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Introduction These are a slightly revised ver-

sion of the slides that I used for my lectures

in Morelia. While they take into account the

errors I found while in Morelia, together with

corrections that were pointed out to me, they

still contain, I am sure, many errors and omis-

sions. In particular I was not careful about

signs and constants.

Please let me know of corrections or comments

- I will try to incorporate them into the text.
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Lecture 1

Motivation and Basic Analogies
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Two Integrals

• ∫
S11

log |z0z1 + z2z3 + z4z5| = −23/15

More generally:∫
S(4n−1)

log |z0z1+ z2z3+ . . .+ z2n−2z2n−1|

= −H2n−1 +
1

2
Hn−1

Here Hn =
∑n

j=1
1
j

• The lemniscate:

x4 + y4 + 2x2y2 = 2(x2 − y2)

has arc length:

Γ(1/4)2

23/2√π
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Heights

Recall that if P = (x0, . . . , xn) ∈ Pn
Z(Z) = Pn

Z(Q)
then its (logarithmic) height is:

h(P ) :=
1

2
log(

∑
i

|xi|2)

(Strictly, this is one of many equivalent ideas
of height)

Observe that given any positive real number
B > 0, there are only finitely many rational
points with height less than B. In particular,
given a diophantine equation, if you can prove
that its solutions have bounded height then
you can conclude that the equation has only
finitely many solutions.

One goal: Define notion of height of an arith-
metic variety with nice properties. To do this
we shall use arithmetic intersection theory.
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Points and Completions

p ∈ Spec(OK) x ∈ C, An affine

curve over Fq

p-adic valuation vp(a) ordx(f)

K ↪→ E,

[E : Qp] < ∞,

K ↪→ E,

E ' Fqr((t))

K ↪→ R or C Point in C̄ − C

C̄ a complete smooth

model of C.

The (Archimedean)

absolute value |a|∞,

a ∈ Q

Aordx(f), (A > 0), for

x ∈ C̄−C; if C = A1
Fq

,

ordx(f) = deg (f).
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Analogies: Number Fields

1. [K : Q] < ∞

2. Set of prime ideals Spec(OK) in the ring of

integers in K

3. Product formula:
∑

v log |f |v = 0 (For f ∈
K = Q, |f |p = p−vp(a), and |f |∞ is the usual

absolute value.)

4. E projective OK module, <, > on E ⊗Z R
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Analogies: Function Fields

1. [K : Fp(t)] < ∞

2. points of affine curve C with k(C) = K

3.
∑

x∈C̄ ordx(f)[k(v) : Fp] = 0 - degree of a

principal divisor is zero

4. E vector bundle over C̄
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The idea

V a finite dimensional vector space over Fp:

dimp(V ) = logp(#(V ))

[Fq : Fp] = logp q

[Fq : •] = log(q)

Here • is the “absolute ground field” and we

think of Spec(Z) as a curve over •!!

Exercise What is K∗(•)?

We “compactify” Spec(OK) by setting Spec(OK) =

equal to the set of all valuations of K.

The “points” at ∞ on Spec(OK) are simply the

archimedean valuations. (This point of view

goes back to Hasse.)
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Adeles and Ideles

K a global field i.e., [K : Q] < ∞ or

[K : Fq(t)] < ∞.

If v = valuation of K, write Kv for the asso-

ciated completion, which is a locally compact

topological ring.

Adeles

AK ⊂
∏

v Kv =

{(av) ∈ AK|#{v|v(av) < 0} < ∞}

Ideles

IK = GL1(AK) = {(x, y) ∈ A2
K|xy = 1}. As

a group the Ideles are simply the units in the

Adeles - but with the topology coming from

viewing them as G(AK).
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The maximal compact subgroups On,v ⊂ GLn(Kv)

are:

• GLn(Ov) if v is a non-Archimedean com-

pletion of K i.e., a p-adic field or a power

series field.

• On if Kv = R

• Un if Kv = C

Note All three stabilize the unit ball in Kn. In

the p-adic case the unit ball is a subgroup -

however not in the archimedean case!

The maximal compact subgroup of GLN(AK) =∏
v On,v

10



An element Ē of

GLn(K) \GLn(AK)/(maxcompact)

represents either:

K = a number field:
A rank n projective OK module E, equipped
with an inner product at each archimedean
place of K. (Ē = (E, (|| ||v)))

K = K(C), C/Fq smooth affine curve:
A rank n vector bundle Ē on C, a smooth pro-
jective model of K, or equivalently:

A rank n projective OK module E, equipped
with, for each valuation v corresponding to a
point at infinity.

• a free rank n sub-OKv-module of E⊗OK
Kv,

or equivalently:

• a v − adic norm on E ⊗OK
K
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In particular,if C/Fq is a smooth projective curve,
with function field K we have a natural isomor-
phism:

Pic(C) ' K(C)∗ \ IK/UK .

This suggests:

Definition. If K is a number field, set

Pic(Spec(OK)) := K∗ \ IK/UK .

Note that this is simply the idele class group.

