)). Then

5.2. [tD, a]1/t = dνa+ 1
2 c̃(µ)a.

We have

[tD, a](u)(x) = tDx

∫
Gx
a(γ−1)hγ−1u(r(γ))dγ − t

∫
Gx
a(γ−1)hγ−1((Du)(r(γ)))dγ.

Now D = D̃ − 1
2c(µ), and since hγ−1 preserves the metrics on ν and ν∗ and the connection ∇ν , we have

[D̃, hγ−1 ] = 0. Thus

[tD, a](u)(x) = t

∫
Gx
dνa(γ−1)hγ−1u(r(γ))dγ +

t

2

∫
Gx
a(γ−1)(hγ−1c(µ)(r(γ))− c(µ)(s(γ)))hγ−1u(r(γ))dγ.

Note that

hγ−1c(µ)(r(γ))− c(µ)(s(γ)) = hγ−1c(µ)(s(γ−1))− c(µ)(r(γ−1)) = c̃(µ)(γ−1),

so

[tD, a] = tdνa+
t

2
c̃(µ)a,

and

[tD, a]1/t = dνa+
1

2
c̃(µ)a,

where the normal one form parts act by Clifford multiplication.

5.3. Results on t2D2.
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Choose dual orthonormal bases, f1, ..., fq of ν∗ and e1, ..., eq of ν, which are parallel (using ∇ν) along
radial lines through x. From the proof of Proposition 3.10 of [BH17a], we have

D2 = D̃2 − 1

2
D̃(c(µ)) +∇µ +

1

4
|µ|2,

and

D̃2 = −
∑
j

∇νej∇
ν
ej +

∑
j<k

fj ∧ fk∇ν[ej ,ek] +
∑
j<k

fj ∧ fk ΩE(ej , ek) +
1

8
κ.

The term κ is the scalar curvature of the leaves of the transverse foliation Ft, and ΩE is the curvature of
the bundle E over M .

The term
∑
j<k fj ∧ fk∇ν[ej ,ek] is problematic, since its symbol may have grading three, and in order to

apply the results of [BH17a], we need the terms of the symbol of D2 to have grading at most two. This is
why we assume that ν is integrable.

Lemma 5.4. If ν is integrable, [ej , ek](x) = 0, so also
∑
j<k fj ∧ fk∇ν[ej ,ek](x) = 0.

Proof. Denote by P νx the plaque of the foliation determined by ν through the point x. The ej are tangent
to P νx , since TP νx = ν |P νx , and parallel translation by ∇ν preserves ν. Recall that ∇ν is the pull back of the
Levi-Civita connection ∇P on P νx under the local projection to P νx along the leaves of F . We have

0 =
(
∇νeiej − ∇

ν
ejei

)
(x) =

(
∇Peiej − ∇

P
ejei

)
(x) = [ei, ej ](x),

since ∇P is torsion free. �

Note carefully that all the remaining terms in D̃2 are completely determined by their restriction to Ft,
and are projectable, that is invariant under the holonomy.

Recall, [BH17a], that

Ξ = −
∑
i;j 6=k

fk ∧ fj ⊗ ek(〈[ej , Xi], Xi〉),

where X1, ..., Xp is a local orthonormal framing of TF , is the grading two part of the Clifford form −D̃(c(µ)).
Now,

t2D2 = t2
(∑
j<k

fj ∧ fk ΩE(ej , ek) − 1

2
D̃(c(µ)) +

1

8
κ −

∑
j

∇νej∇
ν
ej + ∇µ +

1

4
|µ|2

)
,

which we may write as

5.5. t2D2 = t2
(∑

j<k fj∧fk ΩE(ej , ek) + 1
2Ξ
)

+ t2
(

1
8κ −

∑
j ∇νej∇

ν
ej + ∇µ+ 1

4 |µ|
2 − 1

2 (D̃(c(µ)) + Ξ)
)
.

The two forms occurring in the first term are acting by Clifford multiplication. All the operators in the
second term have grading at most one, in the sense that when applied to an element of C∞c (G; r∗(∧ν∗)), e.
g. [tD, a], they raise its grading by at most one, e. g.

[∇νej∇
ν
ej , a] = ∇νej (∇

ν
ej (a)) + 2∇νej (a)∇νej .

The first term on the right has grading the same as a, while the second has grading one more. In particular,

[t2∇νej∇
ν
ej , [tD, a]]1/t

is polynomial in t and has no constant term, so limt→0[t2∇νej∇
ν
ej , [tD, a]]1/t = 0, and the same is true for all

the other operators in the second term of Equation 5.5. Thus, when we rescale by 1/t, the t2 in the first term
will disappear, but not in the second term, so that term (when applied to an element of C∞c (G; r∗(∧ν∗)))
will not play a role in the computation of the trace. (However, the term

∑
j ∇νej∇

ν
ej , or rather its symbol,

will play a crucial role in that computation.) For simplicity we write t2D2 as

t2D2 =
t2

2
(ΩE + Ξ) + t2Λ.
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Set
Ξ̃(γ) = Ξ(r(γ)) − hγΞ(s(γ)).

