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Abstract. In this paper, we prove a higher Lefschetz formula for foliations in the presence of a closed
Haefliger current. To this end, we associate with such a current an equivariant cyclic cohomology class

of Connes’ C∗-algebra of the foliation, and compute its pairing with the localized equivariant K-theory in

terms of local contributions near the fixed points.
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1. Introduction

Let V be a smooth closed manifold and let f : V → V be a smooth map. Then f induces endomorphisms
Hi(f) on the finite dimensional i-th cohomology spaces Hi(V,R). The Lefschetz number of f is the integer
given by the alternating sum L(f) :=

∑dim(V )
i=0 (−1)i tr(Hi(f)), where tr is the ordinary trace. It is a

topological invariant of f . When f has a finite fixed point set, the classical Lefschetz fixed point formula
states

L(f) =
∑

f(x)=x

sign det(I − dxf).

In [AB67], under appropriate assumptions, Atiyah and Bott extended the above construction to the geometric
elliptic complexes over V . More precisely, for any elliptic complex (E, d) over V , and under appropriate
compatibility conditions, Atiyah and Bott defined

L(f ;E, d) =
∑
i≥0

(−1)i tr(f∗|Hi(E,d)) ∈ C,

where tr is again the ordinary trace of endomorphisms of the finite dimensional i-th cohomology space
Hi(E, d) of (E, d), and f∗|Hi(E,d) denotes the endomorphism of Hi(E, d) induced by the action of f . In
general, such a number need not be an integer, or even a real number. When (E, d) is the de Rham complex
of differential forms on V , the Atiyah-Bott Lefschetz number coincides with the classical topological Lefschetz
number L(f) of f , using the de Rham isomorphism. Moreover, using heat kernel methods, Atiyah and Bott
extended the Lefschetz fixed point formula to such geometric complexes and expressed L(f ;E, d) in terms
of appropriate topological invariants of the fixed point submanifold. Consequences of such formulae are
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nowadays well known and encompass results in topology, in complex geometry as well as in number theory,
see for instance [HZ74].

The relationship between the Atiyah-Bott Lefschetz formulae and index theory should be transparent
from the very definition of L(f ;E, d). More precisely, assume that f is an isometry for some metric g on V
and denote by H the compact Lie group generated by f in the group Iso(V, g) of isometries of (V, g). Then
for any H-invariant elliptic pseudodifferential complex (E, d), the Lefschetz number L(f ;E, d) is well-defined
and can be re-interpreted as the evaluation at f of a character, namely the H-equivariant analytical index
of the complex (E, d). In [ASe68], Atiyah and Segal gave a proof of the Lefschetz fixed point formulae with
respect to pseudodifferential complexes, as a consequence of the H-equivariant index theorem of Atiyah-
Singer. Moreover, the index method allowed them to extend the fixed point formulae to higher dimensional
fixed point sets with interesting new characteristic invariants [AS68].

When the closed manifold V is endowed with a smooth foliation F , the Lefschetz problem can be stated
for leaf-preserving maps and for leaf-wise elliptic pseudodifferential complexes. The Atiyah-Bott heat kernel
approach for the geometric complexes has been extended in [HL90] to foliations which admit a holonomy
invariant transverse measure Λ. In this case, the Lefschetz number of a leaf-preserving diffeomorphism f with
respect to the leaf-wise elliptic complex (E, d) is defined by replacing the usual trace tr by a von Neumann
trace trΛ associated with Λ, and the precise definition is as expected

LΛ(f ;E, d) :=
∑
i≥0

(−1)i trΛ(f∗|Hi(E,d)) ∈ C.

Moreover, under the usual transversality assumption, the measured MacKean-Singer formula allowed the
proof of a measured Lefschetz fixed point theorem, see again [HL90]. When f is an isometry of V for
some metric g, it was proved in [B97] that the measured Lefschetz number can again be interpreted as the
evaluation at f of an appropriate character, namely the equivariant measured analytic index introduced by
Connes [C79]. Moreover, the measured Lefschetz fixed point formula can be deduced from an equivariant
measured index theorem for foliations exactly as in the Atiyah-Segal approach, see again [B97].

One of the main features of Connes’ approach to foliation index theory is that the measured index of a
leaf-wise elliptic complex is the von Neumann trace of a much more fundamental object: the K-theory index
in the C∗-algebra of the foliation [C79]. This latter exists even if the foliation has no holonomy invariant
measure and yields more sophisticated index invariants by the use of Connes’ cyclic theory [C85]. In this
picture, holonomy invariant measures correspond to the pairing of the K-theory index class with a zero
degree cyclic cocycle. Moreover, one can use the transverse geometry of the foliation to produce higher
degree cyclic cocycles and higher indices. In [C86] for instance, examples of cyclic cocycles arising from the
so-called Haefliger currents are used to investigate higher index theory and some of its deep consequences.
On the other hand, the main result of [B97] is a proof of a K-theory Lefschetz fixed point formula which
takes place in the, localized with respect to f , equivariant K-theory of Connes’ C∗-algebra of the foliation.
As recalled in Section 2, this formula is a consequence of the K-theory index theorem proved in [CS84].
In order to extend the measured Lefschetz theorem to higher degree cyclic cocycles, one is naturally led to
the study of the following interesting questions for a given compact Lie group H of leaf-preserving (or more
generally TF -preserving) diffeomorphisms of V :

(1) Show that the cyclic cocycles arising from the Haefliger homology of the foliation are H-equivariant
cyclic cocycles.

(2) Show that evaluation at a conjugacy class [h] of H of the well-defined pairing of these H-equivariant
cocycles with the equivariant K-theory of Connes’ C∗-algebra induces a well-defined pairing with
the localized K-theory at the prime ideal in R(H) associated with [h].

(3) Once (1) and (2) have been accomplished, show that the equivariant pairing of Haefliger homology
with K-theory is compatible with shriek maps associated with transverse submanifolds and their
foliations.

We give here a complete solution to the three problems. The first one allows us to define the higher Lefschetz
number of any leaf-preserving map f : V → V which is isometric for some metric on V . The second and
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third ones allow us to prove our higher Lefschetz theorem. It is worth pointing out that the answer to
the third problem allows us to prove a higher Lefschetz formula which only depends on the fixed point
submanifold with its induced foliation, which is in the spirit of the classical Lefschetz theorems. Indeed, a
formula depending only on the saturation of this fixed point submanifold can be obtained in a much easier
way and for a larger class of cyclic cocycles. However, it doesn’t really qualify as a fixed point formula, as
it would not be useful in most of the examples where this saturation coincides with the ambient manifold.
We also translate in this paper the higher fixed point formula to cohomology by using the Chern-Connes
character and the Grothendieck-Riemann-Roch theorem proved in [BH04].

To sum up, we use geometric equivariant cyclic cocycles of arbitrary even dimension to produce Lefschetz
fixed point formulae in terms of characteristic classes at the fixed point submanifold with its induced foliation.
When the foliation is top dimensional, we recover the results of Atiyah and Segal [ASe68] and Atiyah and
Singer [AS68]. When the foliation admits a transverse holonomy invariant measure, we recover the results of
[HL90]. When the foliation is given by the connected components of the fibers of a smooth closed fibration,
we recover the results obtained by the first author in [B02]. Finally, since we may use any closed Haefliger
current on the foliation, we get new and very interesting formulae.

We now explain more explicitly our results. Denote by h : V, F → V, F a leaf-preserving map, and assume
that it generates a compact Lie group H in some Lie group of maps of V . So, we do not assume a priori
that h a leaf-wise isometry. Note also that H need not preserve the leaves although it will always send leaves
to leaves. The Chern-Connes construction allows us to construct out of any closed Haefliger current C, an
equivariant cyclic cocycle τC which pairs with the equivariant K-theory of the foliation and gives a central
function on the compact Lie group H. This is the content of

Theorem 4.21 Let C be an even dimensional closed Haefliger current on (V, F ) and let τC be the associated
cyclic cocycle. Then for any H-vector bundle E, τC is an equivariant cyclic cocycle on C∞c (G, E). Moreover,
the equivariant pairing extends to a well-defined pairing

KH(C∗(V, F ))⊗Hev(V/F ) −→ C(H)H .

The pairing of τC with IndH(E, d), (the equivariant index class in K-theory of a leaf-wise elliptic pseudo-
differential complex (E, d)), evaluated at h will be, by definition, our higher Lefschetz number LC(h;E, d):

LC(h;E, d) :=< τC , IndH(E, d) > (h) ∈ C.

Compatibility with the prime ideal associated with h is then easily deduced from the properties of the
equivariant pairing. Finally, the commutation with transverse shriek maps is proved in Proposition 5.1. The
higher Lefschetz formula that we get using the higher index theorem of [BH04] is then stated as follows when
the fixed point submanifold V h is transverse to the foliation with an oriented induced foliation Fh:

Theorem 5.3 For any even dimensional closed Haefliger current C,

LC(h;E, d) =
〈∫

Fh

chC(i∗[σ(E, d)](h))
chC(λ−1(Nh ⊗ C)(h))

Td(TFh ⊗ C), C|V h
〉
.

See Section 5 for more details and for the notation. Theorem 5.3 simplifies notably when the fixed point
submanifold V h is a strict transversal, which corresponds in the case of a foliation by a single leaf to the
original case of isolated fixed points:

Theorem 5.4 If V h is a strict transversal,

LC(h;E, d) =

〈 ∑
i(−1)i chC([Ei|V h ](h))∑

j(−1)j chC([∧j(TF |V h ⊗ C)](h))
, C|V h

〉
.

As an obvious corollary of Theorem 5.3, we see for instance that the non-vanishing of the higher Lefschetz
numbers, for some current C, immediately implies the existence of fixed points under the action of h.

In order to keep the present paper to a reasonable size, we have postponed the investigation of the
applications of our higher Lefschetz theorem to complex geometry, topology and number theory to the second
part [BH10]. In particular, we deduce in [BH10] a higher version of the Atiyah-Hirzebruch rigidity theorems,
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new formulae for appropriate sums of products of cotangents, as well as some integrality consequences for
Riemannian foliations.

We now describe the contents of each section. Section 2 gives a brief survey of the K-theory Lefschetz
theorem. In Section 3, we define the appropriate equivariant cyclic cohomology and construct a pairing be-
tween this equivariant cyclic cohomology and equivariant K-theory which factors through the representation
ring of the compact Lie group generated by the isometry f . In Section 4, we return to the foliation case
and construct a correspondence between Haefliger homology and equivariant cyclic cohomology. Finally, in
Section 5 we use the results of the previous sections together with the K-theory Lefschetz theorem to prove
the higher Lefschetz formula.

Acknowledgements. The authors wish to thank Alain Connes, Thierry Fack, Gilbert Hector, Steve Hurder,
Victor Nistor, and Denis Perrot for helpful discussions. They are also indebted to the referee for his judicious
comments.

2. Review of the K-theory Lefschetz theorem.

Most of the results of this paper are based on the K-theory Lefschetz theorem proven by the first author
in [B97] and which we now recall. Let F be a smooth foliation of the smooth compact Riemannian manifold
(V, g) and denote the tangent bundle to the foliation F by TF , and its normal bundle by ν. Denote by G
the holonomy groupoid of F , which consists of equivalence classes of leaf-wise paths, where two paths are
identified if they start at the same point, end at the same point, and the holonomy germ along them is the
same. Composition of paths makes G a groupoid, and its space of units G0 consists of the classes of the
constant paths, so G0 ' V . Denote by Gx the elements of G which start at the point x ∈ V , by Gy those
elements which end at the point y ∈ V , and by Gyx the intersection Gx ∩Gy. We have the maps s, r : G → V ,
where s(γ) = x, if γ ∈ Gx, and r(γ) = y of γ ∈ Gy. The metric g on V induces a canonical metric on G, and so
the splitting TG = TFs⊕TFr⊕νG . Note that r∗(νG,γ) = νr(γ), and s∗(νG,γ) = νs(γ). For details, see [BH04].
The metric on G gives metrics on the submanifolds Gx,Gy ⊂ G. So objects such as L2(Gx) and L2(Gy) are
well-defined, and do not depend on the choice of metric since V is compact. Note that r : Gx → Lx is the
holonomy covering of Lx, the leaf of F through x, and similarly, s : Gy → Ly is the holonomy covering of Ly.

Let H ⊂ Iso(V, g) be a compact Lie group which acts by TF -preserving isometries on (V, g). The
isometry of (V, g) which corresponds to the action of h ∈ H will be denoted by h for simplicity, so such
h takes leaves of F to leaves of F , but does not necessarily take leaves to themselves. An easy example
is the action of the torus on its constant slope foliation. When the slope is irrational, this action can be
seen as being topologically generated by a leaf-preserving isometry, but the whole group does not preserve
the leaves. Connes’ C∗-algebra of (V, F ) is denoted C∗(V, F ), see [C82]. It is easy to check that C∗(V, F )
is an H-algebra, i.e. the induced action of H is strongly continuous for the C∗-norm. Let P be an H-
invariant, uniformly supported, elliptic pseudodifferential G-operator acting from sections of the H-vector
bundle E+ to sections of the H-vector bundle E−. See [C79] for the precise classical definitions. Choose an
H-invariant Hermitian structure on E and denote by εV,E the Hilbert C∗-module over C∗(V, F ), associated
with the continuous field of Hilbert spaces L2(Gx, r∗E). Then (εV,E , P ) defines a KK-class in the Kasparov
equivariant group KKH(C, C∗(V, F )), [K80]. The image of this class under the isomorphism

KKH(C, C∗(V, F )) ' KH(C∗(V, F )),

is the analytic H-index of P , and is denoted IndHa,V (P ). So, IndHa,V (P ) ∈ KH(C∗(V, F )).
Denote the space of leaves of F by V/F , and recall that a map g : N → V/F , from a smooth manifold N

to the space of leaves, is by definition a G-valued 1-cocycle over N , see [CS84]. Recall the H-submersion

p : TF → V/F

which is the composite map TF → V → V/F .
The pull-back by p of the “tangent bundle” T (V/F ) is well-defined, and it is just the pull-back π∗ν of

the normal bundle ν = TF⊥ ⊂ TV of the foliation F by the projection π : TF → V . The map p is
KH -oriented, which means that the vector bundle T (TF ) ⊕ π∗ν admits a spinc structure, which is given
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by an H-equivariant Hermitian vector bundle of irreducible representations of the Clifford algebra bundle
associated with TF ⊕ π∗ν. Using this spinc-bundle, Connes and Skandalis constructed in [CS84] a Gysin
class

p! ∈ KKH(C0(TF ), C∗(V, F )),

which generalizes the Atiyah-Singer topological shrieck maps [AS68]. The topological H-index of P is by
definition

IndHt,V (P ) = [σ(P )]⊗TF p! ∈ KH(C∗(V, F )),

where [σ(P )] is the H-equivariant class of the principal symbol of P in KH(TF ), and we have used
the Kasparov product over the C∗-algebra C0(TF ) together with the isomorphism KKH(C, C∗(V, F )) '
KH(C∗(V, F )) to see the H-index as an equivariant K-theory class. The leaf-wise H-equivariant index
theorem of [C85] is then

Theorem 2.1.
IndHa,V (P ) = IndHt,V (P ) ∈ KH(C∗(V, F )).