Proposition. Pic(Spec(OK)) is isomorphic to
the group of isomorphism classes of pairs (L, {‖ ‖σ})
consisting of:

• a rank 1 projective OK-modules L,

• a Hermitian inner product ‖ ‖σ on L ⊗σ C,
for every embedding σ : K ↪→ C, compati-
ble with complex conjugation.
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Degrees and Volumes

E vector bundle over X - smooth projective

curve over Fq

deg(E) = deg(det(E))

(Recall that determinant = top exterior power),

The map:

deg : Pic(X) → Z
L 7→ deg(div(s))

for s is a meromorphic section of L, is induced

by the map:

IK : → Z
(av) : 7→

∑
v

ordv(a)
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If K is a number field, and L̄ = (L, || ||) is
a “line bundle” on Spec(OK), we define its
degree analogously, via

IK : → R
(av) : 7→

∑
v

log ||a||v

We have the following exact sequence:

O∗K → Rr1+r2 → Pic(Spec(OK)) → R⊕Cl(OK) → 0

The lefthand map is the Dirichlet regulator,
while the right hand map is the sum of the
degree map with the map from Pic to the ideal
class map which forgets the metric.

If Ē = (E, || ||) is a vector bundle on Spec(OK),
deg(Ē) := deg(det(Ē))

Proposition. For Ē = (E, || ||) a “vector bun-
dle”, the norms || ||v induce a measure on
ER := E ⊗Z R, and

deg(Ē) = − log(vol(ER/E))
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Heights again

On Pn
Z the tautological line bundle O(1) is a

quotient of On+1, and therefore its restriction

to Pn(C) inherits a hermitian inner product by

orthogonal projection from the trivial bundle.

Let us write O(1) for this “metrized” line bun-

dle.

Theorem. Let P ∈ Pn(Q) = Pn(Z) be a point,

and σP : Spec(Z) → Pn
Z the corresponding mor-

phism. Then

h(P ) = deg(σ∗P )O(1)
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“Classical” Intersection of Divisors

X/Fp a smooth projective surface:

Pic(X)⊗ Pic(X) : → Z
O(C)⊗O(D) : → < O(C),O(D) >

:= deg(O(C)|D)

Well defined because X is projective:

If C − C′ = div(f):

< O(C),O(D) > − < O(C′),O(D) >

= deg(O(C)|D)− deg(O(C′)|D)

= deg(div(f)|D)

= 0

-by the product formula.
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Alternative Definition

Given “prime” divisors C and D on X, i.e. C ⊂
X and D ⊂ X integral subschemes.

< C, D >=
∑
i,j

(−1)i+jdimFp
Hi(X, T orOX

j (OC,OD))

This is really just the direct image of the prod-

uct of the classes in K-theory:

π∗([OC].[OD] ∈ K0(Fp)) ' Z .

where π : X → Spec(Fp).
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f : X → C a family of curves over a smooth

affine curve. Let C ⊂ C̄ be a smooth com-

pactification. A model of X is

X −→ X

f

y yf̄

C −→ C̄

with X regular flat and projective over C̄.

Write X∞ for (union of) fiber(s) over C̄ − C.

Div(X) = Div(X)⊕Div∞(X)

Where Div∞(X) =
⊕

E Z,

E=component of (X)∞.
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Arakelov ’74

Arithmetic Surface: f : X → SpecZ regular
flat projective. Analogous to a map from an
algebraic surface to an affine curve.

A “model” is a choice of Kähler metric on the
Riemann Surface X(C). Set:

Div(X̄) := Div(X)⊕
⊕

π0(X(C))

R

Definition. • A Hermitian line bundle L̄ =
(L, || ||), where || || is a C∞ Hermitian met-
ric on L|X(C).

• L̄ is admissible if its curvature is harmonic
w.r.t the Kähler metric i.e. equal to =
aµ. Here a is a locally constant function
on X(C), and µ is the Kähler form.

• If s meromorphic section of L, div(s) =
div(s) +

∑
π0(X(C)) aY where C1(L̄) = aY µ

for each component Y .
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There are a couple of reasons why this is a

good analogy.

First of all, if we are given a smooth projec-

tive curve X over Qp, then a model X over Zp

determines a metric on X(Qp), in which the

distance between two (distinct) points is de-

termined by the intersection multiplicity of the

corresponding sections, which may or may not

meet in the special fibre. As a simple example,

consider the affine line A1
Zp,t

. Given two points

t = a, and t = b in A1(Zp), the p-adic distance

from a to b in A1(Zp) is the Const−vp(a−b), and

it is easy to see the intersection multiplicity of

the corresponding sections is vp(a− b).
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Secondly, in the geometric situation, given a

rational point on the generic fibre, it automat-

ically extends to a section of (the smooth lo-

cus of) X over Z, and so the relative dualizing

sheaf will pull back by this section. This in the

case of an arithmetic surface over Spec(Z) we

should expect that for any section of X over

Z the pull back of the relative dualizing sheaf

should extend to Spec(Z) - i.e. should have

an inner product. But this means that the

tangent bundle to X(C)) at that point has an

inner product.
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Definition. Let f ∈ K(X)∗. div(f) := div(f)+∑
Y aY , where aY = −(

∫
Y log |f |)µY

Definition. Pic(X̄) is the group of isomor-

phism classes of Hermitian line bundles.

Proposition. Pic(X̄) ' Div(X̄)/{div(f)}, via

the map div.
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Green Functions

If X̄ = (X, µ), and L̄ = (L, || ||) is an admissible

metric, and s is a meromorphic section of L,

then log(||s||) is C∞ on X(C)− |div(s)|.

