Motive Cohomology and Arithmetic Intersection Theory

Henri Gillet

9/18/2004

Goal: To give a purely sheaf theoretic construction of arithmetic Chow groups

- Give a direct construction of the intersection product, without using the moving lemma.
- Use to give nice definition of \widehat{CH} , and its product structure, for stacks.

Codimension 1

$$\widehat{\mathsf{CH}}^1(X) \simeq \widehat{\mathsf{Pic}}(X) \simeq \mathbb{H}^2(X, \mathcal{O}_X^* \xrightarrow{\mathsf{log}}^{||} \mathcal{A}_X^0)$$

Here \mathcal{A}_X^0 is the sheaf of C^∞ real valued functions on $X(\mathbb{C})$.

Codimension 2

If we are over a field, have Bloch's formula:

$$\mathsf{CH}^2(X) \simeq H^2(X, K_2(\mathcal{O}_X))$$

Is there a map $K_2(\mathcal{O}_X) \to \mathcal{A}_X^1$? Have regulator

$$K_2(X) \to H^2_{\mathcal{D}}(X, \mathbb{R}(1))$$

 K_2 is generated by symbols:

$$\mathcal{O}_X^* \otimes \mathcal{O}_X^* \twoheadrightarrow K_2(\mathcal{O}_X)$$
,

Symbols and the regulator

$$\lambda_{2} : \mathcal{O}_{X}^{*} \otimes \mathcal{O}_{X}^{*} \longrightarrow \mathcal{A}_{X}^{1,0} \oplus \mathcal{A}_{X}^{0,1}$$
$$f \otimes g \longmapsto \log |f| * \log |g|$$

where

$$\log|f| * \log|g| = \log|f|(\frac{\partial g}{g} - \frac{\overline{\partial}g}{g}) - \log|g|(\frac{\partial f}{f} - \frac{\overline{\partial}f}{f})$$

But

$$\lambda_2(\{f\}\otimes\{1-f\})\neq 0$$

Can we write:

$$\lambda_2(\{f\}\otimes\{1-f\})=d(?)$$

Look for complex which computes (Milnor) K-theory), and map from that complex to ??

Milnor *K*-theory and Bloch's formula

If F is a field, Milnor K-theory is the graded ring:

$$K^M_*(F) := \bigwedge^*(F^*)/(\{f\} \land \{1-f\})$$

Bloch's formula: (Quillen (for K-theory), Kato, Rost for Milnor K-theory) If X is a regular variety over a field:

$$\mathsf{CH}^p(X) \simeq H^p(X, \mathcal{K}_p^M)$$

Here \mathcal{K}_p^M is defined as a subsheaf of the constant sheaf $K_p^M(k(X))$.

Proof depends on **Gersten's conjecture** for regular local rings – which is a theorem of Quillen for local rings on regular varieties over fields.

Motivic Cohomology

If X is a regular and U a variety over k, Cor(X, U) = cycles on $X \times U$, finite over X.

- \bullet contravariant with respect to X
- covariant with respect to U.

For
$$i = 1 \dots k$$
, have $j_i : \mathbb{G}_m^{k-1} \to \mathbb{G}_m^k$. Set:

$$\operatorname{Cor}(X, \mathbb{G}_m^{\wedge k}) = \operatorname{Cor}(X, \mathbb{G}_m^k) / \sum_{i=1}^k j_{i,*}(\operatorname{Cor}(X, \mathbb{G}_m^{k-1})) .$$

Have cosimplicial scheme

$$n \mapsto \mathbb{A}^n = \operatorname{Spec}(\mathbb{Z}[t_0, \ldots, t_n]/(\sum_i t_i = 1))$$
.

Associated simplicial group:

$$n \mapsto \mathsf{Cor}(X \times \mathbb{A}^n, \mathbb{G}_m^{\wedge k})$$

Definition(Voevodsky et. al.): **1.**

$$\mathbb{Z}(n)^i(U) := \operatorname{Cor}(U \times \mathbb{A}^{n-i}, \mathbb{G}_m^{\wedge n})$$
.

This is a complex of presheaves of abelian groups. **2.**

$$H^p(X,\mathbb{Z}(n)) := \mathbb{H}^p(X,\underline{\mathbb{Z}}^*(n))$$

Theorem. If X is a regular variety over a field,

$$\mathsf{CH}^p(X) \simeq H^{2p}(X, \mathbb{Z}(p))$$

Again proof depends on Gersten's conjecture.