This theorem clearly works as well for elliptic H-invariant G-complexes, see [AS68].

We now to state the K-theory Lefschetz theorem for a fixed isometry f ∈ H. Let (E, d) be an elliptic
pseudodifferential G-complex over (V, F ). Recall that such a complex is a finite collection of smooth vector
bundles (Ei)0≤i≤k over the ambient manifold V together with a collection of G-invariant uniformly supported
pseudodifferential operators di = (dix)x∈V acting from the smooth sections of r∗Ei to the smooth sections of
r∗Ei+1, see [C79, NWX]. So, we have

0→ C∞c (Gx, r∗E0)
d0x−→ C∞c (Gx, r∗E1)

d1x−→ · · · d
k−1
x−→ C∞c (Gx, r∗Ek)→ 0,

with di+1 ◦di = 0. Notice that the uniform support of di means that its Schwartz kernel, viewed as a section
over G using the G-invariance, is compactly supported. Associated to (E, d) is the vector bundle complex of
principal symbols that we denote by σ(E, d), see again [C79],

0→ π∗E0 σ(d0)−→ π∗E1 σ(d1)−→ · · · σ(dk−1)−→ π∗Ek → 0,

where π : TF → V is the projection. Ellipticity of (E, d) then means that this principal symbol complex is
exact off the zero section of (TF, π, V ). We assume that (E, d) is H-invariant in the sense that each Ei is
an H-equivariant vector bundle over the H-manifold V , and the operators di commute with the naturally
induced actions of H, [B97].

Let I[f ] = {χ ∈ R(H) |χ(gfg−1) = 0,∀g ∈ H} be the prime ideal, in the representation ring R(H) of
H, associated with the conjugacy class [f ] of f . Localization of the ring R(H) with respect to I[f ] yields
the ring of fractions that we denote as usual by R(H)[f ]. Given an R(H)-module M , we denote by M[f ]

the localization of M with respect to I[f ]. So, M[f ] is an R(H)[f ]-module. When H is abelian, we remove
the brackets and denote as well by f the conjugacy class of f . Important examples of such modules are
the H-equivariant K-theories of H-algebras with the module structure given by Kasparov product. We now
define the Lefschetz class as in [B97].

Definition 2.2. (1) The Lefschetz class L(f ;E, d) of the conjugacy class [f ] of the isometry f , with
respect to the H-invariant elliptic G-complex (E, d) is the localized analytic H-index of (E, d) with
respect to the ideal I[f ]. More precisely,

L([f ];E, d) =
IndHa,V (E, d)

1R(H)
∈ KH(C∗(V, F ))[f ].

(2) Denote by H1 the compact subgroup of H generated by f . The Lefschetz class of f with respect to
the H1-invariant elliptic G-complex (E, d) is the localized analytic H1-index of (E, d) with respect to
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the ideal If of R(H1). More precisely,

L(f ;E, d) =
IndH1

a,V (E, d)
1R(H1)

∈ KH1(C∗(V, F ))f .

One can express L([f ];E, d) in terms of the union of the fixed points of all the elements of the conjugacy
class [f ] as in [ASe68]. Notice now that the usual Lefschetz formulae express Lefschetz numbers of a given
map in terms of local contributions from the fixed point submanifold of that map. In our context of the
foliated Lefschetz problem, this means that we can concentrate on the compact group H1 topologically
generated by a given h ∈ H. We shall therefore assume for the rest of this section that H1 = H and only
consider L(f ;E, d).

For the foliation with one leaf, namely the manifold V itself, (E, d) becomes a classical pseudodifferential
elliptic H-invariant complex over the compact manifold V , and the R(H)f -module KH(C∗(V, F ))f coincides
with KH(K(L2(V )))f , where K(L2(V )) is the elementary C∗-algebra of compact operators on the Hilbert
space L2(V ) of L2 functions on V . Given any smooth kernel k ∈ C∞(V × V ), we define for any h ∈ H the
smooth kernel kh(x, y) = k(h−1x, y). The integral of kh over the diagonal of V × V then realizes the Morita
equivalence which induces the isomorphism KH(K(L2(V ))) ∼= R(H). The fixed point submanifold of f is
denoted V f . We are only interested in the case where V f is transverse to the foliation (this is true when H
is connected and preserves the leaves, see [HL90]). Let F f be the foliation of V f whose tangent bundle is
TF f = TV f ∩ TF , where (TV )f = T (V f ) is the fixed point tangent manifold. Let i : TF f ↪→ TF be the
inclusion. Then an easy inspection shows that i is a KH -oriented map. Thus, following [AS68], one defines
a shrieck element i! ∈ KKH(TF f , TF ), [B97].

Notice that since the action of H on (V f , F f ) is trivial, the H-equivariant K-theory of the manifold F f

can be shown to be isomorphic to the tensor product R(H)-module K(F f )⊗R(H). The same isomorphism
holds for the C∗-algebra of the foliation (V f , F f ). Moreover, the H-equivariant index map for the foliated
manifold (V f , F f ) then respects this isomorphism, i.e.

IndHV f
∼= IndV f ⊗R(H) : KH(F f ) ∼= K(F f )⊗R(H)→ KH(C∗(V f , F f )) ∼= K(C∗(V f , F f ))⊗R(H).

Theorem 2.3. [B97] With the above notations, the following diagram commutes

K(F f )⊗R(H) ∼= KH(F f )

Z
Z
Z
ZZ~

IndV f ⊗R(H) ∼= IndHV f

i! - KH(F )

?

K(C∗(V f , F f ))⊗R(H) ∼= KH(C∗(V, F )).

IndHV

Here we have denoted by IndHV f the analytic (= topological) leaf-wise H-index for the compact foliated
manifold (V f , F f ). This index map takes values in theR(H)-moduleKH(C∗(V f , F f )) and we have implicitly
used composition with a quasi trivial element of KKH(C∗(V f , F f ), C∗(V, F )) corresponding to Morita
extension as in [C85], to view its range in KH(C∗(V, F )). Now, functoriality of the localization at the prime
ideal If yields the K-theory Lefschetz theorem.

Theorem 2.4. [B97] [The K-theory Lefschetz Theorem] Let (V, F ) be a compact foliated manifold and let
f be an isometry of V for some metric g. Assume that f preserves the leaf-wise bundle TF . Then, the
Lefschetz class L(f ;E, d) ∈ KH(C∗(V, F ))f of f with respect to an f -invariant elliptic G-complex (E, d) is
given by

L(f ;E, d) = (IndV f ⊗R(H)f )
(

i∗[σ(E, d)]
λ−1(Nf ⊗ C)

)
,

where i∗ : KH(F )f → KH(F f )f is the restriction homomorphism, Nf is the normal H-vector bundle to V f

in V , and λ−1(Nf ⊗ C) =
∑

(−1)i[∧i(Nf ⊗ C)] in KH(V f )f ∼= K(V f )⊗R(H)f .



HIGHER LEFSCHETZ THEOREM April 5, 2010 7

The reader should note that we do not assume that f preserves the leaves. That the fraction in the
previous theorem is well-defined is clear since

λ−1(Nf ⊗ C) :=
∑
i

(−1)i[∧i(Nf ⊗ C)] ∈ KH(V f ),

becomes a unit when pushed to the localized ring KH(V f )f and we have used the KH(V f )f -module structure
of KH(F f )f .

Hence, this theorem tells us that the Lefschetz class L(f ;E, d) coincides with the index of a virtual leaf-
wise operator on the fixed point foliation. When V f is a strict transversal, i. e. when V f is transverse to the
foliation with dimension equal to the codimension of the foliation, we get

L(f ;E, d) =
∑

(−1)i[Ei|V f ]∑
(−1)j [∧j(F |V f ⊗ C)]

⊗V f [[V f ]] ∈ KH(C∗(V, F ))f .

Here [[V f ]] is the class associated to the transversal V f in KKH(C(V f ), C∗(V, F )) as defined in [C82].
Since Kasparov product by [[V f ]] is K-integration over V f , the above formula agrees with the classical ones.
In particular when (E, d) is the de Rham complex along the leaves, our Lefschetz class coincides with the
K-volume of V f , a class [V f ] represented by an H-invariant idempotent in C∞c (G), supported in a small
tubular neighborhood of V f , [C82].

It is worth pointing out that the above K-theory Lefschetz theorem implies the measured Lefschetz
theorem of [HL90] in the isometric case. More precisely, if the foliation (V, F ) admits a holonomy invariant
transverse measure Λ [P75], then recall the trace τΛ constructed by Connes on the von Neumann algebra
of the foliation [C79]. In [B97], the first author constructed an additive map τfΛ : KH(C∗(V, F ))f → C
associated with Λ, such that

τfΛ(L(f ;E, d)) = LΛ(f ;E, d),

where LΛ(f ;E, d) is the measured Lefschetz number defined in [HL90]. Hence composing Theorem 2.4 with
τfΛ , the Heitsch-Lazarov measured Lefschetz formula is deduced.

We end this review section by pointing out that the analytic H-index IndHV (E, d) is the image of an element
indHV (E, d) of the equivariant K-theory group KH(C∞c (G, E)) of the algebra of compactly supported smooth
sections of the bundle Hom(E) over the graph G, whose fiber at γ ∈ G is Hom(Es(γ), Er(γ)).

3. Equivariant cyclic cohomology

In this section we recall the definitions and properties of the equivariant cohomologies for actions of
compact groups. References for these notions go back to [Br87] where equivariant homology arises as the
E2 term of a spectral sequence that computes the homology of a topological crossed product. In the
papers [BG94] and [Go92], the equivariant homologies are computed for algebras of functions on a smooth
manifold, extending to the equivariant setting the HKR theorem of Connes [C85]. The computation of these
equivariant (co)homologies for more general algebras with appropriate topologies (more precisely bornologies)
and endowed with strongly continuous actions of compact groups was recently achieved in the PhD thesis of
C. Voigt [V07]. We also point out the earlier computation in [N90].

Let H be a compact group which acts continuously on the locally convex (unital) algebra A. We proceed
to define the equivariant cohomology of the dynamical system (A, H). Denote by C(H) the continuous C
valued functions on H. The equivariant Hochschild complex (C∗(A, H), b) is defined as follows. The cochains
Cn(A, H) consist of the continuous functions f : A⊗n+1 → C(H) such that

f(ha0, · · · , han)(hgh−1) = f(a0, · · · , an)(g), ∀g, h ∈ H,∀aj ∈ A.

We denote by f(a0, · · · , an|h) the scalar f(a0, · · · , an)(h) for f ∈ Cn(A, H). The equivariant Hochschild
differential b : Cn(A, H)→ Cn+1(A, H) is defined by

(bf)(a0, · · · , an+1|h) := (b′f)(a0, · · · , an+1|h) + (−1)n+1f(h−1(an+1)a0, a1, · · · , an|h)
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where

(b′f)(a0, · · · , an+1|h) :=
n∑
j=0

(−1)jf(a0, · · · , ajaj+1, · · · , an+1|h).

Then one checks that b′2 = 0 and b2 = 0.

Definition 3.1. The equivariant Hochschild cohomology of the pair (A, H) is the homology HH∗(A, H) of
the equivariant Hochschild complex (C∗(A, H), b).

Definition 3.2. An equivariant Hochschild cochain f is cyclic if the following relation holds

f(an, a0, · · · , an−1|h) = (−1)nf(a0, · · · , an−1, h(an)|h).

We denote by λH(a0, · · · , an|h) := (h−1(an), a0, · · · , an−1|h) the equivariant permutation. So, an n-
cochain f is cyclic if λ∗Hf = (−1)nf . We denote by A the equivariant cyclic permutation of cochains

A(f) =
n−1∑
j=0

(−1)nj(λ∗H)j(f).

The subspace of C∗(A, H) composed of equivariant cyclic cochains is denoted C∗λ(A, H). An easy computa-
tion shows that

A ◦ b′ = b ◦A.
So, the subspace C∗λ(A, H) is preserved by b and the subcomplex (C∗λ(A, H), b) of the equivariant Hochschild
complex is called the equivariant cyclic complex. Its homology H∗λ(A, H) is the equivariant cyclic cohomology
of the pair (A, H).

Remark 3.3. When A is complete, a chain equivalence between the equivariant Hochschild (resp. cyclic)
complex of (A, H) and the Hochschild (resp. cyclic) complex of the crossed product algebra A o H, is
constructed in [BT]. When the group H is in addition finite, this chain map turns out to be an isomorphism
between the equivariant cohomologies and the twisted cohomologies of the crossed product, as constructed in
[B03b]. These latter complexes being other alternatives for describing the Hochschild and cyclic cohomologies
of the crossed product.

For the algebra of smooth functions on a closed manifold, equivariant Hochschild (resp. cyclic, resp.
periodic cyclic) (co)homology has been computed in [BG94] using Borel (co)homology.

Now let H → U(X) be a given finite dimensional unitary representation of H in the Hermitian vector
space X. Then H acts on A⊗ End(X) according to the formula

h(a⊗A) := ha⊗ U(h)AU(h−1), a ∈ A, A ∈ End(X) and h ∈ H.

If f is a continuous equivariant k-cochain on the pair (A, H), then we define the cochain τ] tr on (A ⊗
End(X), H) by setting

(f] tr)(a0 ⊗A0, · · · , ak ⊗Ak|h) := f(a0, · · · , ak|h) tr(A0 · · ·AkU(h)), ai ⊗Ai ∈ A⊗ End(X) and h ∈ H.