1

π
∂∂̄(log(||s||)) = deg(div(s))µ− δdiv(s)

Given a divisor D =
∑

P np on X(C), an admis-

sible Green’s function is a function gD, which

is real valued and C∞ on X(C)−|D|, such that

1

π
∂∂̄(gD) = deg(D)µ−

∑
npδP .

There is a canonical choice of such a function,

in which
∫
X(C) gDµ = 0. Also note if D = P is

a single point, then if z is a local parameter at

P , then near P , gP = log(|z|2) + φ where φ is

C∞.
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Arakelov’s Pairing

Pic(X̄)⊗ Pic(X̄) → R
L̄⊗ M̄ → < L̄, M̄ >

Pick s, t meromorphic sections of L and M .

< L̄, M̄ > := < div(s),div(t) >

= < div(s),div(t) >f

+ < div(s),div(t) >∞

Define by linearity:

Suppose that C and D are “prime” divisors on

X:

< C, D >f :=∑
i,j

(−1)i+j log(#(Hi(X, T orOX
j (OC,OD))))
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If Y is a component of X(C),

< C,1Y >=< C,1Y >∞:= deg(C ∩ Y ) .

If Y and Z are two components of X(C),

< 1Y ,1Z >=< 1Y ,1Z >∞:= 0

If C and D are prime divisors on X,

< C, D >∞:=
∑

mPnQ < P, Q >∞

where C|X(C) =
∑

mPP and D|X(C) =
∑

nQQ,

Finally:

< P, Q >∞:= gP (Q)

Theorem. This is well defined and symmet-

ric.
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Lecture 2
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Quick Review of Chow Groups

Definition.

Let X be a scheme:

1. Xp= {points x ∈ X of codimension p }.

2. Codimension p algebraic cycles

Zp(X) =
⊕

x∈Xp Z

3. Codimension p K1-chains

R
p
1 =

⊕
x∈Xp k(x)∗

4. Codimension p K2-chains

R
p
2 =

⊕
x∈Xp K2(k(x))
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Chow groups

X a scheme,

CHp(X) := Coker(div : Rp−1(X) → Zp(X))

Rp−1(X) :=
⊕

W⊂X

k(W )∗

with W ⊂ X codim p.

• Covariant wrt proper morphisms

• CH∗(X) is a graded ring if X is a regular
variety over a field k, and contravariant for
maps between such.

• If X is regular and projective, then have
intersection numbers

• If X is a regular scheme, then we only know
that CH∗(X)Q is a ring.
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Constructing the pairing

If X is regular and of finite type over a field:

• Moving Lemma (1950s)

• K-theory (Bloch’s Formula) (1970s) CHp(X) '
Hp(X, K(OX)p). Variations:

– CHp(X) ' Hp(X,KM
p )

– Hypercohomology of Motivic Sheaves.

All of these depend on some version of Ger-

sten’s conjecture, which can be viewed as

a local moving lemma.
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• Deformation to the Normal Cone (1970s).

This is a purely geometric method, which

uses reduction to the diagonal, and there-

fore depends on X being smooth.

If X is an arbitrary regular scheme:

• CH∗(X)Q ' Gr∗γKO(X)Q
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Arithmetic variety

π : X → Z flat, projective over Z, equidimen-

sional and regular.

X(C) is a complex manifold.

A(p,p)(X) := A(p,p)(X(C))F∞=(−1)p

D(p,p)(X)= similar space of currents.

If ζ =
∑

i niZi ∈ Zp(X) then:

δζ =
∑
i

niδZi(C) ∈ D(p,p)(X)
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Currents

Recall that if M is a manifold, a current T ∈
Dp(M) is a continuous linear functional T :

A
p
c(M) → C on the space of compactly sup-

ported currents, which we equip with the topol-

ogy determined by the sup-norms of partials of

coefficients in local coordinate charts.

Given an orientation on M ,

An−p ↪→ Dp

α 7→ (ω 7→
∫
M

α ∧ ω)

This is a dense embedding - currents = “very

singular forms”. The exterior derivative on

forms extends to currents.

dT (α) = −(−1)deg(T )T (dα) .

More generally, any locally L1 form φ defines a

current [φ]. But, d[φ] 6= [dφ] -the difference is

a “residue”.
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Green Currents

If X is a complex manifold of dim n, Z ⊂ X a

codim p complex analytic subspace, then:

δZ : A2n−2p → C
ω 7→

∫
Z

ω

Viewed as a “form”, δZ ∈ Dp,p(X).

Definition. A Green current for Z is an (equiv-

alence class of) gZ ∈ Dp−1,p−1(X) such that

ddc(gZ)− δZ = ω

where ω is a C∞ (p, p)-form.

gZ ' g′Z if gZ − g′Z = ∂(u) + ∂̄(v)

Note ddc = i
2π∂∂̄, where dc := 1

4πi(∂ − ∂̄)
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Analogies: Arithmetic Varieties

1. f : X → Spec(Z) , flat projective and regu-

lar.

2. no well defined intersection numbers

3. X̄ = (X, ω) - K aehler metric

4. CHp(X̄)⊗CHq(X̄) → R but CH∗(X̄) not a

ring (Arakelov ’72 for surfaces)

5. ĈH
p
(X) (Soulé & H.G.)