5.6. [t2D2, [tD, a]]1/t =
(

1
2 Ξ̃
)

(dνa+ 1
2 c̃(µ)a) + f1(t),

where f1 is polynomial in all variables, and f1(0) = 0.

By the comments above about Λ = 1
8κ−

∑
j ∇νej∇

ν
ej +∇µ + 1

4 |µ|
2 − 1

2 (D̃(c(µ)) + Ξ), we have

[t2D2, [tD, a]]1/t =
1

2
[ΩE + Ξ, dνa+

1

2
c̃(µ)a] + [t2Λ, [D, a]]1/t,

where the last term is polynomial in t with no constant term. Now, ΩE is a basic two form, that is a two
form which is constant along leaves of F , so [ΩE , dνa+ 1

2 c̃(µ)a] = 0. The argument used in the calculation
of [tD, a] shows that

[t2D2, [tD, a]]1/t =
(1

2
Ξ̃
)

(dνa+
1

2
c̃(µ)a) + f1(t),

where f1 is polynomial in all variables, and f1(0) = 0.
A straight forward induction argument gives

5.7. [t2D2, [· · · [t2D2, [tD, a]] · · · ]]1/t =
(

1
2 Ξ̃
)`

(dνa+ 1
2 c̃(µ)a) + f`(t),

where there are ` copies of t2D2, and f` is polynomial in all variables, and f`(0) = 0. Thus we have

Lemma 5.8.

ak,`(tD)1/t = a0

[ k∏
j=1

(1

2
Ξ̃
)`j

(dνaj +
1

2
c̃(µ)aj)

]
+ fk,`(t),

where fk,` is polynomial in all variables, and fk,`(0) = 0.

Note that here the dνaj + 1
2 c̃(µ)aj are now acting as differential forms, not as Clifford forms.

It is very important to note the following. Each term of fk,`, for ` 6= (0, ..., 0), is the composition of
elements of C∞c (G,∧r∗(ν∗)) and tAΨDOs (actually differential operators) whose leading symbols are 0. For
example, [t2D2, [t2D2, [tD, a]]]1/t contains elements of C∞c (G,∧r∗(ν∗)) multiplied by the elements

t∇νej (dνa)∇νek∇
ν
ek
∇νej and t∇νej (dνa)∇νej∇

ν
ek
∇νek .

Both t∇νek∇
ν
ek
∇νej and t∇νej∇

ν
ek
∇νek are transverse asymptotic differential operators whose leading symbols

are 0.

5.9. A digression.

For later use, we recall the symbol of t2D2 given in Proposition 3.10 of [BH17a], and we assume that we
are using the Dominguez metric on M . As we are assuming that the normal bundle is integrable, the term
i〈ϑν , ξ〉 = 0 in that calculation. Thus

ς(D2)(x, η) = |η|2 − i
∑
j

ej,xej〈êxp
−1
x (x′), ξ〉 +

1

8
κ +

∑
j<k

fj ∧ fk ⊗ ΩE(ej , ek) +

1

2

∑
i,j,k

fj ∧ fk ⊗ ek(〈[ej , Xi], Xi〉) + i〈µ, η〉 − 1

4
|µ|2.

Consider the term ej,xej〈êxp
−1
x (x′), ξ〉. Note that the three other terms in the first row are projectable. The

three terms in the second row all come from µ, which is projectable if we use the Dominguez metric. As
noted in the proof of Proposition 6.3 below, the symbol of D2 is projectable if we use the Dominguez metric.
It follows that ej,xej〈êxp

−1
x (x′), ξ〉 must be projectable, and so equals ej,xej〈êxp

−1
x (x′), η〉, which has grading

one. Set
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5.10.

p(x, η, t) = |η|2 +
∑
j<k

fj ∧ fk ⊗ ΩE(ej , ek) +
1

2

∑
i;j 6=k

fj ∧ fk ⊗ ek(〈[ej , Xi], Xi〉) +

t
(
i〈µ, η〉 − i

∑
j

ej,xej〈êxp
−1
x (x′), η〉

)
+ t2

(1

8
κ − 1

4
|µ|2 − 1

2

∑
i,k

ek(〈[ek, Xi], Xi〉)
)
.

Then p(x, η, t)t = ς(t2D2), so t2D2 is an tAΨDO with leading symbol

pt
2D2

0 (x, η) = |η|2 +
∑
j<k

fj ∧ fk ⊗ ΩE(ej , ek) +
1

2

∑
i;j 6=k

fi ∧ fk ⊗ ek(〈[ei, Xj ], Xj〉),

which we write as

pt
2D2

0 = |η|2 +
1

2

(
ΩE + Ξ

)
,

for short.
Note that the leading symbol of t2D2 − λ, so also t2D̂2 − λ, is given by

pt
2D2−λ

0 = |η|2 +
1

2

(
ΩE + Ξ

)
− λ.