Lemma 3.4. The cochain f] tr is continuous and equivariant, and we have

b(f] tr) = (bf)] tr and f cyclic ⇒ f] tr cyclic.

Proof. Continuity is obvious. We have for ai ∈ A, Ai ∈ End(X) and h, g ∈ H,

(f] tr)(h(a0 ⊗A0), · · · , h(an ⊗An)|hgh−1)
= (f] tr)(ha0 ⊗ U(h)A0U(h−1), · · · , han ⊗ U(h)An)U(h−1|hgh−1)
= f(ha0, · · · , han|hgh−1) tr[(U(h)A0U(h−1) · · ·U(h)AnU(h−1)U(hgh−1)]
= f(ha0, · · · , han|hgh−1) tr[U(h)(A0 · · ·An)U(gh−1)]
= f(a0, · · · , an|g) tr[A0 · · ·AnU(g)]
= (f] tr)(a0 ⊗A0, · · · , an ⊗An|g).
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If we assume in addition that f is cyclic, then

(f] tr)(an ⊗An, a0 ⊗A0, · · · , an−1 ⊗An−1|g) = (−1)nf(a0, · · · , g(an)|g) tr(AnA0 · · ·An−1U(g))
= (−1)nf(a0, · · · , g(an)|g) tr(A0 · · ·An−1U(g)An)
= (−1)nf(a0, · · · , g(an)|g) tr(A0 · · ·An−1g(An)U(g))
= (−1)n(f] tr)(a0 ⊗A0, · · · , g(an ⊗An)|g).

The proof of the relation b(f] tr) = bf] tr is similar and omitted. �

Recall that the H-equivariant K-theory of the H-algebra A is defined in terms of H-invariant idempotents
in H-algebras A⊗ End(X) for the action

h(a⊗A) := (ha)⊗ U(h)AU(h−1).

where X runs through the finite dimensional unitary representations U of H. More precisely, we identify any
two such H-invariant idempotents e ∈ A⊗ End(X) and e′ ∈ A⊗ End(X ′), if there exists finite dimensional
unitary representations (V, Y ) and (V ′, Y ′) and H-invariant elements x ∈ A ⊗ Hom(X ⊕ Y,X ′ ⊕ Y ′) and
y ∈ A⊗Hom(X ′ ⊕ Y ′, X ⊕ Y ) such that

xy = e′ ⊕ 0 ∈ A⊗ End(X ′ ⊕ Y ′) and yx = e⊕ 0 ∈ A⊗ End(X ⊕ Y ).

This is an equivalence relation and the quotient is a monoid for direct sums, whose associated Grothendieck
group is by definition the H-equivariant K0-theory or simply K-theory of the H-algebra A. We denote it as
usual by KH

0 (A) or simply KH(A). It is clear from the definition that when A = C with the trivial action,
KH(A) is isomorphic to the representation ring R(H) of H, that is the Grothendieck group associated with
the monoid of finite dimensional unitary representations of H. When the algebra A is not unital, we add
a unit with a trivial action of H and get a unital H-algebra Ã, and the character ε : Ã → C induces by a
straightforward functoriality ε∗ : KH(Ã)→ R(H). The equivariant K-theory of the non-unital algebra A is
then by definition the kernel of ε∗.

The following is a generalization of Proposition 14 in [C85] and we give a proof based on a straightforward
extension of Connes method. We point out that this proposition can also be deduced from the results of
[V07].

Proposition 3.5. Let f be a continuous equivariant cyclic 2k-cocycle on the pair (A, H). For any finite
dimensional unitary representation U : H → U(X), and any H-invariant idempotent e in A⊗ End(X), we
define < f, e >, by the formula

3.6. < f, e > (h) := (f] tr)(e, · · · , e|h)

Then
• < f, e > is a continuous central function on the compact group H.
• Formula 3.6 induces a pairing between the equivariant K-theory and the equivariant cyclic cohomology

of the H-algebra A, i.e.
KH

0 (A)⊗Hev
λ (A, H) −→ C(H)H ,

where C(H)H denotes the central continuous functions on H.

When A is unital, the statement in the second item is clear. When A is non-unital, it needs some
explanation. As usual we denote by Ã the algebra A⊕ C endowed with the extended action (trivial on the
C factor) and with the natural locally convex topology. Then the second item means that if X and X ′ are
two unitary representations of H and if ẽ = (e,Λ) and ẽ′ = (e′,Λ′) are two idempotents in Ã ⊗End(X) and
Ã ⊗ End(X ′), with e ∈ A⊗ End(X), e′ ∈ A⊗ End(X ′), Λ ∈ End(X) and Λ′ ∈ End(X ′), such that [ẽ]− [ẽ′]
defines a class x in KH(A), then the scalar

(f] tr)(e, · · · , e|h)− (f] tr)(e′, · · · , e′|h)

only depends on the class x and on the equivariant cyclic cohomology class of f .
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Proof. We give a brief proof for the convenience of the reader. We first notice that f] tr is an equivariant
continuous cyclic 2k-cocycle on the H-algebra A⊗ End(X) and that e is H-invariant. Therefore, we have

(f] tr)(e, · · · , e|ghg−1) = (f] tr)(g−1e, · · · , g−1e|h) = (f] tr)(e, · · · , e|h).

Hence, < f, e > (ghg−1) = < f, e > (h) and < f, e > is central. The action of H on A being strongly
continuous, the corresponding action on A ⊗ End(X) is also strongly continuous. Now, continuity of f
implies continuity of f] tr. Therefore, for any e as above, the map < f, e > is a continuous function on H.

In order to prove the second item, we extend Connes’ proof given in the non-equivariant case in [C85].
We can assume that A is unital, see for instance [BH08]. Using classical matrix techniques, we reduce the
proof to showing that if e, e′ are H-equivariantly conjugated in A, then < f, e >= < f, e′ >. We first prove
that if e′ = ueu−1 with u an H-invariant element, then there exists an odd H-equivariant cyclic cochain
ϕ = ϕu such that

3.7. < f, e′ > − < f, e > = < bϕ, e > .

For any H-invariant element a ∈ A, the Hochschild cochain

fa(a0, ..., an−1|h) = f(a0, ..., an−1, a|h),

is H-equivariant and we set

(δ∗af)(a0, ..., an|h) =
∑

0≤i≤n

f(a0, ..., aai − aia, ..., an|h).

Then δ∗af is an H-equivariant cochain on (A, H). Using the relation bf = 0, we easily get the following
relation

(−1)n(A◦b′)(fa)(a0, · · · , an|h) = f((h−1a)a0−a0a, a1, · · · , an|h)+
n∑
j=1

f(a0, · · · , aj−1, aaj−aja, aj+1, · · · , an)

where A is the cyclic operator on C∗(A, H) defined in the previous section. Since a is supposed to be
H-invariant, we deduce that (−1)nδ∗af = (A ◦ b′)(fa). Thus, using the relation A ◦ b′ = b ◦ A, we obtain
δ∗af = b[(−1)nA(fa)], which shows that the class of δ∗af in H∗λ(A, H) is trivial.

Now if u is an invertibleH-invariant element ofA, then there exists an invertible v ∈M2(A) and b ∈M2(C)
such that u = evbv

−1
:= vebv−1, see [C85] again. We set a = vbv−1 and write ρ : M2(A) → M2(A) for

conjugation by ea. Then a straightforward computation shows that

ρ∗f − f = (b ◦A)(
∑
k≥1

(δ∗a)k−1(fa)
k!

),

finishing the proof of relation 3.7. Notice that the convergence makes sense using only the convergence in
M2(C). Now, we have for any h ∈ H and using that e is H-invariant and n is even

< bϕ, e > (h) = b′ϕ(e, · · · , e|h) + (−1)nϕ((h−1e)e, e · · · , e) =

ϕ(e, · · · , e|h)
n∑
j=0

(−1)j = ϕ(e, · · · , e|h).

Finally, using cyclicity of ϕ, we deduce that

ϕ(e, · · · , e|h) = −ϕ(e, · · · , e, h(e)|h) = −ϕ(e, · · · , e, e|h).

�

Remark 3.8. The pairing in the odd case can be defined similarly extending Proposition 15 in [C85] to the
equivariant setting.

Remark 3.9. The evaluation < f, e > (h) of the pairing at h is well-defined provided the idempotent e is
only h-invariant. It does not depend on the group H as far as this latter exists.
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In the rest of this section, we explain the relation with the equivariant index pairing in the case of
equivariant Fredholm modules. In particular, an important example of an equivariant cyclic cocycle arises
from index theory and is given as the equivariant Chern-Connes character of an equivariant finitely summable
Fredholm module. We concentrate on the even case, as the odd case is similar. Let A be a locally convex H-
algebra endowed with a continuous representation as operators on a Z2-graded Hilbert space H = H+⊕H−.
Let γ be the grading involution, and assume that γ commutes with the elements of A. Let the compact
group H act on H by unitaries commuting with the grading γ so that H acts on A by conjugation. Let F
be an H-invariant symmetry (F ∗ = F and F 2 = I) on H such that

F ◦ γ + γ ◦ F = 0 and [F, a] = F ◦ a− a ◦ F ∈ L2p(H),

where Lq(H) is as usual the q-th Schatten ideal of operators T such that (T ∗T )q/4 is a Hilbert-Schmidt
operator. For T ∈ L1(H), we denote by tr(T ) the trace of the operator T .

Proposition 3.10. The map

(a0 ⊗ · · · ⊗ a2p|h) 7−→ (−1)p tr(γa0[F, a1]...[F, a2p]U(h)).

is a continuous equivariant cyclic cocycle on the pair (A, H).

Proof. Denote by f this map and forget the (−1)p. Continuity is obvious, given our assumptions. We
compute

f(ga0, · · · , ga2p|ghg−1) = tr(γU(g)a0[F, a1] · · · [F, a2p]U(g−1)U(g)U(h)U(g−1))
= tr(U(g)γa0[F, a1] · · · [F, a2p]U(h)U(g−1))
= tr(γa0[F, a1] · · · [F, a2p]U(h)).

On the other hand, using the equality tr(γ[F, ω]) = 0 for ω ∈ B(H) such that γω = (−1)∂ωωγ, the equivariant
cyclicity is proved as follows:

f(a2p, a0, · · · , a2p−1|h) = tr(γa2p[F, a0] · · · [F, a2p−1]U(h))
= tr(γh(a2p)U(h)[F, a0] · · · [F, a2p−1])
= tr(γ[F, h(a2p)U(h)a0] · · · [F, a2p−1])− tr(γ[F, h(a2p)]U(h)a0[F, a1] · · · [F, a2p−1])
= − tr(γ[F, h(a2p)]U(h)a0[F, a1] · · · [F, a2p−1])
= tr([F, h(a2p)]U(h)γa0[F, a1] · · · [F, a2p−1])
= tr(γa0[F, a1] · · · [F, h(a2p)]U(h))
= f(a0, · · · , a2p−1, h(a2p)|h).

To finish the proof of the proposition, it remains to show that bf = 0. But, we have

(b′f)(a0, · · · , a2p+1|h) = tr(γa0a1[F, a2] · · · [F, a2p+1]U(h))

+
2p∑
j=1

(−1)j tr(γa0[F, a1] · · · ([F, aj ]aj+1 + aj [F, aj+1]) · · · [F, a2p+1]U(h))

= tr(γa0[F, a1] · · · [F, a2p]a2p+1U(h))
= tr(γa0[F, a1] · · · [F, a2p]U(h)h−1(a2p+1))
= tr(γh−1(a2p+1)a0[F, a1] · · · [F, a2p]U(h)),

which completes the proof. �

Definition 3.11. We define the equivariant Chern-Connes character chH(H, F, γ) of (H, F, γ) as the equi-
variant cyclic cohomology class of the equivariant cyclic cocycle defined in Proposition 3.10.

Now let (H, F, γ) be an even 2p-summable H-equivariant Fredholm module over the H-algebra A as
defined above. For any finite dimensional unitary representation U : H → U(X) of the compact group H,
and any H-invariant projection e ∈ A ⊗ End(X), the operator e ◦ [F ⊗ idX ] ◦ e, acting on e(H ×X), is an
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H-invariant Fredholm operator which anticommutes with the grading γ of H = H+ ⊕H− and induces the
Fredholm operator

F+
e := e ◦ [F ⊗ idX ] ◦ e : e(H+ ⊗X) −→ e(H− ⊗X).

The H-equivariant index of F+
e is then an element of the representation ring R(H) of H. The map e 7→

Ind(F+
e ) induces the map IndHH,F,γ ,

IndHH,F,γ : KH(A) −→ R(H).

Recall that we have previously defined the equivariant Chern-Connes character chH(H, F, γ) of (H, F, γ),
as an equivariant cyclic cohomology class over the H-algebra A.

Proposition 3.12. We have
IndHH,F,γ(e) =< chH(H, F, γ), [e] >,

where [e] is the equivariant K-theory class of e.

Proof. Let X a finite dimensional representation of H and let e ∈ A⊗End(X) be an H-invariant idempotent.
Then e acts as an even degree operator on H⊗X and we denote by P the H-invariant Fredholm operator
F+
e defined above. It is then easy to check that the operator Q which is the same operator e(F ⊗ idX)e but

acting from H− ⊗ X to H+ ⊗ X, is an H-invariant parametrix for P modulo the Schatten ideal Lp. Now
recall the equivariant Atiyah-Bott formula for any h ∈ H, [B03a],

IndH(P )(h) = tre(H+⊕X)((1−QP )p ◦ U(h))− tre(H−⊕X)((1− PQ)p ◦ U(h)).

Using the H-invariance of e and F and the relation e[F ⊗ idX , e]e = 0, we deduce that

e− e(F ⊗ idX)e(F ⊗ idX)e = −e[F ⊗ idX , e]2.
The computation of [e− e(F ⊗ idX)e(F ⊗ idX)e]p then finishes the proof. �

As a consequence of the previous proposition, we deduce the following integrality result.

Corollary 3.13. Let (H, F, γ) be a finitely summable H-equivariant Fredholm module over A as above.
Then 〈

chH(H, F, γ),KH(A)
〉
⊂ R(H).