34



Analogies: Varieties over Function field

1. f : X → Spec(k[t]), projective and smooth

2. no well defined intersection numbers

3. X̄ → C̄ compactification.

4. CHp(X̄)⊗ CHq(X̄) → Z

5. ĈH
p
(X) = lim−→X

CHp(X) - over all com-

pactifications (Bloch, Soulé, HG)
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Definition of ĈH
p
(X)

ĈH
p
(X) =

Ẑp(X)

{d̂iv(f) | {f} ∈ Rp−1(X)}
Where:

Ẑp(X) = {(Z, gZ)|Z ∈ Zp(X), gZ ∈
Dp−1,p−1(X(C))

Im(∂) + Im(∂)
}

Where gZ is a Green’s current for Z.

And:

f ∈ k(W )∗, W ⊂ X codimension p− 1,

log |f |2 : α →
∫
W (C)

log |f |2α|W

If f = (fW ) ∈
⊕

W⊂X k(W )∗ is a K1-chain, then

d̂iv(f) := (div(f),
∑
W

log |fW |2)
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Some Natural Maps

ω : ĈH
p
(X) → Zp,p ⊂ Ap,p

(Z, gZ) 7→ ddcgZ + δZ

ζ : ĈH
p
(X) → CHp(X)

(Z, gZ) 7→ Z

Notation:

• Hp,p(X) := Hp,p(X(C))F∞=(−1)p

• Zp,p = closed (p, p)-forms

• CHp,p−1(X) :=
Ker(div):Rp−1

1 (X)→Zp(X)

Im(Tame):Rp−2
2 (X)→R

p−1
1 (X)

Same as CH2p−1(X, p)

We also have maps a : Hp,p(X) → ĈH
p
(X),

α 7→ (0, α), and ρ : CHp,p−1(X) → Hp,p(X),∑
W fW 7→

∑
W log |fW |2.
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An exact sequence

These maps form an exact sequence:

CHp,p−1 → Hp−1,p−1(X) →
ĈH

p
(X) → CHp(X)⊕ Zp,p → Hp,p(X)

Here we use that on a compact Kähler mani-

fold:

Ap−2,p−1 ⊕Ap−1,p−2 ∂+∂̄−−−→ Ap−1,p−1 ∂∂̄−−→ Ap,p

has cohomology Hp−1,p−1(X).

The map ρ : CHp,p−1 → Hp−1,p−1(X) is (Const)×
Beilinson regulator.
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Examples

ĈH
0
(X) = CH0(X)

ĈH
1
(Spec(Z)) = R

ĈH
p
(X) = 0 if p > dim(X).

If p = dim(X), then the exact sequence above

becomes, since dim(X(C)) = p− 1,

CHp,p−1 → Hp−1,p−1(X) →
ĈH

p
(X) → CHp(X) = CH0(X) → 0
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Desiderata

• Products

• Pullbacks

• Pushforward

• Chern Classes
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Products

η = (Y, gY ) ∈ ĈH
q
(X), ζ = (Z, gZ) ∈ ĈH

p
(X)

Using the moving lemma for XQ, we can choose

Y and Z so that they meet properly on XQ,

but:

|Y | ∩ |Z| may have components of codimension

> p + q,

Y.Z :=

[OY ].[OZ] ∈ Gr
p+q
γ KY ∩Z

O (X)Q ' CH
p+q
Y ∩Z(X)Q.

η.ζ := (Y.Z, gY ∗ gZ), where

gY ∗ gZ := gY .δZ + ωY .gZ .

Difficulty - show that gY .δZ makes sense. Mul-

tiplying currents is generally hard - for example

what might δ{0} · δ{0} for {0} ∈ R, mean?
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In this case, blow up Y to divisor with nor-

mal crossings, and represent gY by a form hav-

ing singularities like log |z| near the exceptional

divisor. Then define gY δZ := gY |Z(C). The

problem is that this is no longer a current as-

sociated to a locally L1-form.

A better approach, by Burgos, will be sketched

later, which allows one to stick to forms all

throughout the discussion.

For the ∗-product described above, one must

show that it is:

• Associative and commutative.

• Respects rational equivalence.

This requires a careful analysis what of what

happens on divisors with normal crossings.
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Pull-backs

f : X → Y a map of arithmetic varieties.

If ζ ∈ ĈH
p
(Y ), by the moving lemma one may

represent ζ = (Z, gZ) with ZQ meeting f prop-
erly

⇒ f∗(Z) ∈ CH∗(f−1|Z|)Q restricts to an cycle
on XQ, not just a cycle class, and if gZ is rep-
resented by a C∞ form with log growth along
Z, f∗gZ is a Green form for Z.

Note: Can remove the Q here by using defor-
mation to the normal cone.

Push Forwards

If f : X → Y restricts to a smooth map XQ →
YQ, then if (Z, gZ) ∈ ĈH

∗
(X), f∗(gZ) is auto-

matically a Green’s form for the cycle f∗(Z),
so

f∗(Z, gZ) := (f∗(Z), f∗(gZ))
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If dim(X) = n, there is a push forward

d̂eg : ĈH
n
(X) → ĈH

1
(Spec(Z)) ' R

(
∑
P

nPP, gZ) 7→
∑
P

nP log(#(k(P )))−
∫
X(C)

gZ



Note We did not choose a hermitian metric

on X(C) - the ĈH
∗

are analogous to:

f : X → C a flat projective family of varieties,

with X regular. Then as before, consider mod-

els
X −→ X

f

y yf̄

C −→ C̄

Definition. ĈH
p
(X) := lim→CHp(X)

This was developed by Bloch, Soulé & H.G. in

J. Alg. Geom.
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Height of a Projective Variety

X ⊂ Pn
Q a projective variety - not necessarily

smooth - dimension = d.