5.11. Results on ς(e−t2D2
)1/t.

Let e1, ..., eq be a local orthonormal basis of ν with dual orthonormal basis f1, ..., fq of ν∗. Denote by Ων
the curvature of ∇ν acting on Sν ⊗ E, which is a projectable two form. Set

Ων(ei, ej) =

q∑
i,j,k,`=1

(Ων)k`,i,jek ⊗ f`, that is (Ων)k`,i,j = 〈Ων(ei, ej)(e`), ek〉,

and note that (Ων)k`,i,j is skew in the indices i, j (since Ων is a 2-form) as well as the k, `, (since Ων has

coefficients in soq = spinq). Set

Ων(∂/∂η, ∂/∂η′)
(
p(x, η) ∧ q(x, η′)

)
=

q∑
i,j,k,`=1

(Ων)k`,i,jfk ∧ f` ∧
∂p(x, η)

∂ηi
∧ ∂q(x, η

′)

∂η′j
.

Then e−
1
4 Ων(∂/∂η,∂/∂η′) is a finite sum of compositions of such operators, and the number of compositions is

≤ q/2 because of the fk∧f`. Note that Ων(∂/∂η, ∂/∂η′) is identical to the operator used in [G83] and [BlF90].
As in [G83, BlF90, BH17a], the differential operator a0(p, q), defined on pairs of elements in SC∞t (M,E), is
given by

a0(p, q)(x, η) = e−
1
4 Ων(∂/∂η,∂/∂η′)p(x, η) ∧ q(x, η′) |η′=η.

It is easy to check that the results of [BlF90] extend to SC∞t (M,E) and SC∞t (M̂, Ê), as do those of

[BH17a], mutatis mutandis. For (M̂, F̂ ), this is because the geometry there is uniformly bounded. In

particular, the fact that pt
2D2

0 = |η|2 + 1
2

(
ΩE + Ξ

)
, which is the symbol of a uniformly transversely elliptic

differential operator, see [Sh92], implies that t2D2 is asymptotically elliptic, in the sense of [BlF90], for the

symbol space SC2
t(M,E), and similarly for t2D̂2 and SC2

t(M̂, Ê). Thus, combining Lemmas 3.13 and 3.14
of [BlF90] in our context here gives

Lemma 5.12. ς(e−t
2D2

)1/t is an asymptotic symbol in SC−∞t (M,E), with leading symbol ea0(−pt
2D2

0 ,·)(1),
where 1 is the symbol which is the constant function 1.

Next we need to compute, for an arbitrary symbol q ∈ SC∞t (M,E),

a0(−pt
2D2

0 , q) = e−
1
4 Ων(∂/∂η,∂/∂η′)

(
(−pt

2D2

0 )(x, η) ∧ q(x, η′)
)
|η′=η.
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Denote by Ων(∂/∂η, ∂/∂η) the operator which acts as

Ων(∂/∂η, ∂/∂η)q(x, η) =

q∑
i,j,k,a,b,c,d=1

(Ων)ab,j,i(Ων)cd,i,k fj ∧ fk ∧
∂2q(x, η)

∂ηj∂ηk
.

Denote by Ων(η, ∂/∂η) the operator which acts as

Ων(η, ∂/∂η)q(x, η) =

q∑
i,j,k,`=1

(Ων)k`,i,jfk ∧ f` ∧ ηi
∂q(x, η)

∂ηj
.

Then, computing as in [G83] and [BlF90], we have

a0(−pt
2D2

0 , q) =[
− |η|2 − 1

2
(ΩE + Ξ) +

1

2
Ων(η, ∂/∂η) +

1

16
Ων(∂/∂η, ∂/∂η)

]
q(x, η).

Thus,

ea0(−pt
2D2

0 ,·)(1) = e

(
−|η|2 − 1

2 (ΩE + Ξ) + 1
2 Ων(η,∂/∂η) + 1

16 Ων(∂/∂η,∂/∂η)
)
(1).

Note that Ων(η, ∂/∂η)(|η|2) = 2
∑q
i,j,k,`=1(Ων)k`,i,jfk ∧ f` ⊗ ηiηj = 0, since (Ων)k`,i,j = −(Ων)k`,j,i. (This

corrects a typo in [BlF90].) Thus Ων(η, ∂/∂η) and |η|2 commute. Since Ων(η, ∂/∂η) also commutes with all
the other operators in the exponent, this equals

e

(
−|η|2 − 1

2 (ΩE + Ξ) + 1
16 Ων(∂/∂η,∂/∂η)

)
e

1
2 Ων(η,∂/∂η)(1).

As e
1
2 Ων(η,∂/∂η)(1) = 1, and Ξ commutes with |η|2 + 1

2ΩE − 1
16Ων(∂/∂η, ∂/∂η), (it is a transverse 2 form, so

a nilpotent multiplication operator, which involves no differentiation), we have

pe
−t2D2

0 = ea0(−pt
2D2

0 ,·)(1) = e−
1
2 Ξ ∧ e

(
−|η|2 − 1

2 ΩE + 1
16 Ων(∂/∂η,∂/∂η)

)
(1),

which we write as

e−
1
2 Ξ ∧ e−|η|

2− 1
2 ΩE+ 1

16 Ων (1).

Note that the second exponent contains only operators which act in normal directions, and is constant along
leaves of F .

Finally, the fact that ς(e−t
2D2

)1/t is an asymptotic symbol means that we have

ς(e−t
2D2

)1/t ∼ e−
1
2 Ξ ∧ e−|η|

2− 1
2 ΩE+ 1

16 Ων (1) + Υ.