When H is the finite cyclic group of order n, we get〈
chH(H, F, γ),KH(A)

〉
(h) ⊂ Z[e2iπ/n], ∀h ∈ H.

Therefore, for foliated involutions, one gets the integrality result
〈

chH(H, F, γ),KH(A)
〉
⊂ Z.

4. Haefliger currents and leaf-wise diffeomorphisms

We now focus on foliations. We recall the correspondence between Haefliger homology and Connes’
periodic cyclic cohomology, and then prove that the cyclic cocycles arising from this correspondence are
equivariant with respect to leaf-wise actions of leaf-wise volume preserving diffeomorphisms.

As above, (V, F ) is a smooth compact foliated manifold of codimension q, and G is the holonomy groupoid
of F . Denote the metrics on Gx and Gy by dvolr = r∗(dvolF ) and dvols = s∗(dvolF ), where dvolF is the
given metric on the leaves of F . Recall that ν ⊂ TV is the normal bundle to TF , so TV = TF ⊕ ν. Any
leaf-wise path γ : [0, 1]→ V defines a germ of diffeomorphisms denoted hγ (and called the holonomy germ)
from transversals at γ(0) = s(γ) to transversals at γ(1) = r(γ). The differential of the germ, also denoted
hγ , gives a well-defined linear isomorphism hγ : νs(γ) → νr(γ). This defines an action of G on ν. Transposing
this action gives an action of G on the dual normal bundle ν∗. Notice that ν∗ is naturally defined as the
subbundle of T ∗V

ν∗ = {α ∈ T ∗V | ∀X ∈ TF, α(X) = 0}.
Thus this action of G on ν∗, as well as its action on all the exterior powers ∧kν∗ for 0 ≤ k ≤ q, is natural.

Denote by Ωj the space C∞c (G,∧jr∗(ν∗)). This is a graded algebra where
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4.1. ∀(ω1, ω2) ∈ Ωj × Ωj
′

and ∀γ ∈ Gy, ω1ω2(γ) =
∫
Gy
ω1(γ1) ∧ h̃γ1(ω2(γ−1

1 γ))dvols.

The push-forward map h̃γ1 : ∧j′ν∗s(γ1) → ∧
j′ν∗r(γ1) is h̃γ1 = [h∗γ1 ]−1 = h∗

γ−1
1

. There is a transverse differential
[C94] p. 266,

dν : Ωj → Ωj+1,

which satisfies all the properties of a precycle (definition below) required of it, which we now recall.
For γ ∈ G and X1, · · · , Xj ∈ νr(γ), there exist unique tangent vectors Y1, · · · , Yj ∈ νG,γ such that

r∗Yi = Xi and s∗Yi = hγ−1Xi.

If dG is the de Rham differential on the smooth manifold G, then for ω ∈ Ωj ,

dνω(X1, · · · , Xj) := dGω(Y1, · · · , Yj).
In [C94] p. 267, Connes showed that dν is a graded differential of degree 1 on Ω = ⊕Ωj , which satisfies the
relation

d2
ν(ω) = [θ, ω],

with θ a generalized (compactly supported) section of r∗(∧2ν∗) over G, which is a multiplier of Ω, i.e. for
any ω ∈ Ω, θω and ωθ make sense in Ω. In addition, dν(θ) is zero.

Fix a finite distinguished open cover {Ui} for the foliation and choose smooth transversals Ti ⊂ Ui such
that Ti ∩ Ti′ = ∅ for i 6= i′. Then with T =

⋃
i Ti, the space Ωc(T/F ) of Haefliger forms on the complete

transversal T is the quotient of the space of compactly supported differential forms on the smooth manifold
T by the closure of the subspace generated by all forms, when well-defined, of the form h∗γα− α. See [H80].
A holonomy invariant k-current C assigns a real number to any compactly supported differential k form
defined on any transversal, with the stipulation that C(h∗γα − α) = 0. Any such C gives a continuous (for
the smooth topology) linear form on Ωkc (T/F ), and such a form is called a Haefliger current. Let dvolF be
the leaf-wise volume form determined by the restriction of a metric g on V to the leaves of F . Any ω ∈ Ωk

can be restricted to the units G(0) = V to yield a smooth differential form ω|V on V , which is actually
a section of ∧kν∗. Given α ∈ C∞(V ;∧kν∗), integration over the leaves of F of α ∧ dvolF , as defined for
instance in [H80], yields ∫

F

: C∞(V ;∧kν∗) −→ Ωkc (T/F ).

Set ∫
C

ω :=
〈∫

F

(ω|V ), C
〉
.

Recall from [C85] the definition of a precycle over an algebra A:

Definition 4.2. Let A be a C-algebra. A k-precycle over A is a quadruple (Ω, d,
∫
, θ) such that:

(1) Ω is a graded algebra Ω = Ω0 ⊕ ...⊕ Ωk, the product sends Ωj ⊗ Ωj
′

into Ωj+j
′
, and Ω0 = A;

(2) d is a graded differential of degree 1 on Ω, so d : Ωj → Ωj+1 and

d(ω1ω2) = (dω1)ω2 + (−1)jω1(dω2) ∀(ω1, ω2) ∈ Ωj × Ω,

(3) θ ∈ Ω2 (see Remark 4.4 below) satisfies dθ = 0, and for all ω,

d2(ω) = [θ, ω] = θω − ωθ;

(4)
∫

: Ωk → C is a closed graded trace, i. e.

∀(ω1, ω2) ∈ Ωj × Ωk−j ,
∫
ω1ω2 = (−1)j(k−j)

∫
ω2ω1; and ∀ω ∈ Ωk−1,

∫
dω = 0.

A k-precycle over A is a k-cycle if d2 = 0.

Remark 4.3. The condition Ω0 = A is not necessary, even though it will be sufficient for our applications,
and one can replace it by the existence of an algebra morphism from A to Ω0.
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Remark 4.4. The condition θ ∈ Ω2 is too strong and Connes’ X-trick (see below) works just as well even
if θ is only a degree 2 multiplier of Ω. In general, it suffices to assume the existence of θ such that dθ and
[θ, .] do make sense. With this in mind, we proved in [BH04] that (Ω, dν ,

∫
C
, θ) is a k-precycle over the

convolution algebra C∞c (G) of smooth compactly supported functions on the graph G.

The classical example is A = C∞c (M), where M is a smooth m-dimensional manifold. Then every closed
de Rham k-current C on M gives rise to a k-cycle over A, by considering the compactly supported de Rham
complex, truncated at the level k, together with the closed graded trace induced by C. Other examples come
from the study of finitely summable Fredholm modules over C-algebras, see [C85] for the details.

Connes has given a curvature method, nowadays called Connes’ X-trick [C94] p. 229, which assigns to
any k-precycle (Ω, d,

∫
, θ) over an algebra A a k-cycle (Ω̃, δ,Φ, 0) over an extension of A and hence over A.

Since the X-trick will be important in the sequel, we recall it for the convenience of the reader. As a vector
space, the new graded algebra Ω̃ = M2(Ω), the 2 by 2 matrices over Ω, but the product is not the usual one.
Set

Θ =
(

1 0
0 θ

)
and define the product ∗ on Ω̃ by setting

T ∗ T ′ := TΘT ′.

Denote by ∂ω the degree of a homogeneous element ω ∈ Ω, and recall that 0 has all degrees. An element
T ∈ Ω̃ is homogeneous of degree ∂T = k if

k = ∂T11 = ∂T12 + 1 = ∂T21 + 1 = ∂T22 + 2.

The differential δ on Ω̃ is defined on homogeneous elements of Ω̃ as

δT =
(

dT11 dT12

−dT21 −dT22

)
+
(

0 −θ
1 0

)
T + (−1)∂TT

(
0 1
−θ 0

)
.

A straightforward computation then shows that δ2 = 0. This makes (Ω̃, δ) into a graded differential algebra.
The graded algebra Ω embeds as a subalgebra of Ω̃ by using the homogeneous map

ω ↪→
(
ω 0
0 0

)
.

For homogeneous T ∈ Ω̃k define

Φ(T ) =
∫
T11 − (−1)∂T

∫
T22θ,

and extend to arbitrary elements of Ω̃k by linearity. Then the linear form Φ is a closed graded trace on
(Ω̃, δ), see [C94]. Thus (Ω̃, δ,Φ, 0), denoted (Ω̃, δ,Φ) for short, is a k-cycle. The precycle (Ω, dν ,

∫
C
, θ) defined

in [BH04] and recalled in Remark 4.4, gives rise to the cycle that we denote (Ω̃, δν ,ΦC).
Given a general k-cycle (Ω, d,

∫
) over an algebra A, define a cyclic k-cocycle (the Connes character of the

cycle) by setting

4.5. τ(a0, ..., ak) =
∫
a0da1 · · · dak.

Theorem 4.6. [BH04] Let C be a closed Haefliger k-current for (V, F ) as above. Then the formula

τC(k0, ..., kk) :=
∫
C

(
[k0 ∗ δνk1 ∗ · · · ∗ δνkk]11|V

)
defines a cyclic k-cocycle over the algebra C∞c (G), which is continuous with respect to the C∞ compact open
topology.
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Proof. In [BH04], we proved that for any closed Haefliger k-current C, the quadruple (Ω, dν ,
∫
C
, θ) defined

above, is a precycle over the convolution algebra of compactly supported smooth functions on G. It is easy
to check that for the associated cycle (Ω̃, δν ,ΦC), the multilinear functional τC is precisely the cyclic cocycle
which is the Chern-Connes character of (Ω̃, δν ,ΦC). Note that τC does not depend on the choice of ν.

It remains to show continuity. But, the map k 7→ dνk is clearly continuous with respect to the C∞

compact open topologies on C∞c (G) and C∞c (G, r∗ν∗). Multiplication by θ being continuous, k 7→ δνk is also
continuous for the induced topology on M2(C∞c (G, r∗ν∗)). As we are only dealing with compactly supported
sections, the ∗-product is continuous. Therefore, the multilinear map

(k0, · · · , kr) 7−→ [k0 ∗ δνk1 · · · ∗ δνkr]11

is continuous with respect to the C∞ compact open topologies on C∞c (G) and C∞c (G, r∗ ∧∗ ν∗). If we fix
a smooth complete transversal T to the foliation, then Haefliger integration over the leaves is known to be
continuous from Ω∗(V ) to Ω∗c(T ), endowed with the compact open topologies. By definition of a Haefliger
current, we know that its action on Ωc(T ) is continuous. To sum up, we get continuity of the multilinear
form

(k0, · · · , kr) 7−→
〈
C,

∫
F

[k0 ∗ δνk1 · · · ∗ δνkr]11|V ∧ dvolF
〉
,

which finishes the proof. �

Remark 4.7. For k ≥ 2, [k0 ∗ δνk1 ∗ · · · ∗ δνkk]11 does involve the curvature θ of the precycle (Ω, dν ,
∫
C
, θ).

Remark 4.8. In the presence of a Hermitian bundle E → V , it is easy to extend this construction, and
to associate with any closed Haefliger current C on the foliation (V, F ), a cyclic cocycle on the algebra
C∞c (G, E) of smooth compactly supported sections over G of the vector bundle whose fiber at γ ∈ G is as
usual Hom(Er(γ), Es(γ)). See [BH04] for the precise definition.

Fix a diffeomorphism f : V → V which preserves the leaves and assume that f preserves the leaf-wise
Lebesgue measure defined by the volume form dvolF . This assumption will be referred to as the leaf-wise
SL assumption. We proceed now to prove that the cyclic cocycle associated with a closed Haefliger current
as above is indeed f -equivariant. Our assumption on f is satisfied for instance when f is an element of a
compact Lie group which acts on V by leaf-preserving diffeomorphisms, but this is not needed to prove the
f -equivariance. It is of course easy to construct examples on say T 2 where f is not an element of a compact
group and satisfies our leaf-wise SL assumption.

We will need the following.

Definition 4.9. The diffeomorphism f is a holonomy diffeomorphism if there exists a smooth map ϕf :
V → G, so that for any x ∈ V , s(ϕf (x)) = x, r(ϕf (x)) = f(x), and the holonomy along ϕf (x) coincides
with the action of f on transversals.

Lemma 4.10. The diffeomorphism f is a holonomy diffeomorphism in the following cases:
(1) When the holonomy is trivial, and the foliation is tame.
(2) When the foliation is Riemannian.
(3) When f belongs to a connected Lie group which acts on V by leaf-preserving diffeomorphisms. More

generally, if f belongs to the path connected component of a holonomy diffeomorphism g (for instance
g = identity) in the group of leaf-preserving diffeomorphisms.

(4) When restricted to the saturation sat(V f ) of the fixed point submanifold V f , that is the union of the
leaves that intersect V f .

Proof. For the first two items, see [He10]. For the third, choose any smooth path ht from the g to f in the
group, and define ϕf (x) to be the element of G determined the composition of ϕg(x) with the leaf-wise path
t→ ht(x). For the last item, if x ∈ sat(V f ), y ∈ V f ∩ Lx, and if γ ∈ Gyx , set ϕf (x) = (fγ−1) ◦ γ. Then ϕf

is well-defined, smooth, depends only on x, and it works. �

Remark 4.11. Theorem 2.4 shows that the Lefschetz class lives over sat(V f ).
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Remark 4.12. A particular case of the second item in the above lemma is when f is given by the time one
flow of a vector field on V which is tangent to the foliation F .

To sum up, we are assuming from now on that f is a holonomy diffeomorphism which preserves the
leaf-wise Lebesgue measure associated with dvolF . Note that depending on which current we are using to
produce Lefschetz formulae, the holonomy assumption will sometimes be unnecessary. In particular, if the
current is diffuse (in the sense that it is determined by its restriction to open dense subsets of a complete
transversal) then we recall the following classical density theorem due to Gilbert Hector, [He].

Theorem 4.13. Let T1 and T2 be transversals of a foliation F , and consider the map between transversals
f : T1 → f(T1) ⊂ T2. Then there is a countable family {Uj} of open subsets of T1 so that:

(1)
⋃
j

Uj is dense in T1,

(2) any restriction of f to fj : Uj → f(Uj) is a holonomy map, that is an element of the holonomy
pseudo-group of F .