Given α ∈ ĈH
d+1

(Pn
Z).

Define hα(X) := d̂eg(α|X̄)

where X̄ ⊂ Pn
Z is the Zariski closure.

Even if Z is singular this makes sense:

Represent α = (Y, gY ), with Y ∩X ⊂ Pn
Q empty.

hα(X) =< X̄, Y >f +
∫
X(C) where

< X̄, Y >f=
∑

P nP log(#(k(P ))) if we repre-
sent Y.X̄ =

∑
P nPP

There are natural choices for α - Ĉ1(O(1))d+1

or (L, gZ) with L a linear subspace and gL an
anti-harmonic Green form.
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Geometric Heights X ⊂ Pn
K(C) a variety pro-

jective over K(C) of codimension p, with Zariski

closure X ⊂ Pn × C of dimension d

Then define ht(X)= intersection number of X
with C1(O(1))n−p+1

This measure how “horizontal” X is.

If C = P1, then

CH∗(Pn × P1) ' Z[t, ε]/(tn+1 = ε2 = 0) ,

where t and ε are the class of a divisor on Pn

and P1, respectively. Then

[X = deg(X)tp + ht(X)tp−1ε]
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Lecture 3

Characteristic Classes and Heights
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Heights of Divisors

X ⊂ Pn
Q a divisor of degree d.

Choose equation: f(x0, . . . , xn) ∈ Z[x0, . . . , xn],

coprime coeffs.⇒ f is equation of X̄ ⊂ Pn
Z.

Let γ := Ĉ1(O(1)) = (H,− log ||x0||2). So

γn = (P̄ = (1 : 0 : . . . : 0), gP ),

h(X) = d̂eg(γn|X̄)

= < X̄, P̄ >f +
∫
X

gP

= < X̄, P̄ >f +
∫
P(C)n

δXgP

= < (X̄, gP ), γn > −
∫
P(C)n

gXωp
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But:

We can pick gX so

(X, gX) = Ĉ1(O(d)) = dγ ,

and ωP=volume form on P(C)n. So:

h(X) = d · d̂eg(γn+1) +
∫
P(C)n

log ||f ||2ω

= dh(PQ
n) +

∫
S2n+1

log |f |2µ

One may easily compute that dh(PQ
n) ∈ Q.

So
∫
S11 log |z0z1 + z2z3 + z4z5| is (up to a ra-

tional number)

h(z0z1 + z2z3 + z4z5 = 0) = G(2,4) ⊂ P5

This height is sometimes referred to as the

Faltings height. If instead we take the height

with respect to the class (L, gL) of a linear sub-

space together with an anti-harmonic Green

current L, rather than Ĉ1(O(1)), then the term

dh(PQ
n) ∈ Q is zero.

49



To compute the height of G(k, n), it is enough

to compute arithmetic intersection numbers

on G(k, n) itself, and since the curvature of

O(1)|G(k,n) is harmonic, we work in

CH∗(G(k, n)) ⊂ ĈHG(k, n)

the subring where all ωZ = dd
g
Z + δg are har-

monic.

Lemma. Have exact sequences:

0 → Hn−1,n−1(G(k, n)) →
CHn(G(k, n)) → CH∗(G(k, n)) → 0

Proof Look at

CHp,p−1 → Hp−1,p−1(X) →
ĈH

p
(X) → CHp(X)⊕ Zp,p → Hp,p(X)
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Tamvakis computed the product structure, to

get:

Theorem. (Tamvakis, Maillot and Cassaigne)

Heights of Grassmannians are rational.

Tamvakis also computes ĈH for variety of sym-

metric spaces.

Maillot and Cassaigne’s earlier proof:

Form the Zeta function: Z(s) =
∫
S2n+1 |f |2sµ.∫

S2n+1
log |f |2µ = Z′(0)

Special values of zeta function at positive in-

tegers can be computed, and determine zeta

function - equal to expression involving Γ-functions
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Beilinson-Bloch Height Pairing

X= smooth projective variety over Qof dimen-

sion n. η ∈ CHp(X), ζ ∈ CHq(X), p+q = n−1.

Suppose η and ζ are homologically ∼ 0. Have

height pairing: < η, ζ >∈ R:

Choose (assume resolution) regular model X.

Represent η and ζ by cycles Y , Z on X. Choose

Green currents gY , gZ such that ddcgY +δY = 0.

Then < η, ζ >= d̂eg((Y, gY ), (Z, gZ)).

Note: If X has singular fibres over SpecZ, can-

not not just take Zariski closure to get Y and

Z, but must add cycles supported in singular

fibres.

Adding such cycles analogous to finding gY

with ωY = 0.
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Burgos’ approach to Green currents

Let W be a complex algebraic manifold and
D ⊂ W a normal crossing divisor in. Write
j : X = W \ D → W . the natural inclusion.
A∗W= sheaf of smooth, complex forms

A∗W (logD) is the sheaf of differential forms with
logarithmic singularities along D is the A∗W -
subalgebra of j∗A∗X, which is locally generated

by the sections log(ziz̄i),
dzi
zi

, dz̄i
z̄i

for i = 1, . . . , m,
where z1 · · · zm = 0 is a local equation for D.