Real Deligne Cohomology

Recall, that following Burgos, we have a nice description of this:

If X is a smooth variety over \mathbb{C} , have the complex

$$E_{\log}^{*,*}(X) := \lim_{\substack{\to\\X = \overline{X} - D}} E_{\log D}^{*,*}(\overline{X})$$

The algebra $E_{\log D}^{*,*}(\overline{X})$ of forms with logarithmic singularities along the D.N.C. D is the global sections of the subsheaf of $\mathcal{E}^{*,*}(\overline{X})$ -algebras of $\mathcal{E}^{*,*}(X)$ generated locally by:

$$\log z_i \overline{z}_i \ , \ rac{dz_i}{z_i} \ , \ rac{dz_i}{z_i}$$

where z_i is a local equation of a smooth component of D.

Facts

- This complex computes $H^*(X, \mathbb{C})$
- the subcomplex of forms with real coefficients $E^{*,*}_{\log,\mathbb{R}}(X)$ computes $H^*(X,\mathbb{R})$.
- The bigrading gives the Hodge Filtration.

The real Deligne-Beilinson cohomology of X $H^*_{\mathcal{D}}(X, \mathbb{R}(p))$ may then be computed by the complex (writing $A^{*,*}(p)$ for $(2\pi i)^p E^{*,*}_{\log,\mathbb{R}}(X)$):

$$\mathfrak{D}^*(X,p) := \dots \to A^{p-2,p-1}(p-1) \oplus A^{p-1,p-2}(p-1) \to A^{p-1,p-1}(p-1) \xrightarrow{-2\partial\overline{\partial}} A^{p,p}(p) \to A^{p,p+1}(p) \oplus A^{p+1,p}(p) \to \dots$$

Note that $A^{p-1,p-1}(p-1)$ is in degree $2p - 1!$

If
$$f \in \mathcal{O}_X^*$$
, $\log |f| \in \mathfrak{D}^1(X, 1)$,
Hence on $\mathbb{G}_m^{\wedge n} = \operatorname{Spec}(\mathbb{Z}[z_1, z_1^{-1}, \dots, z_n, z_n^{-1}])$
have an $(n - 1, n - 1)$ -form
 $\sigma_n \in \log |z_1| * \log |z_2| * \dots * \log |z_n| \in \mathfrak{D}^n(X \times \mathbb{G}_m^{\wedge k}, n)$

We have the standard topological *n*-simplex:

 $\Delta^n \subset \mathbb{A}^n(\mathbb{R})$.

Define

$$\lambda^{i}(n) : Z^{i}(X, n) \to \tilde{\mathfrak{D}}^{i}(X, n)$$
$$\zeta \mapsto \int_{\Delta^{n-i} \times \mathbb{G}_{m}^{k}} \sigma_{n} \wedge \delta_{\zeta}$$

Here $\tilde{\mathfrak{D}}$ denoted forms with mild singularities

- **Theorem.** $\lambda^*(n)$ is a map of complexes, and is compatible with the product structures on $Z^*(X, *)$ and $\mathfrak{D}^*(X, *)$.
 - Let X be a regular variety over \mathbf{Q} . There is an isomorphism:

$\widehat{\mathsf{CH}}^p(X) \simeq$

 $\mathbb{H}^{2p}(\mathsf{simple}(Z^*(X,p) \to \tau^{\leq 2p-1}\tilde{\mathfrak{D}}^*(X,p)))$

• This isomorphism is compatible with products (at least up to homotopy)— note that the product on RHS is the product on the simple of a map of DGA's.

Note: Goncharov gives a construction of $\widehat{CH}^p(X)$ using Bloch's higher Chow groups. This works over \mathbb{Z} , but does not have obvious products.

Avoiding Gersten's Conjecture?

Know that product on $CH^*(X)_{\mathbb{Q}}$ may be defined via

$$\operatorname{CH}^p(X)_{\mathbb{Q}} \simeq \operatorname{Gr}^p_{\gamma}(X)_{\mathbb{Q}}$$
.

Grayson – filtration $F^i_{Gr}K(X)$ via K-theory of commuting automorphisms.

Theorem.

$$\operatorname{Gr}_{\operatorname{Gr}}^p(K(X)) \simeq Z_{\operatorname{Gr}}^*(X,p)$$

Here $Z^{i}_{Gr}(X,p)$ is defined using modules on

$$X \times \mathbb{A}^{p-i} \times \mathbb{G}_m^{\wedge p}$$

which are finite and flat over $X \times \mathbb{A}^{p-i}$.

Theorem. (Suslin) For regular varieties over a field, the natural map

$$Z^*_{\mathsf{Gr}}(X,p) \to Z^*(X,p)$$

is a quasi-isomorphism.

Conjecture. This filtration computes the γ -filtration on K-theory.

Conjecture $\Rightarrow \mathbb{H}^{2p}(X, Z^*_{Gr}(X, p)) \simeq CH^p(X)_{\mathbb{O}}$

This would then give a product structure on $\widehat{CH}^*(X)_{\mathbb{Q}}$, for X/\mathbb{Z} , defined by hypercohomology of sheaves.