Proof. [Hector] We may assume that T1 and T2 are subsets of a global transversal T and we denote by P
the pseudo-group of holonomy transformations of T induced by the foliation F . For any element h ∈ P,
there exists a subset Uh ⊂ T , maybe the empty set, such that f(x) = h(x) for any x ∈ Uh and this set is
a closed subset of T by continuity. On the other hand for any x ∈ T there exits an element hx ∈ P such
that f(x) = hx(x), so

⋃
Uh covers T. But the set of maximal elements of P is countable, and therefore by

Baire category theory there exists a set Uh1 with non-empty interior U1. The result follows by a standard
argument. �

Notice that in view of the Lefschetz problem we are interested in, f will be an isometry of the ambient
Riemannian manifold V , in which case the SL assumption is of course satisfied. The holonomy assumption
is satisfied in all known examples. We now fix some Hermitian vector bundle E over V and assume that we
have a bundle isomorphism

Af : f∗E → E.

We denote by εV,E the Hilbert C∗-module over Connes’ C∗-algebra C∗(V, F ) of the foliation, as defined
in [CS84]. This is the Hilbert module associated with the G-equivariant continuous field of Hilbert spaces
L2(Gx, r∗E) over V , see [C82]. Define the endomorphism ΨE(f) =

(
ΨE(f)x

)
x∈V of the Hilbert module εV,E ,

ΨE(f)x : L2(Gx, r∗E)→ L2(Gx, r∗E), by setting

ΨE(f)x(ξ)(γ) = A−1
f

[
ξ(f−1γ · ϕf

−1
(s(γ)))

]
= A−1

f

[
ξ(ϕf

−1
(r(γ)) · γ)

]
,

for ξ ∈ L2(Gx, r∗E) and γ ∈ Gx. The second equality follows from the fact that the two paths f−1γ ·ϕf−1
(s(γ))

and ϕf
−1

(r(γ)) ·γ start and end at the same points and, since f is a holonomy diffeomorphism, the holonomy
along them is the same.

In the special case E = V × C where Af acts as the identity of C, ΨE(f) = Ψ(f) is, as we shall see
soon, a multiplier of the C∗-algebra of the foliation which preserves C∞c (G). Recall that k ∈ C∞c (G) acts on
⊕x∈V L2(Gx) as follows. If ξ ∈ L2(Gx), and γ ∈ Gx, then

k(ξ)(γ) =
∫
γ1∈Gx

k(γγ−1
1 )ξ(γ1)dvolr(γ1).

With this in mind, the operator Ψ(f) ◦ k has a smooth compactly supported kernel denoted by kf,l. In the
same way, k ◦Ψ(f) has a smooth compactly supported kernel kf,r. A simple computation gives

kf,l(γ) = k(f−1γ · ϕf
−1

(s(γ))) = k(ϕf
−1

(r(γ)) · γ),

where the second equality follows just as it does above. Similarly,

kf,r(γ) = k(γ · ϕf
−1

(fs(γ))) = k(ϕf
−1

(fr(γ)) · fγ).
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To see this note that
[k ◦Ψ(f)](ξ)γ =

∫
Gx
k(γγ−1

1 )ξ(f−1γ1ϕ
f−1

(x))dνx(γ1).

Set γ′1 := f−1γ1 · ϕf
−1

(x) ∈ Gx. Then

γ−1
1 = ϕf (x)

−1 · fγ′−1
1 = ϕf

−1
(fx) · fγ′−1

1 = γ′
−1
1 · ϕf

−1
(fr(γ′1)) = γ′

−1
1 · ϕf

−1
(fs(γγ′1

−1)).

So
[k ◦Ψ(f)](ξ)γ =

∫
Gx
k(γγ′−1

1 · ϕf
−1

(fs(γγ′1
−1)))ξ(γ′1)dνx(γ′1).

As [k ◦Ψ(f)](ξ)γ is also given by

[k ◦Ψ(f)](ξ)γ =
∫
Gx
kf,r(γγ′−1

1 )ξ(γ′1)dνx(γ′1),

we have the formula.
Recall that the action of f on k ∈ C∞c (G) is given by

(fk)(γ) = k(f−1γ),

where γ ∈ G. Then we immediately have

Lemma 4.14. Ψ(f) ◦ k ◦Ψ(f−1) = f(k).

Proof. For γ ∈ Gx,

(kf
−1,r)f,l(γ) = kf

−1,r(f−1γ ◦ ϕf
−1

(x)) = k(f−1γ ◦ ϕf
−1

(x) ◦ ϕf (f−1x)) = k(f−1γ).

�

It is then easy to check that the same relations hold in the presence of the general Hermitian bundle E over
V with isomorphism Af as above. So for instance, we have for any k ∈ C∞c (G, E) := C∞c (G,Hom(s∗E, r∗E)):

ΨE(f) ◦ k ◦ΨE(f−1) = f(k), where f(k)(γ) = (Af )−1
r(γ) ◦ k(f−1γ) ◦ (Af )f−1s(γ).

Proposition 4.15. Let C be a closed Haefliger current and τC the cyclic cocycle on C∞c (G, E) associated
with C by Theorem 4.6. Then τC satisfies the following equation

τC(k0, ..., ki,ΨE(f) ◦ ki+1, ..., kr) = τC(k0, ..., ki ◦ΨE(f), ki+1, ..., kr).

Proof. We shall give the proof for the trivial line bundle E = V × C, from which the general case is easily
deduced. If C is a 0-current, we must show τC(Ψ(f) ◦ k) = τC(k ◦Ψ(f)). But k ◦Ψ(f) = Ψ(f−1) ◦Ψ(f) ◦ k ◦
Ψ(f) = f−1(Ψ(f)◦k), and in the proof of Proposition 4.19, we show that τC(f−1(Ψ(f)◦k)) = τC(Ψ(f)◦k).

Now suppose that r = dim(C) > 0. Since τC is cyclic, we need only show

τC(k0,Ψ(f) ◦ k1, k2, ..., kr) = τC(k0 ◦Ψ(f), k1, ..., kr).

Recall that the product k0 ∗ δνk1 ∗ δνk2 ∗ · · · ∗ δνkr in Connes’ X-trick is given by

k0 ∗ δνk1 ∗ δνk2 ∗ · · · ∗ δνkr =
(
k0 0
0 0

)(
dνk1 k1

θk1 0

)(
dνk2 k2

θk2 0

)
· · ·
(
dνkr kr
θkr 0

)
,

where θ = d2
ν , the curvature of dν defined above. To compute τC(k0, k1, ..., kr), we need only the (1, 1)

component of this product.
There are two types of terms. The first type consists of terms of the form k0 (Ψ(f) ◦ k1)A, where A

is a polynomial in the variables k2, . . . , kr, dνk2, . . . , dνkr, and θ. It is immediate that k0 (Ψ(f) ◦ k1) =
(k0 ◦ Ψ(f)) k1, that is k0k

f,`
1 = kf,r0 k1, so we have the result for these terms. The second type consists of

terms of the form k0 dν(Ψ(f) ◦ k1)A = k0 dνk
f,`
1 A.

Lemma 4.16. For k ∈ C∞c (G),

dνk
f,`(γ) = t(f−1

∗ )(dνk(ϕf
−1

(r(γ) ◦ γ))) and dνk
f,r(γ) = dνk(γ ◦ ϕf

−1
(fs(γ))).
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Proof. Let γ ∈ Gyx , and set γ′ = ϕf
−1

(r(γ))◦γ ∈ Gf
−1(y)
x . Let k ∈ C∞c (G). Note that dνkf,l(γ) ∈ r∗(ν∗)γ = ν∗y

and dνk(γ′) ∈ r∗(ν∗)γ′ = ν∗f−1(y). Given X ∈ νy = r∗(ν)γ , let Y ∈ TGγ be the unique vector with r∗(Y ) = X

and s∗(Y ) = hγ−1X. Then
dνk

f,l(X) = dGk
f,l(Y ).

The vector X also gives the vector Y ′ ∈ TGγ′ , determined by the requirements that r∗(Y ′) = X ′ where
X ′ = f−1

∗ (X) = hϕf−1 (r(γ))X, and s∗(Y ′) = hγ−1X = h(ϕf−1 (r(γ))◦γ)−1X ′ = hγ′−1X ′. Then

dνk(X ′) = dGk(Y ′).

Let γt : [0, 1]→ V for t near 0 be a smooth family of leaf-wise paths which defines the tangent vector Y . It
is sufficient for γt to satisfy three requirements:

γ0 = γ;
dγt
dt

(0) |t=0 = hγ−1X;
dγt
dt

(1) |t=0 = X.

Now consider the smooth family of leaf-wise paths γ′t = ϕf
−1

(r(γt))◦γt. First γ′0 = γ′. Second, s(γ′t) = s(γt)

so
dγ′t
dt

(0) |t=0 =
dγt
dt

(0) |t=0 = hγ−1X = hγ′−1X ′. Finally, r(γ′t) = f−1(r(γt)), so
dγ′t
dt

(1) |t=0 = f−1
∗ (X) =

X ′. So the family γ′t defines the vector Y ′. As kf,l(γt) = k(γ′t), we have

dνk
f,l(X) = dGk

f,l(Y ) =
d(kf,l(γt))

dt
|t=0 =

d(k(γ′t))
dt

|t=0 =

dGk(Y ′) = dνk(X ′) = dνk(f−1
∗ (X)) = (t(f−1

∗ )dνk)(X).
Therefore, for all γ ∈ G,

dνk
f,l(γ) = t(f−1

∗ )(dν(k)(γ′)) = t(f−1
∗ )(dνk(ϕf

−1
(r(γ) ◦ γ))).

A similar argument proves the second relation. �

To finish the proof of Proposition 4.15, we have

Lemma 4.17. For k0, k1 ∈ C∞c (G),
k0dνk

f,l
1 = kf,r0 dνk1.

Proof. Recall (Equation 4.1) that for γ ∈ Gy,

[k0 dνk
f,l
1 ](γ) =

∫
γ1∈Gy

k0(γ1)h̃γ1
(
dνk

f,l
1 (γ−1

1 γ)
)
dvols,

where h̃γ1 : ν∗s(γ1) → ν∗r(γ1) is the push-forward map associated to the holonomy map along the leaf-wise

path γ1. Set γ̂ = γ1 ◦ ϕf (f−1s(γ1)). Then k0(γ1) = kf,r0 (γ̂) (since f is a holonomy diffeomorphism). As
γ̂−1 = ϕf (f−1s(γ1))−1 ◦ γ−1

1 = ϕf
−1

(r(γ−1
1 )) ◦ γ−1

1 , we also have dνk
f,l
1 (γ−1

1 ) = t(f−1
∗ )(dνk1(γ̂−1)), and by

a trivial extension,
dνk

f,l
1 (γ−1

1 γ) = t(f−1
∗ )(dνk1(γ̂−1γ)).

Then
[k0 dνk

f,l
1 ](γ) =

∫
γ1∈Gy

k0(γ1)h̃γ1
(
dνk

f,l
1 (γ−1

1 γ)
)
dvols =∫

γ1∈Gy
kf,r0 (γ̂)h̃γ1(t(f−1

∗ )(dνk1(γ̂−1γ)))dvols =
∫
γ1∈Gy

kf,r0 (γ̂)h̃γ1(h̃ϕf (f−1s(γ1))(dνk1(γ̂−1γ)))dvols.

As h̃γ1 ◦ h̃ϕf (f−1s(γ1)) = h̃bγ and γ1 = γ̂ ◦ ϕf−1
(fs(γ̂)), this last may be written as∫

bγ∈Gy k
f,r
0 (γ̂)h̃bγ(dνk1(γ̂−1γ))dvols = [kf,r0 dνk1](γ).

�

�



HIGHER LEFSCHETZ THEOREM April 5, 2010 19

As an immediate corollary of Lemma 4.17 we have

Corollary 4.18. For k0, k1 ∈ C∞c (G),

k0 ∗ δνkf,l1 = kf,r0 ∗ δνk1 and δνk0 ∗ δνkf,l1 = δνk
f,r
0 ∗ δνk1.

Proof. A simple computation gives the first equality. Applying δν and using the facts δ2
ν = 0 and δν is a

derivation gives the second. �

Let g be another holonomy diffeomorphism of (V, F ).

Proposition 4.19. Let C be a closed Haefliger r-current and τC the cyclic cocycle on C∞c (G) associated
with C by Theorem 4.6. Then for any k0, . . . , kr ∈ C∞c (G),

τC(k0, . . . , kr ◦Ψ(g)) = τC(fk0, . . . , fkr−1, (fkr) ◦Ψ(fgf−1)).

Proof. Note that Ψ is an action, that is Ψ(gf) = Ψ(g)Ψ(f). If C is a Haefliger 0-current (so closed as all
0-currents are) and k ∈ C∞c (G), then we have

τC((fk) ◦Ψ(fgf−1)) = τC(Ψ(f) ◦ k ◦Ψ(f−1) ◦Ψ(fgf−1)) =

τC(Ψ(f) ◦ k ◦Ψ(g) ◦Ψ(f−1)) = τC(f(k ◦Ψ(g))) = τf−1
∗ (C)(k ◦Ψ(g)) = τC(k ◦Ψ(g)).

To prove the second to the last equality recall that the action of f preserves the leaf-wise volume form dvolF .
We may assume that the support of k1 := k ◦Ψ(g) is contained in a fundamental chart for G, see [BH04]. As
f preserves G(0) = V , we may in fact assume that k1 is a smooth compactly supported function on a foliation
chart U ⊂ V , with transversal TU . Then the support of f(k1) is contained in W = f(U) with transversal

TW = f(TU ). Now τC(f(k1)) =
∫
C

∫
F

f(k1)dvolF , and
∫
F

f(k1)dvolF =
∫
W

f(k1)dvolF , so∫
W

f(k1)dvolF =
∫
W

f(k1)(f−1)∗(dvolF ) =
∫
W

(f−1)∗(k1dvolF ) =
∫
f−1(W )

k1dvolF =
∫
U

k1dvolF .

That is,
∫
F

f(k1)dvolF |TW =
(∫

F

k1dvolF |TU
)
◦ f−1 and we have the second to the last equality.