Here Υ is a power series in t with coefficients in SC−∞t (M,E), in particular, Υ =

∞∑
k=1

tkpk(x, η), where for

all N ≥ 1,

lim
t→0

t−N
(
ς(e−t

2D2

)1/t −
[
e−

1
2 Ξ ∧ e−|η|

2− 1
2 ΩE+ 1

16 Ων (1) +

N∑
k=1

tkpk(x, η)
])

= 0

in SC−∞t (M,E).
Just as in Corollary 3.3, [BlF90] p. 25, we have

Proposition 5.13.

lim
t→0

[
(2π)−q

∫
ν∗x

Trs(ς(e
−t2D2

)1/t)dη
]

= (2π)−q
∫
ν∗x

lim
t→0

Trs(ς(e
−t2D2

)1/t)dη =

(2π)−q
∫
ν∗x

Trs(e
− 1

2 Ξe−|η|
2− 1

2 ΩE+ 1
16 Ων (1))dη = e−

1
2 Ξ ∧ ch(E) ∧ Â(ν∗)(x).

The last equality is classical.
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6. Proof of the Theorem 3.8

To prove Theorem 3.8, we need to compute the Connes-Chern character of (C∞c (G),H, D), and then note

that the same proof works for (C∞c (G), B(Ĥ)Γ, D̂), mutatis mutandis. Combined with Proposition 6.5 below,
this gives the proof of the theorem.

Suppose a0, · · · , ak ∈ C∞c (G). In the notation of [CM95], Theorem II.3, p. 230, for k > 0, k even, (there
is a separate formula for φ0, see below) the Connes-Chern character of (C∞c (G),H, D) is given by the local
formula

φk(a0, · · · , ak) =
∑
`,q

(−1)|`|

`1! · · · `k!
α`σq(|`|+

k

2
)τq(γa

k,`(D)(I +D2)−k/2−|`|).

As above, ak,`(D) = a0(δa1)(`1) · · · (δak)(`k), where δaj = [D, aj ], D(aj) = [D2, aj ], (δaj)
(`j) = D`j (δaj), γ is

the grading operator, and τq is a certain residue. Only q = 0 actually occurs, since the dimension spectrum

is simple. Note that σ0(k/2 + |`|) = Γ(k/2 + |`|), and α−1
` = (`1 + 1)(`1 + `2 + 2) · · · (`1 + · · ·+ `k +k). Then,

for k > 0,

τ0(γak,`(D)(I +D2)−k/2−|`|) = Resz=0

[
Trs(a

k,`(D)(I +D2)−k/2−|`|−z)
]

=

Resz=0

[
Trs(Γ(k/2 + |`|+ z)−1

∫ ∞
0

tk/2+|`|+z−1ak,`(D)e−t(I +D2)dt)
]

=

Γ(k/2 + |`|)−1Resz=0

[
Trs(

∫ ∞
0

2tk+2|`|+2z−1ak,`(D)e−t
2(I +D2)dt)

]
=

Γ(k/2 + |`|)−1Resz=0

[∫ ∞
0

2t2z−1e−t
2

Trs(a
k,`(tD)e−t

2D2

)dt
]
.

Lemma 6.1. For any ε > 0,

Resz=0

[∫ ∞
0

2t2z−1e−t
2

Trs(a
k,`(tD)e−t

2D2

)dt
]

= Resz=0

[∫ ε

0

2t2z−1e−t
2

Trs(a
k,`(tD)e−t

2D2

)dt
]
.

Proof. We need to show that∫ ∞
ε

2t2z−1e−t
2

Trs(a
k,`(tD)e−t

2D2

)dt =

∫ ∞
ε

2t2z+k+2|`|−1e−t
2

Trs(a
k,`(D)e−t

2D2

)dt

is finite.
If T is an operator of order j, the operator [D2, T ] = |D| [|D|, T ] + [|D|, T ] |D| has order j + 1. So the

operator ak,`(D) has order |`|, and the operator ak,`(D)(1 +D2)−|`|/2 is bounded. Now

|Trs(a
k,`(D)e−t

2D2

)| = |Trs(a
k,`(D)(1 +D2)−|`|/2(1 +D2)|`|/2e−t

2D2

)|

and (1+D2)|`|/2e−t
2D2

is positive and trace class. As |Trs(AB)| ≤ ||A||Tr(B) for A bounded and B positive
and trace class, we have

|Trs(a
k,`(D)e−t

2D2

)| ≤ ||ak,`(D)(1 +D2)−|`|/2||Tr((1 +D2)|`|/2e−t
2D2

).

For t ≥ ε,
Tr((1 +D2)|`|/2e−t

2D2

) ≤ Tr((1 +D2)|`|/2e−ε
2D2

).