The complex of differential forms with loga-
rithmic singularities along infinity is defined by
A∗log(X) = lim→A∗

X̄α
(logDα); it is a subalgebra

of A∗(X) - the direct limit over all compactifi-
cations.

A∗R,log(X)= real forms and

A∗R,log(X)(p) = (2πi)pA∗R,log(X)
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Real Deligne Cohomology

Recall that real Deligne cohomology fits into

an exact sequence:

Hn−1(X, C)

F pHn−1(X, C) + Hn−1(X, R(p))

→ Hn
D(C, R(p)) → Hn(X, R(p))

→
Hn(X, C)

F pHn(X, C)

Consider the complex

Dn
log(X, p) =
An−1

R,log(X)(p− 1) ∩ Fn−p,n−pAn−1
C,log(X), n ≤ 2p− 1;

An
R,log(X)(p) ∩ F p,pAn

C,log(X), n ≥ 2p.

The differential is the projection of the usual

exterior derivative, except from degree 2p − 1

to 2p, when it is ddc
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The complex Dn
log(X, p):

Ap,p+1(p)
∂ //

�
�
�

Ap+1,p+1(p)

�
�
�

___

Ap,p(p) ∂ //

∂

OO

Ap+1,p(p)

∂

OO

____

___ Ap−2,p−1(p− 1) ∂ // Ap−1,p−1(p− 1)

ddc
55llllllllllllll

___ Ap−2,p−2(p− 1) ∂ //

∂

OO

Ap−1,p−2(p)

∂

OO

�
�
�

�
�
�
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Theorem. (Burgos) There is a natural mul-

tiplicative isomorphism

H∗
D(C, R(p)) → H∗(Dlog(X, p)) .

Truncated relative cohomology groups:

This is a general procedure for constructing

groups like ĈH or the differential characters of

Cheeger and Simons.

Definition. Let f : (A, dA) → (B,dB) be a

morphism of complexes. The associated trun-

cated relative cohomology groups are:

Ĥn(A, B) = Hn(A, σnB)

= {(a, b̃) ∈ Zn(A)⊕ B̃n−1|f(a) = dBb}

Here B̃n−1 = Bn−1/Im(dB), and (σnB) = 0 if

i > n
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Definition. The group of codimension p arith-

metic cycles

Ẑp(X) =

{(Y, gY ) ∈ Ẑp(X)⊕ Ĥ
2p
D,Y (X)|cl(gY ) = [Y ]}

Where

Ĥ
2p
D,Y (X) =

Ĥ2p(D∗log(X, p),D∗log(X − Y, p))

I.e. A Green form is gY ∈ A
p−1,p−1
R,log(U)(p−1) such

that ωY = ddc(gY ) is C∞ on X, and the pair

(ωY , gY ) represents the cycle class of Y in

H
2p
D,Y (X, R(p)) '

⊕
Y (0)

R

This eliminated currents, and allows the prod-

uct of Green currents to be defined cohomo-

logically.
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Hermitian Vector Bundles

Definition. Let X be an arithmetic variety.

A Hermitian bundle Ē = (E, || ||) on X, is a

vector bundle E on X, plus a C∞ Hermitian

metric || || on E|X(C) which is compatible with

complex conjugation.

Given Ē, one has Chern classes:

• CChow
p (E) ∈ CHp(X)

• CDolb
p (E) ∈ Hp,p(X(C))

These agree via the cycle class map CHp(X →
Hp,p(X(C)), by axioms for Chern classes.

Metric on E

⇒ canonical choice Cp(E, h) ∈ Ap,p represent-

ing CDolb
p (E).
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M= complex manifold. E= holomorphic vec-

tor bundle, equipped with C∞ Hermitian met-

ric.

There is a unique connection ∇ : A(E) → A1(E),

such that ∇0,1 = ∂̄ and such that parallel trans-

port is unitary.

Curvature R := ∇2 = [∇0,1,∇1,0]. This is a

linear map E → A1,1(E).

det(tR− IE) =
∑
p
±tpCp(E, h)

Since R depends “explicitly” on h, if h0 and h∞
are two metrics, Bott and Chern constructed

forms such that C̃p(E, h0, h∞):

ddc(C̃p(E, h0, h∞)) = Cp(E, h0)− Cp(E, h∞)
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If E is a line bundle, then R = ∂̄∂(log(h)), and
C̃1(E, h, h′)) = ± log(h/h′)).

Note that h/h′ is C∞ on M .

Write hi, i = 0,∞ for the two metrics. If
π : M × P1 → M . h̃, choose metric on π∗E,
h̃|M×{i} = hi.

C̃p(E, h0, h∞) =
∫
P1

Cp(π
∗, h̃) log |z|

More generally, if

E := 0 → (E′, h′) → (E;h) → (E′′, h′′) → 0

is an exact sequence of bundles, (not neces-
sarily respecting metrics), there are classes:

ddc(C̃p(E)) = Cp(E, h)− Cp((E′, h′)⊕ (E′′, h′′))

Constructed using a bundle (Ẽ, h̃) on M × P1,
restricting to (E, h) at {0}, and (E′, h′)⊕(E′′, h′′)
at ∞.
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Characteristic Classes Recall axiomatic ap-

proach to Chern classes, via splitting principal

- they are determined by:

• Line Bundles: C∗(L) = 1 + C1(L)), and

C1(L⊗M) = C1(L)⊕ C1(M).