To prove the final equality, we need only show that f−1
∗ (C) = C, or equivalently f∗(C) = C. Let TU be

any transversal, and set TW = f(TU ), also a transversal. Since f is a holonomy diffeomorphism, we may
write TU as a countable union of open subsets TU = ∪Uj , where f |Uj = hϕf (xj) for some xj ∈ Uj . Then,
f∗(C) |f(Wj) = hϕf (xj)∗(C) |f(Wj) = C |f(Wj), and we have this last equality.

Now suppose that dimC = r > 0.

Lemma 4.20. For k1, k2 ∈ C∞c (G) and f ∈ H,

fk1 ∗ δν(fk2) = kf,l1 ∗ δν(kf
−1,r

2 ),

and
δν(fk1) ∗ δν(fk2) = δν(kf,l1 ) ∗ δν(kf

−1,r
2 ).

Proof. As above, the second equality is δν applied to the first.
By Corollary 4.18, Lemma 4.14, and the fact that Ψ is an action, we have

fk1 ∗ δν(fk2) = fk1 ∗ δν((kf
−1,r

2 )f,l) = (fk1)f,r ∗ δν(kf
−1,r

2 ) =

((kf,l1 )f
−1,r)f,r ∗ δν(kf

−1,r
2 ) = kf,l1 ∗ δν(kf

−1,r
2 ).

�

Now
δνk

f−1,r
1 ∗ δνkf,l2 = δν [kf

−1,r
1 ∗ δνkf,l2 ] = δν [(kf

−1,r
1 )f,r ∗ δνk2] = δνk1 ∗ δνk2.

By induction it follows immediately that,

fk0 ∗ δν(fk1) ∗ · · · ∗ δν(fkr−1) = kf,l0 ∗ δνk1 ∗ · · · ∗ δνkr−2 ∗ δν(kf
−1,r
r−1 ).
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Similarly, we have

δν(kf
−1,r
r−1 ) ∗ δν((fkr) ◦Ψ(fgf−1)) = δνkr−1 ∗ δν((kr ◦Ψ(g))f

−1,r).

Thus
fk0 ∗ δν(fk1) ∗ · · · ∗ δν(fkr−1) ∗ δν((fkr) ◦Ψ(fgf−1)) =

kf,l0 ∗ δνk1 ∗ · · · ∗ δνkr−1 ∗ δν((kr ◦Ψ(g))f
−1,r),

and we have

τC(fk0, . . . , fkr−1, (fkr) ◦Ψ(fgf−1)) = τC(kf,l0 , k1, . . . , kr−1, (kr ◦Ψ(g))f
−1,r) =

(−1)rτC((kr ◦Ψ(g))f
−1,r, kf,l0 , k1, . . . , kr−1),

by the cyclicity of τC . Using Corollary 4.18, this equals

(−1)rτC(kr ◦Ψ(g), k0, k1, . . . , kr−1) = τC(k0, . . . , kr ◦Ψ(g)),

again by cyclicity. �

We finish this section by specializing to the case of the leaf-wise action of a compact group H. So, we
assume that H is a compact group which acts smoothly by diffeomorphisms on the compact manifold V .
We assume for simplicity that H preserves the leaves of the foliation F . Then H acts continuously on the
algebra C∞c (G, E) endowed with its natural compact open topology, as well as on the C∗-algebra C∗(V, F ),
[B97]. Given a finite dimensional unitary representation (X,U) of H, we denote by X the equivariant trivial
bundle V ×X.

Let X,X ′ be finite dimensional Hermitian spaces and H → U(X), H → U(X ′) unitary representations of

H. As usual, we denote by ˜C∞c (G, E) the unital algebra C∞c (G, E)⊕C. As usual, we denote by ˜C∞c (G, E) the

unital algebra C∞c (G, E)⊕C. Let ẽ = (e,Λ) ∈ ˜C∞c (G, E)⊗End(X) and ẽ′ = (e′,Λ′) ∈ ˜C∞c (G, E)⊗End(X ′)
be two H-invariant idempotents such that [ẽ] − [ẽ′] defines an equivariant K-theory class of the algebra
C∞c (G, E). Recall that h is a holonomy diffeomorphism which generates the compact Lie group H. Then we
have

Theorem 4.21. For any closed Haefliger current C on (V, F ), we have
• The complex number

(τC] tr)(ΨE⊗X(h) ◦ e, e, ..., e)− (τC] tr)(ΨE⊗X′(h) ◦ e′, e′, ..., e′),
depends only on the equivariant K-theory class [ẽ]− [ẽ′], and yields an additive map from the equi-
variant K-theory of C∞c (G, E) to the scalars.

• This map induces a pairing

4.22. KH(C∞c (G, E))⊗Hev(V/F ) −→ C(H)H .

• This pairing extends to a well-defined pairing

4.23. KH(C∗(V, F ))⊗Hev(V/F ) −→ C(H)H .

Proof. By Proposition 3.5, in order to prove the first and second items, we first prove that the functional
C∞c (G, E)r+1 ×H → C given by

φC : (k0, · · · , kr|h) 7−→ τC(ΨE(h) ◦ k0, k1, · · · , kr),
is an equivariant continuous cyclic cocycle on (C∞c (G, E), H). Continuity is straightforward. We have for
any h′ ∈ H:

φC(h′k0, · · · , h′kr|h′hh′
−1) = τC(ΨE(h′hh′−1) ◦ h′k0, h

′k1, · · · , h′kr)
= τC(ΨE(h′) ◦ΨE(h) ◦ΨE(h′)−1 ◦ h′k0, h

′k1, · · · , h′kr).
But recall that h′kj = ΨE(h′) ◦ kj ◦ΨE(h′)−1, therefore,

φC(h′k0, · · · , h′kr|h′hh′
−1) =
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τC(ΨE(h′) ◦ΨE(h) ◦ k0ΨE(h′)−1,ΨE(h′) ◦ k1 ◦ΨE(h′)−1, · · · ,ΨE(h′) ◦ kr ◦ΨE(h′)−1) =

τC(ΨE(h′) ◦ΨE(h) ◦ k0, k1, · · · , kr ◦ΨE(h′)−1).

The last equality is a consequence of Proposition 4.15. Now by cyclicity of the cochain τC we can again
apply Proposition 4.15 to conclude that

φC(h′k0, · · · , h′kr|h′hh′
−1) = τC(ΨE(h) ◦ k0, k1, · · · , kr),

and hence the first and second items.
The third item is a straightforward consequence of the deep result of Connes [C86], where he constructs

a complicated subalgebra B of C∗(V, F ) such that:

• B is stable under holomorphic functional calculus in C∗(V, F ).
• B contains C∞c (G) and so is dense in C∗(V, F ).
• The cyclic cocycle φC on C∞c (G) extends to a cyclic cocycle on B.

Hence, the extension of φC induces an additive map

φC,∗ : K(B)→ C,

and the inclusion i : B ↪→ C∗(V, F ) induces an isomorphism K(B) ' K(C∗(V, F )). In the presence of
a vector bundle E the same construction yields a subalgebra BE of the twisted by E Connes’ C∗-algebra
C∗(V, F ;E), with the same properties. The main input here is the additional action of the compact Lie group
H. But, it is obvious from Connes’ construction that the algebra BE is an H-subalgebra of C∗(V, F ;E) and
hence, by easy arguments, the H-equivariant inclusion i : BE ↪→ C∗(V, F ;E) induces an R(H)-isomorphism
KH(BE) ' KH(C∗(V, F ;E))(' KH(C∗(V, F ))). Moreover, the extension of φC to BE is also clearly an
equivariant cyclic cocycle. Therefore, Connes’ proof yields the third item in a straightforward way. �

We quote the following proposition for later use. Recall that when the action of H on an algebra A is
trivial, the equivariant K-theory KH(A) is naturally isomorphic to the tensor product K(A)⊗R(H) where
R(H) is the representation ring of H.

Proposition 4.24. Assume that the actions of H on V and E are trivial. Then the following diagram is
commutative

KH(C∞c (G, E))

Z
Z
Z
ZZ~

〈C, ·〉h

φ
- K(C∞c (G, E))⊗R(H)

?

C

〈C, ·〉 ⊗ evh

where 〈C, ·〉h is the pairing of Theorem 4.21 of the closed Haefliger current C with equivariant K-theory,
evh : R(H)→ C is evaluation of characters at h, and φ is the natural isomorphism.

Proof. If ẽ is an idempotent in the unitalization algebra ˜C∞c (G, E) and ρ = (X,U) is a finite dimensional
unitary representation of H, then ẽ can also be viewed as an equivariant element for the trivial action,
and we can therefore consider the equivariant idempotent ẽρ of the algebra ˜C∞c (G, E)⊗ End(X). The map

ẽ ⊗ ρ 7→ ẽρ then implements the isomorphism φ−1. Now, since the action of H on ˜C∞c (G, E) is trivial,
the multiplier ΨE(h) is simply the identity operator. Moreover, the multiplier ΨE⊗X(h) is simply given by
IdE ⊗ U(h). Thus applying the pairing with C to the element ẽρ gives

〈C, [ẽρ]〉h = (τC] tr)(Id⊗ U(h) ◦ e⊗ IdX , e⊗ IdX , ..., e⊗ IdX)

= (τC] tr)(e⊗ U(h), e⊗ IdX , ..., e⊗ IdX) = 〈C, [ẽ]〉 × tr(U(h)).

Hence the conclusion. �
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We now return to the general case, so the action of the compact group H is now a general action by
F -preserving diffeomorphisms of (V, F ). Recall the prime ideal I[h] associated with (the conjugacy class of)
h ∈ H in R(H):

I[h] := {χ ∈ R(H) |χ(h) = 0};
The equivariant K-theory of the (non-C∗-) algebra C∞c (G, E) is naturally endowed with the structure of an
R(H)-module. Therefore we can define the localization of this module at I[h], denoted KH(C∞c (G, E))[h],
which is a module over the localized ring R(H)[h].

Proposition 4.25. Composing the pairing 4.22 with evaluation at the (conjugacy class of the) element
h ∈ H, gives the pairing

〈·, ·〉[h] : KH(C∞c (G, E))⊗Hev(V/F ) −→ C,
which satisfies

〈xρ,C〉[h] = 〈x,C〉[h] × ρ(h), x ∈ KH(C∞c (G, E)), C ∈ Hev(V/F ) and ρ ∈ R(H).

In particular, the pairing 〈·, ·〉[h] induces a pairing of the Haefliger homology of the foliation with the equi-
variant K-theory of C∞c (G, E) localized at the prime ideal I[h].

Proof. For simplicity, we will forget the bundle E. Fix two H-invariant idempotents ẽ = (e,Λ) ∈ C∞c (G)⊗
End(X) and ẽ′ = (e′,Λ′) ∈ C∞c (G) ⊗ End(X ′), and set x = [ẽ] − [ẽ′]. We also consider one (again for
simplicity) extra finite dimensional representation (U ′′, X ′′) of H which represents a class ρ in R(H). Then
the equivariant K-theory class xρ is by definition the class of the formal difference

xρ = [ẽ⊗ idX′′ ]− [ẽ′ ⊗ idX′′ ].
Therefore, for any even dimensional closed Haefliger current C, we have

〈xρ,C〉h = (τC] tr ] tr)(ΨX⊗X′′(h) ◦ (e⊗ idX′′), e⊗ idX′′ , · · · , e⊗ idX′′)−

(τC] tr ] tr)(ΨX′⊗X′′(h) ◦ (e′ ⊗ idX′′), e′ ⊗ idX′′ , · · · , e′ ⊗ idX′′).
By definition

ΨX⊗X′′(h) ◦ (e⊗ idX′′) = (ΨX(h) ◦ e)⊗ U ′′(h),
and the same relation holds with e′ in place of e. Thus

〈xρ,C〉h = (τC] tr)(ΨX(h) ◦ e, e, · · · , e)× tr(U ′′(h))− (τC] tr)(ΨX′(h) ◦ e′, e′, · · · , e′)× tr(U ′′(h)).

As a corollary, we deduce that the formula〈
x

ρ
,C

〉
h

:=
〈x,C〉h
ρ(h)

, x ∈ KH(C∞c (G)), ρ ∈ R(H) r Ih,

gives the desired pairing between the localized K-theory at the conjugacy class of h in H, and the Haefliger
even dimensional homology of the foliation. The case of general E is similar. �

We now define the higher Lefschetz number. Recall that for any h ∈ H, the topologically cyclic group H1

is the compact (abelian) group topologically generated by h in H. Given an H-invariant leaf-wise elliptic
complex (E, d) over the foliation (V, F ), we can define the localized index class IndH(E,d)

1R(H)
with respect to

the prime ideal associated with the conjugacy class of h in R(H). So, IndH(E,d)
1R(H)

∈ KH(C∗(V, F ))[h] and we

know that there exists a localized class IndH∞(E,d)
1R(H)

∈ KH(C∞c (G, E))h which pushes to IndH(E,d)
1R(H)

under the
functoriality map. Recall that the Lefschetz class of h with respect to (E, d) is given by

L(h;E, d) =
IndH1(E, d)

1R(H1)
∈ KH1(C∗(V, F ))h.

In the same way one defines a smooth Lefschetz class L∞(h;E, d) with lives in KH1(C∞c (G, E))h which pushes
to L(h;E, d). One can use naturality with respect to subgroups to check that the following diagram, where
r is the natural forgetful map from H-equivariant K-theory to H1-equivariant K-theory, is commutative
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KH(C∞c (G, E))

Z
Z
Z
ZZ~

〈C, ·〉[h]

r
- KH1(C∞c (G, E))

?

C

〈C, ·〉h

Here C is any even dimensional closed Haefliger current on the foliation (V, F ) and 〈C, ·〉[h] stands as before
for evaluation at h of the pairing of C with the H-equivariant K-theory, while 〈C, ·〉h is the same map but
for the compact abelian group H1.

Therefore, the Lefschetz numbers given by h evaluated against a given closed Haefliger current C with
respect to a given H-invariant elliptic complex (E, d) along the leaves of the foliation, do not depend on
H as far as this latter exists. We can use any such group and the smallest one is the closed subgroup H1

generated by h in the compact Lie group of isometries of the Riemannian compact manifold V . This reduces
the Lefschetz problem to the case where H = H1.