Therefore, for any z ∈ C,

|
∫ ∞
ε

2t2z+k+2|`|−1e−t
2

Trs(a
k,`(D)e−t

2D2

)dt| ≤

||ak,`(D)(1 +D2)−|`|/2||Tr((1 +D2)|`|/2e−ε
2D2

)

∫ ∞
ε

2t2re(z)+k+2|`|−1e−t
2

dt < ∞,

where re(z) is the real part of z. �
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Suppose that (M̂, F̂ ) is a covering foliation of (M,F ). For a ∈ C∞c (G;∧kr∗(ν∗)), set at(γ) = tka(γ). We
identify x ∈M with x ∈ G, the class of the constant path at x. So a(x) := a(x). Recall that the dual normal

bundle of F̂ is ν̂∗, and that we are thinking of M as being a fundamental domain M ⊂ M̂ . So for a symbol

p ∈ SC`t(M̂, Ê), p(x, η) makes sense for x ∈ M ⊂ M̂ and η ∈ ν̂∗x = ν∗x. Denote by dxF the volume form
along the leaves of F .

The trace and supertrace for M are the usual ones, denoted Tr and Trs, while those for M̂ , which are

the usual traces restricted to M ⊂ M̂ , are denoted τ and τs. As noted above, these traces are constructed
using the Berezin integral, [G83, BGV92]. This is why only the tangential volume form dxF appears in the
formulas below.

Note that the actions of a ∈ C∞c (G;∧∗r∗(ν∗)) are smoothing along the leaves of F and F̂ , which is why

we may restrict our attention to operators with symbols in SC∞t (M,E) and SC∞t (M̂, Ê).
Now we invoke results of Dominguez, [D98], and Alvarez Lopéz, [AL92], which simplifiy things consider-

ably. Recall, [CM95], that the cohomology classes of the cocycles (φk) and (φ̂k) do not depend on the metric

on M or the induced metric on M̂ . Dominguez has shown that it is always possible to choose the metric on

M (so also on M̂) so that c(µ) is a basic form, so Ξ is also, (and in fact Ξ = dνc(µ) = dc(µ)). Thus, if we use

this metric, we have c̃(µ) = Ξ̃ = 0. Alvarez Lopéz showed that the basic component of the mean curvature
vector field of any Riemannian foliation is closed. Thus Ξ = 0 for the Dominguez metric. Similarly for the

corresponding operators on (M̂, F̂ ). Then Lemma 5.8 immediately gives

if ` 6= (0, ..., 0), ak,`(tD)1/t = fk,`(t), and ak,0(tD)1/t = ak,0(tD̂)1/t = a0dνa1 · · · dνak.

As noted above, each term of fk,`, ` 6= (0, ..., 0), can be written as a sum of compositions of an element of
C∞c (G,∧∗r∗(ν∗)) and a tAΨDO (actually differential operator) whose leading symbol is 0. More specifically,
denote by e1, ..., eq a local orthonormal basis of ν, and denote by ∇J a (local) operator which is a finite
composition (in any order and with repetitions allowed) of ∇νe1 , · · · ∇

ν
eq and ∇µ. Then each term of fk,` may

be written locally as tbJaJ∇J for some aJ ∈ C∞c (G,∧∗r∗(ν∗)), independent of t, and bJ ≥ 1. Similarly for

ak,`(tD̂)1/t and the induced operator tbJaJ∇̂J on Ĥ. Then

ak,`(tD) = tk+2|`|
∑
J

aJ∇J =
∑
J

(aJ)tt
bJ (∇J)t,

and

6.2. ak,`(tD̂) = tk+2|`|
∑
J

aJ∇̂J =
∑
J

(aJ)tt
bJ (∇̂J)t.

Note that both tbJ (∇J)t and tbJ (∇̂J)t are transverse asymptotic differential operators with leading sym-
bols 0.

Proposition 6.3. For all t > 0,

Tr(ak,`(tD)e−t
2D2

) = (2π)−q
∫
ν∗
tk+2|`|

∑
J

∑
γ∈Gxx

(aJ)1/t(γ
−1) Tr

(
ς(∇Je−t

2D2

)1/t(x, η)
)
dηdxF ,

and

Trs(a
k,`(tD)e−t

2D2

) = (2π)−q
∫
ν∗
tk+2|`|

∑
J

∑
γ∈Gxx

(aJ)1/t(γ
−1) Trs

(
ς(∇Je−t

2D2

)1/t(x, η)
)
dηdxF .

The corresponding results hold for τ(ak,`(tD̂)e−t
2D̂2

) and τs(a
k,`(tD̂)e−t

2D̂2

), where ν∗ is replaced by

ν̂∗|M ⊂ M̂ , and
∑
γ∈Gxx

(aJ)1/t(γ
−1)s replaced by

∑
γ̂∈Ĝxx

(aJ)1/t((ρ ◦ γ̂)−1).

Proof. We only do the proof for Trs(a
k,`(tD)e−t

2D2

), as the other three cases are quit similar.
First we prove it without applying the rescaling operator (·)1/t. From [BH17b] we have
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Lemma 6.4. For all t > 0, aJ∇Je−t
2D2

is a smoothing operator on H. Similarly for aJ∇̂Je−t
2D̂2

acting

on Ĥ.