• If 0 → E′ → E → E′′ → 0 is exact, then

C∗(E) = C∗(E′)C∗(E′′)

(We assume functoriality also.)

Given a bundle E over X, there is a variety

π : F(E) → X, the flag bundle, such that

CH∗(X) ↪→↪→ CH∗(F(E)) is injective, and π∗(E)

has a maximal flag.

How to construct Ĉ∗(E, h)?

Can we construct natural transformations which

satisfy:
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Line Bundles: Ĉ1 : P̂ic(X) ' ĈH
1
(X) - iso-

morphism classes of Hermitian holomorphic line

bundles, via:

(L, h) 7→ (div(s),−log||s||2h)

Exact Sequences: Given

E := 0 → (E′, h′) → (E;h) → (E′′, h′′) → 0

Ĉ∗(E, h) = Ĉ∗(E′, h′)Ĉ∗(E′′, h′′) + (0, C̃∗(E))

Compatibility Compatible with Chern classes

in Chow groups, and Chern-Weil forms: Ĉp(Ē) =

(Z, g), where Z is algebraic cycle representing

p-th Chern class, ddc(g) + δg = Cp(E, h)
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Hard to use splitting principal, since ĈH
∗

is

NOT homotopy invariant, and so the ĈH groups

of Grassmannians are so easy to compute. How-

ever, with care this can be done - (by Elkik -

using Segre classes, and more recently Tam-

vakis).

Original method: Pull bundles back from Grass-

mannians. G(d, n) = rank d quotients of trivial

rank n bundle. Then use the fact that the

natural map induced by the direct sum

G(d1, n1)×G(d2, n2) → G(d, n)

for d1 + d2 = d and n1 +n2 induces an isomor-

phism on CH∗(G(d, n)) in low degrees.
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Definition. X an arithmetic variety. Then

K̂0(X) is generated by classes of triples (E, || ||, γ)

where (E, || ||) is a Hermitian bundle, and γ ∈
⊕pÃp,p(X)

Modulo the relation, if

E := 0 → (E′, h′) → (E;h) → (E′′, h′′) → 0

is an exact sequence then:

[(E;h,0)]−[(E′, h′,0)]−[(E′′, h′′,0)] = [(0,0, c̃h(E))]

Definition. ĉh(E, h, γ) = ĉh(E, h) + (0, γ) ∈
ĈH

∗
(X)Q

Theorem. This is an isomorphism.
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Push-Forwards and Quillen Metric

The K̂0(X) are clearly contravariant functors
in X. What about pushforward?

Fix a “Kähler” metric on the relative tangent
bundle.

Let f : X → Y be a map of arithmetic varieties.
(=regular, flat, projective over Z) such that
f : XQ → Q is smooth. Suppose that (E, h)
a Hermitian bundle on X, and Rif∗(E) = 0 if
i > 0.

⇒ f∗E is a bundle and f∗[E] = [f∗E].

Choose metric h′ on f∗E - then have natural
choice of γ such that the Chern character form
of [f∗E, h′, γ] is exactly equal to∫

f
ch(E, h)Td(X/Y, hX/Y )

Constructed using Analytic Torsion of the Laplace
Operator of E.
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Lecture 4
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Analytic Torsion

Let

E∗ = 0 → E0 → . . . → Ei → . . . En → 0

be a bounded complex of f.d. vector spaces
over a field k, or more generally f.g. free or
projective modules over a ring k.

Definition. • If V is an n-dimensional vec-
tor space, det(V ) =

∧n(V ) is the determi-
nant (line) of V .

• det(E∗) :=
⊗

i det(Ei)(−1)i

• If Ei is zero, its determinant is k.

If k = R or C and the Ei have inner products,
then so does det(E∗). Similarly if k = Qp,
and Ei = Mi ⊗Zp

Qp with Mi free Zp-modules,
the det(E∗) contains a rank one Zp module.
Equivalently, if the Ei have p-adic norms, then
so does det(E∗).
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E∗ is acyclic ⇒ det(E∗) ' k, more generally, if

f∗ : E∗ → F ∗ is a quasi-iso, det(E∗) ' det(F ∗).
If in addition, the Ei are Euclidean, or have

Zp-structures, what is ||1||?

Proposition. Suppose that the Ei are Eu-

clidean. Then

||1||−2 =
∏

det(∆i)
(−1)ii

where ∆i = di∗di + di−1di−1,∗

If k = Qp, and the Ei have p-adic norms, then

the same is true, with d∗ the transpose of d

with respect to any choice of Zp-bases com-

patible with the norms.
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We can extend this construction to the Dol-

beault complex which computes Rif∗. Let ∆i=

Hodge Laplacian on (0, i)-forms with coeffi-

cients in E. Using eigenvalues λn of ∆i, form

the zeta function:

ζ(s) =
∑
n

1

λs
n

det(∆i) := exp(−ζ′(0))

Note that if one ignores questions of conver-

gence, then formally exp(−ζ′(0)) =
∏

n λn. This

is known as the zeta-regularization of the prod-

cut. Thus for example, one has (in the sense

of zeta-regulariztion) that, ∞! =
√

2π.
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Quillen Metric

Definition. Given f : X → Y as before, and a
bundle E on X, set λ(E) := det (Rf∗(E)).