Definition 4.26. Let C be an even dimensional closed Haefliger current. Then the C-Lefschetz number of
h with respect to a leaf-wise elliptic pseudodifferential H-invariant complex (E, d) is the scalar LC(h;E, d)
defined as

LC(h;E, d) := 〈C,L∞(h;E, d)〉h ,
where L∞(h;E, d) is the smooth Lefschetz class in the localized equivariant K-theory group KH(C∞c (G, E))h.

As a straightforward consequence of the K-theory Lefschetz theorem, we then deduce:

Theorem 4.27. Let (E,d) be an H-invariant leaf-wise elliptic pseudodifferential complex over the compact
foliated manifold (V, F ). Let C be an even dimensional closed Haefliger current on (V, F ). Then we have

LC(h;E, d) 6= 0 ⇒ L(h;E, d) 6= 0 ⇒ IndHV (E, d) 6= 0 and V h 6= ∅.

Proof. We know by Theorem 4.21 that the map 〈C, ·〉[h] extends to an additive map on the H-equivariant

K-theory C∗-algebra C∗(V, F ). Since L(h;E, d) = IndHV (E,d)
1R(H)

we immediately deduce,

LC(h;E, d) 6= 0 ⇒ L(h;E, d) 6= 0 ⇒ IndHV (E, d) 6= 0.

Moreover, by the K-theory Lefschetz theorem of [B97], we also have

L(h;E, d) 6= 0 ⇒ V h 6= ∅.
�

To end this section we explain the case when (V, F ) admits a holonomy invariant transverse measure
Λ. Recall that Λ induces a trace on C∗(V, F ;E), [C79], which is finite on C∞c (G, E). We will denote this
0-cocycle by τΛ. Because the Ruelle-Sullivan current associated with Λ is a Haefliger current we deduce:

Corollary 4.28. Let ẽ be an H-invariant projection of ˜C∞c (G, E) ⊗ End(X), where (U,X) is a finite di-
mensional unitary representation of H. Then the formula

τhΛ(ẽ) = (τΛ]tr)
(
ΨE⊗X(h) ◦ e

)
induces an additive map on the (localized at the conjugacy class of h) equivariant K-theory of the algebra
C∞c (G, E):

τhΛ : KH(C∞c (G, E))[h] → C.

Notice that τhΛ extends easily to the localized equivariant K-theory of Connes’ C∗-algebra of the foliation.
Corollary 4.28 was first proved in [B97]. Here it is a corollary of Theorem 4.21 since τΛ is an H-equivariant
cyclic 0-cocycle. If we define the Lefschetz Λ-number of h to be

LΛ(h;E, d) = τhΛ(L∞(h;E, d)),
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then we get from the K-theory Lefschetz theorem a measured Lefschetz theorem which recovers the results
of [HL90] when the diffeomorphism is an isometry. In this measured case it is easy to see that LΛ(h;E, d)
coincides with the alternating sum of the actions of h on the kernels of the Laplacians of the G-complex so
that when F = T (V ) we obtain the classical Lefschetz theorem.

5. The higher Lefschetz theorem

Recall that (V, F ) is a closed foliated manifold and that H is a compact Lie group which is generated by a
holonomy diffeomorphism h of V , so h is leaf preserving while H is only necessarily F -preserving. We assume
that (E, d) is a leaf-wise elliptic pseudodifferential complex on (V, F ) which is H-equivariant, i.e. E = ⊕Ei
and the bundles Ei are H-equivariant, while the operators di are H-invariant. We tackle in this section the
main result of this paper, namely the higher Lefschetz theorem in Haefliger cohomology. Rephrasing the
results of the previous section and using continuity in h′ ∈ H, we have defined an equivariant Chern-Connes
character

chH : KH(C∞c (G, E)) −→ Hev
c (V/F )⊗ C(H)H ,

which, composed with evaluation at h, induces a localized Chern-Connes character

(chH)[h] : KH(C∞c (G, E))[h] −→ Hev
c (V/F,C).

We want to compute the image under (chH)[h] of the Lefschetz class of h with respect to (E, d), in terms
of characteristic classes at the fixed points of the elements of [h]. We have adopted the technically simpler
choice of applying the pairing of this equivariant Chern-Connes character with closed Haefliger currents.
Therefore, we shall rather compute the complex numbers LC(h;E, d), where C runs through the space
of closed Haefliger currents on the foliation (V, F ). Due to the naturality of the pairing with respect to
subgroups, we can restrict to the case where H is the abelian compact Lie group topologically generated by
an element h, so the conjugacy class reduces to h and the statements are then much simpler.

We need to restrict Haefliger currents to the fixed point submanifold with its induced foliation, so we
assume that this fixed point submanifold is transverse to the ambient foliation and has dimension at least
equal to the codimension of the foliation, since otherwise the contributions are trivial. Recall that a smooth
submanifold W of the closed manifold V is transverse to the foliation F , if the fibers of the tangent space
TW to W are transverse as vector spaces to the fibers of TF . In the case dim(W ) ≤ codim(F ), this means
that TW and TF are in direct sum. In the case dim(W ) > codim(F ) this means that dim(TW ∩ TF ) =
dim(W )−codim(F ). We shall then denote by FW the induced foliation on W whose leaves are the connected
components of the intersections of the leaves of (V, F ) with W . So the bundle TFW is given by

TFW = TW ∩ TF.

We shall denote by GW the holonomy groupoid of the foliation (W,FW ). Associated with the inclusion
j : W ↪→ V of the transverse submanifold W of V , there is a well-defined Morita extension map

j! : K(C∞c (GW , E|W )) −→ K(C∞c (G, E))

which is the smooth version of the construction given in [CS84]. When W is in addition an H-submanifold,
we immediately get an equivariant Morita extension map

j! : KH(C∞c (GW , E|W )) −→ KH(C∞c (G, E)),

which is defined in exactly the same way. For the convenience of the reader, we recall the construction of
the equivariant version of the map j! below in the proof of Proposition 5.1, see [C82, B97] for more details.

Let C be any closed Haefliger k-current on (V, F ) and let τ = τC be the associated H-equivariant cyclic
k-cocycle on the algebra C∞c (G, E) as in Theorem 4.6, and recall Theorem 4.21. We assume again that k is
even and concentrate on the even K-theory. Then we have

Proposition 5.1. Let W be a smooth (closed) H-submanifold of V which is transverse to the foliation F
and has dimension ≥ codim(F ). We suppose that FW is oriented. Then
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• There is a well-defined R(H)-linear morphism j! : KH(C∞c (GW , E|W )) → KH(C∞c (G, E)) which
induces the (equivariant) Connes-Skandalis Morita extension morphism [CS84].

• The restriction of the current C to the (open) transversals of FW yields a closed Haefliger current
on (W,FW ) that we denote by CW . Moreover, if the generator h preserves the leaves of FW and is
a holonomy diffeomorphism of the foliation (W,FW ), then the following diagram commutes:

KH(C∞c (GW , E|W ))

Z
Z
ZZ~

〈CW , ·〉

j! - KH(C∞c (G, E))

�
�

��=
C(H)H

〈C, ·〉

Proof. For the moment, we forget the bundle E. Let N be an open tubular neighborhood of W in V which is
an open H-submanifold of V so that its fibers over W are connected open disks of the leaves of (V, F ). Notice
that since H is compact, such tubular H-neighborhoods always exist. As N is a transverse submanifold to
(V, F ), it inherits a foliation FN and a holonomy groupoid GN which is clearly an open subgroupoid and
submanifold of G. As usual, we identify N with the total space of the normal vector bundle π : N →W to W
in V . Then the foliation of N yields a foliation on N and the action of H on N endows N with the structure
of an H-equivariant vector bundle. More precisely, the vector bundle N → W is endowed with the smooth
foliation whose leaves are the restrictions of N to the leaves of (W,FW ), said differently, it is the foliation
on N generated by the integrable subbundle of TN given by the kernel of ρ ◦π∗ where ρ : TW → TW/TFW
is the quotient projection. The Morita extension map j! is then, up to the identification of (N , FN ) with
(N,FN ), the composite map of a Mischenko map induced in KH -theory by an algebra morphism

M : C∞c (GW ) −→ C∞c (GN ),

that we recall below, and the excision map induced by the trivial extension ι : C∞c (GN )→ C∞c (G) associated
with the open subgroupoid GN of G. Recall that ν is the transverse bundle to the ambient foliation. We also
denote by ν its restriction to N and W , as well as the normal bundle to the foliation of the vector bundle
N . It should be clear from the context which we mean.

We first show that the equivariant pairing commutes with the equivariant excision. Any smooth compactly
supported form ω ∈ C∞c (GN ,∧jr∗(ν∗)) can be trivially extended to a smooth compactly supported form
ι∗ω ∈ C∞c (G,∧jr∗(ν∗)). Moreover, we get by direct inspection that for any ω1, ω2 ∈ C∞c (GN ,∧jr∗(ν∗)),

(ι∗ω1)(ι∗ω2) = ι∗(ω1ω2) and dν ◦ ι∗ = ι∗ ◦ dν .
On the other hand, notice that since h preserves the leaves of FW and is a holonomy diffeomorphism of
(W,FW ), it also preserves the leaves of FN and is a holonomy diffeomorphism of (N , FN ). Hence, for any
h ∈ H, the multiplier Ψ(h) can be defined as an operator on L2((GN )x). Then

(Ψ(h) ◦ ιk0)dν(ιk1) · · · dν(ιkr) = ι∗ [(Ψ(h) ◦ k0)(dνk1) · · · (dνkr)] ,
and a simple algebraic computation shows that

[(Ψ(h) ◦ ιk0) ∗ δν(ιk1) ∗ · · · ∗ δν(ιkr)]11 = ι∗ [(Ψ(h) ◦ k0) ∗ (δνk1) ∗ · · · ∗ (δνkr)]11 .

Integration over the leaves also commutes with ι∗ and we deduce

τC(Ψ(h) ◦ ιk0, ιk1, · · · , ιkr) = τCN (Ψ(h) ◦ k0, k1, · · · , kr), kj ∈ C∞c (GN ).

This finishes the proof that the equivariant pairing with C commutes with the excision map.
The equivariant leaf-wise diffeomorphism between (N , FN ) and (N,FN ) induces an isomorphism in equi-

variant K-theory, so we now concentrate on the Mischenko map M : C∞c (GW ) → C∞c (GN ) associated with
the vector bundle π : N → W . We shall identify W with the zero section of the vector bundle (N, π,W ).
It is obvious that the holonomy groupoid GN may be identified with the smooth groupoid whose space of
arrows is

{(γ, n, n′) ∈ GW ×N2 such that π(n) = s(γ) and π(n′) = r(γ)}.
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The groupoid laws should be clear. Choose a Lebesgue class measure β along the fibers of (N, π,W ) which
is given by a volume form along the fibers, and a Lebesgue class measure µ along the leaves of FW associated
with a leaf-wise volume form. Then, there is a Lebesgue class measure along the leaves of FN which is locally
given by µ⊗ β and that is associated with a volume form along the leaves of FN . Using a partition of unity
argument and averaging if necessary, construct a non-negative smooth compactly supported function ϕ on
the total space N which is H-invariant and such that for every w ∈ W , the restriction of ϕ to the fiber Nw
has L2-norm equal to 1, i.e. ∫

Nw

ϕ(n)2dβ(n) = 1, ∀w ∈W.

The homomorphism M applied to k ∈ C∞c (GW ) is then simply given by

M(k)(γ, n, n′) := k(γ)ϕ(n)ϕ(n′).

It is easy to check that M is an algebra morphism which is H-equivariant. With obvious notations, the
bundle π∗ν is a normal bundle to the foliation FW and coincides with the restriction of ν to W . Let
[α] = [(γ, n, n′)] ∈ GN , so α is a path joining n to n′ inside a leaf of FN . Denote by hα the holonomy local
diffeomorphism of α acting between a small transversal at n and a small transversal at n′. Denote by hγ the
local holonomy diffeomorphism associated with the leaf-wise (in FW ) path γ = π(α). Notice that, up to the
identifications through π of the transversals at points of N and their projected transversals in W , the local
diffeomorphism hα coincides with the local diffeomorphism hγ , that is

π ◦ hα = hγ ◦ π.

Therefore at the level of the induced tangent maps, we deduce a similar relation in the actions on the normal
bundle ν. This shows, by definition of the transverse differential dν corresponding to the choice of ν, that
for any X ∈ νn′ , and denoting by Y ∈ T[α]GN the unique lift with r∗Y = X and s∗Y = h−1

α,∗X, we have

< [dν(M(k))][α], X > = < d(M(k))[α], Y > =

ϕ(n)ϕ(n′) < dνk, Y > + ϕ(n)k(γ) < dn′ϕ,X > + ϕ(n′)k(γ) < dnϕ, h
−1
α,∗(X) > .

Since ϕ is smooth compactly supported, we have the following equality in ν∗w for any w ∈W ,∫
Nw

(π∗n)−1[ϕ(n)(dνϕ)(n)]dβ(n) =
1
2
dν

[∫
Nw

(ϕ(n))2dβ(n)
]

= 0,

where π∗n : ν∗w ' ν∗n. Now consider the contribution of the second term in dν(M(k1)) to say M(k0)dν(M(k1)),
evaluated at the unit [n′] of GN determined by the point n′ ∈ N . Recall that for α = (γ, n, n′), h̃α = thα−1,∗ :
ν∗n → ν∗n′ , and h̃γ = thγ−1,∗ : ν∗π(n) → ν∗π(n′). Using the above equality we have

(M(k0)[ϕπ∗(k1)dνϕ]) ([n′]) =
∫

[α]∈Gn′N
M(k0)(α)h̃α([ϕπ∗(k1)dνϕ](α−1))d(µ⊗ β)([α])

=
∫
γ∈Gπ(n′)

W

∫
n∈Ns(γ)

k0(γ)ϕ(n′)ϕ(n)k1(γ−1)ϕ(n′)h̃α(dνϕ(n))dβ(n)dµ(γ)

= ϕ(n′)2

∫
γ∈Gπ(n′)

W

k0(γ)k1(γ−1)

[∫
n∈Ns(γ)

h̃α(ϕ(n)dνϕ(n))dβ(n)

]
dµ(γ).