Thus we have

Trs(aJ∇Je−t
2D2

) =

∫
M

Trs(K(x, x)) dxF ,

where K is the Schwartz kernel of aJ∇Je−t
2D2

, and we using the Berezin integral for spinors, [G83, BGV92].
Denote by δx, δ0, δF0 , and δLx the Dirac delta operators at x ∈ M , 0 ∈ T ∗Mx, 0 ∈ T ∗Fx, and x ∈ Lx,

respectively. For ux ∈ (Sν ⊗ E)x,

K(x, x)ux =
(
aJ∇Je−t

2D2(
δx(x′)Tx,x′(ux)

))
(x) =

(
aJ∇Je−t

2D2(
δ0(êxp

−1
x (x′))α(x, x′)Tx,x′(ux)

))
(x).

Now the Fourier Transform of δ0 is the constant function 1. So

Trs(K(x, x)) = Trs

((
aJ∇Je−t

2D2[
(2π)−n

∫
T∗Mx

ei〈êxp−1
x (x′),ξ〉α(x, x′)Tx,x′ dξ

])
(x)
)

=

(2π)−q
∫
ν∗x

Trs

((
aJ∇Je−t

2D2[
(2π)−p

∫
T∗Fx

ei〈êxp−1
x (x′),(ζ,0)〉ei〈êxp−1

x (x′),(0,η)〉α(x, x′)Tx,x′dζ
])

(x)
)
dη,

where we are able to move the integration outside by the argument in the proof of Theorem 3.7 of [G83].

Since the symbol of ∇Je−t
2D2

depends only on η, we may write this as

(2π)−q
∫
ν∗x

Trs

((
aJ
[
(2π)−p

∫
T∗Fx

ei〈êxp−1
x (x′),(ζ,0)〉dζ∇Je−t

2D2

(ei〈êxp−1
x (x′),(0,η)〉α(x, x′)Tx,x′)

])
(x)
)
dη =

(2π)−q
∫
ν∗x

Trs

(∫
Gx

aJ(γ−1)

hγ−1

[(
(2π)−p

∫
T∗Fx

ei〈êxp−1
x (x′),(ζ,0)〉 dζ ∇Je−t

2D2(
ei〈êxp−1

x x′),(0,η)〉α(x, x′)Tx,x′
))

(r(γ))
]
dγ
)
dη.

Now, at γ ∈ Gx,(
(2π)−p

∫
T∗Fx

ei〈êxp−1
x (x′),(ζ,0)〉 dζ

)
(r(γ)) = δF0 ((êxpx |Lx)−1(r(γ)))α(x, r(γ)) = δLx (r(γ)).

Thus,

Trs(K(x, x)) = (2π)−q
∫
ν∗x

Trs

(∫
Gx
δLx (r(γ)) aJ(γ−1)

hγ−1

[
∇Je−t

2D2
(

(ei〈êxp−1
x (x′),(0,η)〉α(x, x′))Tx,x′) |Lx

)
(r(γ))

]
dγ
)
dη =

(2π)−q
∫
ν∗x

∑
γ∈Gxx

Trs

(
aJ(γ−1)hγ−1

[
ς(∇Je−t

2D2

)(x, η)
])
dη =

(2π)−q
∫
ν∗x

∑
γ∈Gxx

aJ(γ−1) Trs

(
ς(∇Je−t

2D2

)(x, η))
)
dη,

since r(γ) = x for γ ∈ Gxx , and hγ−1

[
ς(∇Je−t

2D2

)(x, η)
]

= ς(∇Je−t
2D2

)(x, η), as this symbol is invariant

under the holonomy action. We thus have

Trs(aJ∇Je−t
2D2

) = (2π)−q
∫
ν∗

∑
γ∈Gxx

aJ(γ−1) Trs

(
ς(∇Je−t

2D2

)(x, η)
)
dηdxF .

When we apply the rescaling operator (·)1/t, the integral is unchanged just as in [G83] p. 175. Replacing η

by η/t gives a factor of tq when doing the integration in η. The only part of (aJ)1/t(x)ς(∇Je−t
2D2

)1/t which
contributes comes from C∞(∧qν∗)⊗C∞(M) C

∞(T ∗M,End(E)), since we are using the Berezin integral, and

this contributes the factor t−q, which cancels the tq.
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The result now follows by summing over J and multiplying by tk+2|`|. �

Now suppose that ` 6= (0, ..., 0). Then∫ ε

0

2t2z−1e−t
2

Trs(a
k,`(tD)e−t

2D2

)dt =∫ ε

0

2t2z−1e−t
2

(2π)−q
∫
ν∗
tk+2|`|

∑
J

∑
γ∈Gxx

(aJ)1/t(γ
−1) Trs

(
ς(∇Je−t

2D̂2

)(x, η)1/t

)
dηdxF dt.

Set

f(t) = e−t
2

(2π)−q
∫
ν∗
tk+2|`|

∑
J

∑
γ∈Gxx

(aJ)1/t(γ
−1) Trs

(
ς(∇Je−t

2D̂2

)(x, η)1/t

)
dηdxF .