Makes sense because locally on Y , Rf∗(E) is
quasi-iso to a bounded complex of bundles.

Now set suppose that Rif∗(E) = 0 if i > 0.
The the bundle f∗(E) can be identified with
the harmonic forms - this puts a metric on
λ(E). Now multiply by the analytic torsion -
this is the Quillen metric.

This extend to all bundles, and puts a C∞ met-
ric || ||Q on λ(E).

Theorem. (Bismut, G, Soulé)

C1(λ(E), || ||Q) =

[∫
f

ch(E, || ||)Td(Tf , || ||)
](1,1)

I.e., Riemann-Roch is true at the level of forms.
Question Does this lift to an equality in ĈH?
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Arithmetic Riemann Roch (Soulé- HG, Inv

1992 + unpublished, Bismut-Lebeau)

K̂0(X) := (E, h, β)/ ∼

Given f : X → Y proper map of arithmetic vari-

eties, smooth on generic fibers, then can con-

struct a direct image map: K̂0(X) → K̂0(Y ).

Definition uses (higher) analytic torsion, and

depends on choice of Kähler structure on the

fibration.

”Naive“ Riemann Roch fails - can see this by

computing the zeta function of P1

Must modify T̂ d using the R-genus. This is

a purely topological characteristic class, deter-

mined by series:

R(X) =
∑

m∈2N+1

[2ζ′(−m) + ζ(−m)Hm]
Xm

m!
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Arithmetic Riemann Roch (more accurately,

the result on Chern forms) can be used to

show:

Theorem. Suppose that Ē = (E, h) is a Her-

mitian bundle on the arithmetic variety X, and

that L̄ = (L, h) is a Hermitian Line bundle with

L ample, and Ĉ1(L̄) ”positive“. Then E⊗L⊗n

has lots of sections with sup-norm less than 1.

Remark Proof uses Minkowski’s theorem, which

is the Spec(Z)-analog of Riemann’s theorem.

(I.e., Riemann-Roch with Roch.)
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Why introduce R-genus - why not try to prove

that there is a direct image for bundles for

which RR is true without modification?

Done by Zha, U. Chicago thesis.

But, in fact the determinant of the Laplacian

is something that one does want to compute

- e.g. Kronecker limit formula.
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Heights again: Canonical or Faltings height

of an Abelian Variety

A an abelian variety of dimension g, defined

over Z.

ω̄A := H0(A,Ωg
A/Z), this is a line bundle on

Spec(Z) with inner product:

||α|| =
ig

2

(2π)g

∫
A(C)

α ∧ ᾱ

and Falings defined: hF (A) = ̂deg(ω̄A

Bost (1994) showed that this is essentially the

same as the height of A w.r.t the canonical

line bundle with an invariant metric.

For an elliptic curve with complex multiplica-

tion, this is essentially a period of the elliptic

curve: i.e. the integral of a holomorphic 1-

form around a generator of H1.
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Conjecture of Colmez (Annals, ’93)

A an abelian variety with complex multiplica-

tion by a field K,

1

dim(A)
hF (A) =

∑
χ

L′(χ,0)

L(χ,0)
+ log(fχ)

Here χ runs through odd characters of the Ga-

lois group of K over Q.

Colmez proves the conjecture when Gal(K/Q)

is abelian.
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Conjecture of Maillot and Roessler

A, K as above. For all n ≥ 1, we have:∑
σ

ĉh
n
(Ω̄A,σ ⊕ Ω̄∨

A∨,σ)χ(σ)

= −((
L′(χ,1− n)

L′(χ,1− n)
+Hn−1)

∑
σ

chn−1(ΩA,σ))χ(σ)

σ= embeddings of OK in C (roughly). χ is a

non-trivial character of the Galois group of K.

This generalizes and refines the conjecture of

Colmez. Maillot and Roessler proves their con-

jecture in the abelian case. Also hypersurfaces

- new cases.

Idea: express RHS as an index - the equality

then becomes an index theorem.
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Where do L-functions come in?

Use group action from Complex Multiplication

- get action of finite cyclic group - apply Lefschetz-

Riemann-Roch Theorem of Köhler and Roessler,

which is the “Arakelov” analog of a theorem

of Baum, Fulton and Quart. Allows you to

localize on the fixed point set.

R-genus is replaced by equivariant R-genus, is

defined in part by replacing the Riemann zeta

function by the Lerch zeta function, where ζ ∈
C has absolute value 1.

L(ζ, s) :=
∑
k

ζk

ks
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Themes

• Grassmanians and other combinatorial va-

rieties have rational height. The ”conjec-

ture“ is that a variety has rational height

iff it is defined over •.

• Heights of arithmetic varieties with “many

automorphisms” such as Abelian Varieties

with Complex Multiplication have heights

which are given by special values of Gamma

functions and L-functions. (Results and

conjectures of: Kronecker, Chowla-Selberg,

Gross-Deligne, Colmez, Maillot-Roessler.)
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Other topics that could have been covered

• Connection with Deformation to the nor-

mal cone. (Work of Hu)

• Arithmetic Bézout theorem (Bost, G,Soulé)

• Semi-stable bundles and geometry of num-

bers (Soulé)
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