But ∫
n∈Ns(γ)

h̃α(ϕ(n)dνϕ(n))dβ(n) = π∗n′

∫
n∈Ns(γ)

(π∗n′)
−1h̃α(ϕ(n)dνϕ(n))dβ(n)

= π∗n′

∫
n∈Ns(γ)

h̃γ(π∗n)−1(ϕ(n)dνϕ(n))dβ(n)

= π∗n′ h̃γ

∫
n∈Ns(γ)

(π∗n)−1(ϕ(n)dνϕ(n))dβ(n) = 0.
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Essentially the same computation shows that, restricted to the units, M(k0)×the third term in dν(M(k1))
is also zero. Thus [M(k0)dν(M(k1))]([n′]) = ϕ(n′)2[k0dνk1]([π(n′)]). A similar (more involved but straight-
forward) computation gives that restricted to the units, all the terms in the differential form

M(k0)dν(M(k1)) · · · dν(M(kr))

which involve at least one differential of ϕ are zero. Hence

[M(k0)dν(M(k1)) · · · dν(M(kr))] ([n′]) = ϕ(n′)2 [k0dν(k1) · · · dν(kr)] ([π(n′)]).

In order to extend this relation to the modified differential graded algebras, we note that the argument above
would suffice if the curvature θ evaluated at [(γ, n, n′)] depended only on γ, so that it would pull out of the
integration just as kj(γ) does. We show that in fact this is morally true in the sense that we may treat θ as if
this were true with no ill effects. First note that the Haefliger class we pair with is independent of the choice
of the function ϕ. Now consider the one parameter family of such functions given by ϕ2

t (n) = t−kϕ2(n/t).
Here k is the fiber dimension of N . Next note that for the general case, we must deal with integrals of the
form ∫

n∈Ns(γ)
ϕt(n)dνϕt(n)θ(γ, n, n′)dβ(n) and

∫
n∈Ns(γ)

ϕ2
t (n)θ(γ, n, n′)dβ(n).

For simplicity, we are ignoring things such as h̃α, π∗n′ , (π∗n)−1, etc. Now we may write θ(γ, n, n′) = θ(γ, 0, n′)+∑
j njθj(γ, n, n

′), where the θj and all their derivatives are uniformly bounded on G. Then, by a simple
change of variables, we have∫

n∈Ns(γ)
ϕ2
t (n)θ(γ, n, n′)dβ(n) = θ(γ, 0, n′) +

∑
j

∫
n∈Ns(γ)

ϕ2(n)tnjθj(γ, tn, n′)dβ(n) = θ(γ, 0, n′) + Φt.

Since the θj and all their derivatives are uniformly bounded on G, Φt is smooth in all its variables, and all
its transverse derivatives converge to zero as t goes to zero. Since dνθ = 0, twice the first integral is just dν
applied to the second integral, so equals dνΦt, and behaves just like Φt. Thus we get

[M(k0) ∗ δν(M(k1)) ∗ · · · ∗ δν(M(kr))]11 ([n′]) = ϕ(n′)2 [k0 ∗ δν(k1) ∗ · · · ∗ δν(kr)]11 ([π(n′)]) + Ψt,

where Ψt is smooth in all its variables, and all its transverse derivatives converge to zero as t goes to zero.
By Fubini, integration over the leaves of FN becomes integration over the fibers of N followed by integration
over the leaves of FW . Thus, up to the identification of the Haefliger forms on (W,FW ) with the Haefliger
forms on (N,FN ),∫

FN

[M(k0) ∗ δν(M(k1)) ∗ · · · ∗ δν(M(kr))]11 =
∫
FW

[k0 ∗ δν(k1) ∗ · · · ∗ δν(kr)]11 +
∫
FN

Ψt.

Now, integration over the leaves of FN is really integration over compact sets, and since the integrands
are uniformly bounded, this integration commutes with taking transverse derivatives. The Haefliger class

determined by
∫
FN

Ψt is independent of t, and letting t → 0, we see that it has a representative whose

derivatives up to any finite order are as small as we please. Thus it is the zero Haefliger class, and so it
contributes nothing to the pairing.

To finish the proof of the commuting with the equivariant Mischenko map, notice that since the projection
π is H-equivariant, we have for any h ∈ H and any n ∈ N , π̃(ϕh(n)) = ϕh(π(n)), where π̃ : GN → GW is the
projection. Hence

Ψ(h) ◦M(k) = M(Ψ(h) ◦ k), ∀k ∈ C∞c (GW ).

We now indicate how to handle the inclusion of the bundle E, and for this we revert to the open tubular
neighborhood N . Denote by ρ : N →W the projection. In order to extend the above construction, we only
need a smooth way to identify Ex with Eρ(x) for each x ∈ N . Choose a connection on E. We may assume
that the fibers of N as so small that there is a unique (leaf-wise for F ) geodesic from x to ρ(x) in fiber of x.
We then use the parallel translation defined by the connection on E along this geodesic to identify Ex with
Eρ(x). �
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We are now in position to state the following

Theorem 5.2. [Higher Lefschetz Theorem] Let F be an oriented foliation of the Riemannian manifold (V, g).
Let h be a holonomy isometry of (V, g) (so h preserves the leaves of F ). Denote by H the compact Lie group
generated by h in the group of isometries of (V, g). Assume that the fixed-point submanifold V h = V H of h is
transverse to the foliation and denote by Fh its induced foliation and by Nh the normal bundle to V h in V .
Then for any leaf-wise elliptic H-equivariant pseudodifferential complex (E, d) over (V, F ) and every closed
even dimensional Haefliger current C on (V, F ), the higher Lefschetz number of h with respect to (E, d) is
given by

LC(h;E, d) = IndC|
V h

(
i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)

)
,

where C|V h is the closed Haefliger current on (V h, Fh) which is the restriction of C, IndC|
V h

: K(TFh)⊗C→
C is the complexified higher C|V h-index map on (V h, Fh), see [BH04], and i : TFh ↪→ TF is the H-inclusion.

Proof. We will use Theorem 2.3, which can be summarized by the commutativity of the following square

KH(TFh)h

?

(IndHV h)h

(i!)h-

(j!)h-

KH(TF )h

?

(IndHV )h

KH(C∗(V h, Fh))h KH(C∗(V, F ))h

and the fact that (i!)h is an R(H)h-isomorphism with inverse given by
i∗h

λ−1(Nh ⊗ C)
. Recall that the Morita

extension j! is induced by the smooth Morita extension j! : KH(C∞c (GV h , EV h))→ KH(C∞c (G, E)) described
in the previous proposition applied to the transverse submanifold W = V h. We deduce that the Lefschetz
class L(h;E, d) := IndHV [σ(E,d)]

1R(H)
is given by

L(h;E, d) = (j!)h ◦ (IndV h ⊗R(H)h)
(

i∗[σ(E, d)]
λ−1(Nh ⊗ C)

)
.

On the other hand, LC(h;E, d) is the image of L(h;E, d) by the additive map < C, · >h, so

LC(h;E, d) = (< C, · >h ◦j!)h ◦ (IndHV h)h

(
i∗[σ(E, d)]

λ−1(Nh ⊗ C)

)
.

By Proposition 5.1, we know that

< C, · >h ◦(j!)h = < C|V h , · >h .
Since the action of H on V h is trivial, the H-algebra C∗(V h, Fh) is also endowed with the trivial action.
Hence there is a natural R(H)h-isomorphism

KH(C∗(V h, Fh))h ' K(C∗(V h, Fh))⊗R(H)h,

with respect to which the additive map < C|V h , · >h reads simply < C|V h , · > ⊗evh, where

< C|V h , · >: K(C∞c (C∗(V h, Fh))) −→ C,

is the non-equivariant pairing with the closed Haefliger current C|V h and where evh : R(H)h → C is
evaluation at h, given by evh(χ/ρ) = χ(h)/ρ(h). So, we get

LC(h;E, d) = ([< C|V h , · > ◦ IndV h ]⊗ evh)
(

i∗[σ(E, d)]
λ−1(Nh ⊗ C)

)
= (IndC|

V h
⊗evh)

(
i∗[σ(E, d)]

λ−1(Nh ⊗ C)

)
.

where IndC|
V h

=< C|V h , · > ◦ IndV h is the complexified index map associated with C|V h on the foliation
of the fixed point submanifold V h.
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In the same way, we define evaluation at h

KH(TFh)h → K(TFh)⊗ C,
which we denote by x 7→ x(h). More precisely, we use again that KH(TFh)h ' K(TFh) ⊗ R(H)h and
evaluate at h the elements of R(H)h. We finally get

LC(h;E, d) = IndC|
V h

(
i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)

)
as claimed. �

We finish this section by stating the cohomological Lefschetz formula obtained using the higher index
theorem for Haefliger currents [BH04, C94].

Theorem 5.3. [Cohomological Lefschetz formula] Under the assumptions of Theorem 5.2 and when the
foliation Fh of the fixed point submanifold V h is oriented, we get for any even dimensional closed Haefliger
current C,

LC(h;E, d) =
〈∫

Fh

chC(i∗[σ(E, d)](h))
chC(λ−1(Nh ⊗ C)(h))

Td(Fh ⊗ C), C|V h
〉

where Td denotes the Todd characteristic class of complex bundles and
∫
Fh

is the integration over the leaves
of the foliation (V h, Fh).

Proof. Let φC,V h be the map from H∗c (TFh,R) to C given by

φC,V h(x) =
〈∫

Fh
[x Td(TFh ⊗ C)], C|V h

〉
.

Then the higher index theorem for foliations, applied to the closed foliated leaf-wise oriented manifold
(V h, Fh) with the closed even dimensional Haefliger current C|V h , reduces (up to a sign that we include in
the definition of the Chern character), to the equality

IndC,V h = φC,V h ◦ ch,

where ch : K(TFh) → H∗c (TFh,R) is the usual Chern character for compactly supported K-theory. This
Chern character can be extended trivially to K(TFh)⊗R(H)h and then composed with evaluation at h to
yield the map θ : K(TFh)⊗R(H)h → H∗(TFh,C) which is given by

θ(x⊗ χ

ρ
) = chC [(x⊗ χ/ρ)(h)] = chC [(x⊗ χ(h)/ρ(h))] = [χ(h)/ρ(h)] ch(x).

Hence, if we trivially extend φC,V h to H∗(TFh,C), we get

(φC,V h ◦ θ) (x⊗ χ/ρ) =
〈

ch(x)
χ(h)
ρ(h)

Td(TFh ⊗ C), C|V h
〉

=
〈

chC((x⊗ χ

ρ
)(h)) Td(TFh ⊗ C), C|V h

〉
.

On the other hand, by the K-theory Lefschetz theorem, we have

LC(h;E, d) = IndC,V h
(

i∗[σ(E, d)](h)
λ−1(Nh ⊗ C)(h)

)
.

As
(φC,V h ◦ θ)(u) = IndC,V h(u(h)),

we obtain

LC(h;E, d) = (φC,V h ◦ θ)
(

i∗[σ(E, d)](h)
λ−1(Nh ⊗ C)(h)

)
,

and finally

LC(h;E, d) =
〈

chC(i∗[σ(E, d)](h))
chC(λ−1(Nh ⊗ C)(h))

Td(TFh ⊗ C), C|V h
〉
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as claimed. �

Theorem 5.3 simplifies notably when the fixed point submanifold V h is a strict transversal, that is when
V h is transverse to the foliation with dimension exactly the codimension of the foliation. This simplification
corresponds in the case of a foliation with one leaf to the original case of isolated fixed points. In particular,

Corollary 5.4. Suppose that V h is a strict transversal and C is an even closed Haefliger current. Then
under the assumptions of Theorem 5.2,

LC(h;E, d) =

〈 ∑
i(−1)i chC([Ei|V h ](h))∑

j(−1)j chC([∧j(TF |V h ⊗ C)](h))
, C|V h

〉
.

Proof. Here TFh ∼= V h, so

i∗[σ(E, d)] =
∑
i

(−1)i[Ei|V h ], Nh ∼= TF |V h and Td(TFh ⊗ C) = Td(V h × C) = 1.

Applying Theorem 5.3 gives the corollary.. �

We point out that the term chC(i∗[σ(E, d)](h)) is not easy to compute in general. The simplifications
that occur in the most important geometric cases, together with some applications of the higher Lefschetz
formula, are treated in the second part of this work [BH10].

References

[AB67] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic differential operators I and II, Ann. of Math.

86 (1967), 374–407, ibid 88 (1968), 451–491.

[AS68] M. F. Atiyah and I. M. Singer, The index of elliptic operators I and III, Ann. of Math. 87 (1968), 484–530, 546–604.
[ASe68] M.F. Atiyah and G. Segal, The index of elliptic operators, II, Ann. of Math. 87 (1968), 531–545.

[B97] M.-T. Benameur, A longitudinal Lefschetz theorem in K-theory, K-theory 12 (1997), 227–257.

[B02] M.-T. Benameur, Cyclic cohomology and the family Lefschetz theorem. Math. Ann. 323 (2002), 97–121.
[B03a] M.-T. Benameur, Noncommutative geometry and abstract integration theory. Geometric and topological methods for

quantum field theory (Villa de Leyva, 2001), 157–227, World Sci. Publ., River Edge, NJ, 2003.
[B03b] M.-T. Benameur, A higher Lefschetz formula for flat bundles. Trans. Amer. Math. Soc. 355 (2003), 119–142.

[BH04] M.-T. Benameur and J. L. Heitsch, Index theory and Non-Commutative Geometry I. Higher Families Index Theory,

K-Theory 33 (2004) 151–183. Corrigendum, ibid 36 (2005) 397–402.
[BH08] M.-T. Benameur and J. L. Heitsch, Index theory and non-commutative geometry. II. Dirac operators and index

bundles. J. K-Theory 1 (2008), 305–356.

[BH10] M.-T. Benameur and J. L. Heitsch, The higher fixed point theorem for foliations II. Applications, rigidity and inte-
grality, preprint.

[BT] M.-T. Benameur and J.-L. Tu, Equivariant cyclic theories and the Chern character, work in progress.

[BG94] J. Block and E. Getzler, Equivariant cyclic homology and equivariant differential forms. Ann. Sci. ?cole Norm. Sup.
(4) 27 (1994), 493–527.

[Br87] J.-L. Brylinski, JCyclic homology and equivariant theories. Ann. Inst. Fourier (Grenoble) 37 (1987), 15–28.
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