The results in Section 5 imply that f(t) is continuous at t = 0. So

τ0(γak,`(D)(I +D)−k/2−|`|) = Γ(k/2 + |`|)−1Resz=0

[∫ ε

0

2t2z−1f(t)dt
]
,

which is approximated by (and, because it is independent of ε, actually equals)

Γ(k/2 + |`|)−1Resz=0

[∫ ε

0

2t2z−1f(0)dt
]

= Γ(k/2 + |`|)−1Resz=0

[ t2z
z
f(0) |ε0

]
=

Γ(k/2 + |`|)−1Resz=0

[ε2z
z
f(0)

]
= Γ(k/2 + |`|)−1 lim

t→0
f(t) =

Γ(k/2 + |`|)−1 lim
t→0

[
e−t

2

(2π)−q
∫
ν∗
tk+2|`|

∑
J

∑
γ∈Gxx

(aJ)1/t(γ
−1) Trs

(
ς(∇Je−t

2D̂2

)(x, η)1/t

)
dηdxF

]
.

By the results in Section 5, we may interchange the limit and the integration to get

Γ(k/2 + |`|)−1(2π)−q
∫
ν∗

lim
t→0

[
e−t

2

tk+2|`|
∑
J

∑
γ∈Gxx

(aJ)1/t(γ
−1) Trs

(
ς(∇Je−t

2D̂2

)(x, η)1/t

)]
dηdxF .

By Theorem 6.1 of [BH17a], Equation 6.2, and the results of Section 5,

lim
t→0

tk+2|`|
∑
J

(aJ)1/tς(∇Je−t
2D̂2

)(x, η)1/t = lim
t→0

∑
J

aJe
− 1

4 Ων(∂/∂η,∂/∂η′)pJ0 (x, η) ∧ q0(x, η′) |η′=η,

where pJ0 (x, η) is the leading symbol of tbJ∇J and q0(x, η′) is the leading symbol of e−t
2D̂2

, with η′ substituted
for η. Since bJ ≥ 1, pJ0 (x, η) = 0, and

lim
t→0

tk+2|`|
∑
J

(aJ)1/tς(∇Je−t
2D̂2

)(x, η)1/t = 0.

Thus, if ` 6= (0, ...0),

τ0(γak,`(D)(I +D2)−k/2−|`|) = 0.

For the case k 6= 0, and ` = (0, ..., 0), we have tk
∑
J(aJ)1/t = ak,0(tD)1/t = a0dνa1 · · · dνak. The results

in Section 5 give

lim
t→0

Trs

(
ς(e−t

2D̂2

)1/t

)
= e−

1
2 Ξ ∧ e−|η|

2− 1
2 ΩE+ 1

16 Ων (1) = e−|η|
2− 1

2 ΩE+ 1
16 Ων (1),

since Ξ = 0 for the Dominguez metric. Proposition 5.13 then finishes the proof for this case.

For the case k = 0 we have, following [CM95], p. 230,

φ0(a0) = Resz=0

[
Trs(z

−1a0(I +D2)−z)
]

= Resz=0

[
Trs((zΓ(z))−1a0

∫ ∞
0

tz−1e−t(I +D2)dt)
]

=

Resz=0

[
Trs(a0

∫ ∞
0

tz−1e−t(I +D2)dt)
]
,
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since zΓ(z) = Γ(z + 1), so zΓ(z) |z=0 = 1. Then proceed just as in the case k > 0 to get

φ0(a0) =

∫
M

∑
Gxx

a0(γ−1) ch(E) ∧ Â(ν∗) ∧ dxF .

To complete the proof of Theorem 3.8, we have the following.

Proposition 6.5. Denote the cohomology classes of the sequences (φk)k≥0, and (φ̂k)k≥0, k even, by ch(M,F )

and ch(M̂, F̂ ) respectively. Then the following diagram commutes on the image of the Baum-Connes assembly
map in K∗(C

∗
max(G)).

K∗(C
∗
max(G))

ch(M,F )-

@
@
@@R

ch(M̂, F̂ )

�
�

�
�	

Z

R

Proof. If X is in the image of the Baum-Connes assembly map, it can be represented by [e] − [e′], where e

and e′ are projections in M∞(C̃∞c (G)) with the supports of the corresponding elements of M∞(C∞c (G)) in
an arbitrarily small neighborhood of the units G(0) ∼ M ⊂ G. See Remark 3.9. The tilde indicates that
a unit has been added. Then the supports of the elements e(dνe)

k and e′(dνe
′)k are also contained in an

arbitrarily small neighborhood of G0 ∼M ⊂ G.
Apply the first part of Theorem 3.8 to get

〈ch(M,F ), X〉 =
1

k!

∫
M

∑
γ∈Gxx

[
tr(e(dνe)

k)− tr(e′(dνe
′)k)
]
(γ−1) ∧ ch(E) ∧ Â(ν∗) ∧ dxF ,

and

〈ch(M̂, F̂ ), X〉 =
1

k!

∫
M⊂M̂

∑
γ̂∈Ĝxx

[
tr(e(dνe)

k)− tr(e′(dνe
′)k)
]
((ρ ◦ γ̂)−1) ∧ ch(Ê) ∧ Â(ν̂∗) ∧ dxF .

Because of the restrictions on the supports, both sums collapse to just the constant path at x, so the two
expressions are equal. �

7. Statement of the Theorem for transverse spectral triples

In this section we will be content to give the statement of the theorem for two transverse spectral triples
associated to F . The proof of Theorem 3.8 can be easily extended, using the Getzler calculus [G83], to prove
Theorem 7.1 below. The advantage of using these spectral triples is that we do not have to assume that the
normal bundle of F is integrable.

The transverse spectral triples are given as follows.

1. The Type I Connes-Moscovici spectral triple: (C∞c (GTT ),HT , DT ). T is a complete transversal for the
foliation F , and the trace is the usual super trace, constructed using the Berezin integral, for operators on
HT = L2(T, (Sν ⊗ E)|T ). GTT ⊂ G is the sub groupoid of elements which start and end in T . DT can be

taken to be either D or D̃, restricted to T .
This transverse spectral triple is Morita equivalent to the Type I spectral triple given is Section 3, and so

is an even spectral triple with simple dimension spectrum contained in the set {k ∈ N | k ≤ q}. See [K97].

2. The Type II Atiyah spectral triple: (C∞c (GTT ), B(ĤT̂ )Γ, D̂T̂ ). ρ : (M̂, F̂ ) → (M,F ) is a (possibly

non-compact) Galois foliation cover of M , with covering group Γ. The transversal T̂ is the inverse image of

T . D̂T̂ and Ŝν ⊗ Ê are the pull backs of DT and Sν ⊗E. ĤT̂ = L2(T̂ , (Ŝν ⊗ Ê)|T̂ ). B(ĤT̂ )Γ is the algebra of

bounded operators on ĤT̂ which are Γ-invariant. The trace is the usual super trace, constructed using the

Berezin integral, restricted to a fundamental domain of T in T̂ , denoted T ⊂ T̂ .
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As in the main result: the algebra is the same as in the Type I case; B(ĤT̂ )Γ is the analog of the von

Neuman algebra used by Atiyah in the L2 covering index theorem; D̂T̂ is Γ-invariant; for a non-compact
covering foliation, this is Morita equivalent to the Type II spectral triple given is Section 3, and so is an even
spectral triple with simple dimension spectrum contained in the set {k ∈ N | k ≤ q}; for a compact covering,
this is a slight modification of the Type I Connes-Moscovici spectral triple above.

Theorem 7.1. Let ρ : (M̂, F̂ )→ (M,F ) be a Galois covering foliation of (M,F ). Assume that F has even

codimension and is transversely spin. Let a0, . . . , ak ∈ C∞c (GTT ). The sequences (φk)k≥0, and (φ̂k)k≥0, k
even, where

φk(a0, . . . , ak) =
1

k!

∫
T

∑
γ∈Gxx

(a0dνa1 · · · dνak)(γ−1) ∧ ch(E) ∧ Â(ν∗),

and

φ̂k(a0, . . . , ak) =
1

k!

∫
T⊂T̂

∑
γ̂∈Ĝxx

(a0dνa1 · · · dνak)((ρ ◦ γ̂)−1) ∧ ch(Ê) ∧ Â(ν̂∗)

are cocycles in the (b, B) bicomplex for C∞c (GTT ).

The cohomology classes of (φk) and (φ̂k) are the Connes-Chern characters of (C∞c (GTT ),HT , DT ) and

(C∞c (GTT ), B(ĤT̂ )Γ, D̂T̂ ), respectively. These classes induce the same map on the image of the Baum-Connes

assembly map in K∗(C
∗
max(GTT )), [BC00]. That is, we have an Atiyah L2 covering index theorem for these

spectral triples associated to foliation coverings.

Finally, we point out that the above Morita reduction method of restriction to a complete transversal is
not generally accessible when the action of Γ is not free.

Example 7.2. Recall the spectral triple

(C∞c (G) o Γ,N ⊂ B(M,E ⊗ ∧ν∗)⊗ l2Γ, DE o Γ)

from [BH17b]. Here Γ is a countable group of diffeomorphisms acting properly, but not freely, on the possibly
non-compact manifold M , preserving a foliation F with normal bundle ν∗ and homotopy graph G. M/Γ is
assumed to be a compact space. The bundle E is basic, Γ equivariant, and Hermitian. The operator DE is

a twisted transverse Dirac operator for F , and N is a certain von Neumann algebra. Given φ ∈ C∞c (Ĝ)oΓ,

φ(g) ∈ C∞c (Ĝ), g ∈ Γ, also acts on sections of E ⊗ ∧∗ν∗. Finally, the trace TR used is: for certain A ∈ N ,

and all φ ∈ C∞c (Ĝ) o Γ, φ ◦A is TR trace class with

TR(φ ◦A) =
∑
g∈Γ

Tr(g−1φ(g) ◦Ag,e),

where Tr is just the usual trace.

As Γ does not act freely, it is not possible in general to reduce the associated index problem to the
corresponding one on a complete transversal. Indeed, a Γ-equivariant complete transversal does not always
exist [BH17b], so the Morita reduction method to a transversal is not available, and we must use our global
constructions.
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[T97] P. Tondeur, Geometry of foliations, Monographs in Mathematics, 90. Birkhauser Verlag, Basel, 1997.
[Tu99] J.-L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques, K-Theory 16 (1999) 129–184.

Institut Montpellierain Alexander Grothendieck, UMR 5149 du CNRS, Université de Montpellier
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