Weight Complexes for arithmetic varieties

Henri Gillet and C. Soulé March 2, 2005

Question of Serre

Theorem 1 (G.& Soulé, Crelle v. 478, 1996). Let V be the category of varieties over a field k of characteristic zero. Let M be the category of Chow motives for any adequate equivalence relation.

Then any variety X has a class $[X] \in K_0(M)$ such that:

- 1. If X is a smooth variety over k, then [X] is the class of the motive $(X, 1_X)$.
- 2. If $Y \subset X$ is a closed subvariety, then

[X] = [X] + [X - Y].

Weight Complexes

Let Hot(M) be the homotopy category of bounded complexes of Chow motives over k.

Theorem 2. There is a contravariant functor from the category of proper morphisms between varieties in V to Hot(M), $X \mapsto W(X)$, such that:

(i) Any open immersion $i : U \to X$ induces a map $i_* : W(U) \to W(X)$, compatible with composition.

(ii) If $Y \subset X$ is a closed subvariety, there is a canonical triangle: $W(X \setminus Y) \to W(X) \to W(Y) \to W(X \setminus Y)$ [1]

(iii) If X is a smooth projective variety, then $W(X) = (X, 1_X)$.

Proof of theorem 1: $[X] := \chi(W(X))$. **Corollary 3.** The weight filtration is defined integrally. Main Idea of Proof of theorem 2

Definition 4. Envelope $= f : X \to Y$, proper s.t. for all fields $X(F) \to Y(F)$

Key points:

1. For all X, $\exists f : \tilde{X} \to X$, nonsingular resolution by envelope.

2. Envelopes are universal descent morphisms for K-theory and the homology of Gersten complexes.

3. Two proper hyper-envelopes $p_i : \widetilde{X}_i \to X$ determine homotopy equivalent complexes of motives.

Getting rid of compact Supports:

Guillen & Navarro-Aznar in Pub. I.H.E.S. vol. ?, used cubical methods to also construct a functor which is contravariant for *all* maps.

Arithmetic Analog

The context:

V = category of varieties (= schemes of finite type) over a base S for which De Jong's theorem holds:

E.g.:

Spec(\mathcal{O}_K) K = number field, or Spec(k) k = field.

$$CH^*(X) := CH^*(X)_{\mathbb{Q}}$$

Note that $CH^*(X)$ is invariant under purely inseparable extensions – so we will ignore them.

Motives will have rational coefficients.

The Main Theorem

Theorem 5. There is a contravariant functor from the category of proper morphisms between Deligne-Mumford stacks over S to the category of homotopy classes of maps between bounded complexes of motives over $S, W : Stack_S \rightarrow Hot(M_S)$ such that:

(i) Any open immersion $i : \mathfrak{U} \to \mathfrak{X}$ induces a map $i_* : W(\mathfrak{U}) \to W(\mathfrak{X})$, compatible with composition.

(ii) If $\mathfrak{Y} \subset \mathfrak{X}$ is a closed substack, there is a canonical triangle:

 $W(\mathfrak{X} \setminus \mathfrak{Y}) \to W(\mathfrak{X}) \to W(\mathfrak{Y}) \to W(\mathfrak{X} \setminus \mathfrak{Y})[1]$

(iii) If X is a regular scheme, proper over S, then W(X) is the usual motive of X.

(iv) If V is a regular scheme, projective over S, and G is a finite group acting on V, then $W([V/G]) = W(V)^G$

Bivariant Chow groups(Fulton)

Definition 6. If $f : X \to Y$, a bivariant class $\alpha \in CH^i(X \to Y)$, consists of:

$$(T \to Y) \mapsto \left(\alpha_T^* : \mathsf{CH}_p(T) \to \mathsf{CH}_{p-i}(X \times_Y T)\right)$$

If Y is regular, then $CH^*(X \to Y) \simeq CH_*(X)$.

Correspondences over S

Definition 7. Suppose that X and Y are proper, $\operatorname{Corr}_{S}^{*}(X, Y) := CH^{*}(X \times_{S} Y \to X)$

If $\alpha \in \operatorname{Corr}^{-d}(X,Y)$, get $\alpha_* : \operatorname{CH}^i(X) \to \operatorname{CH}^{i-d}(Y)$.

Definition 8. Given X, Y, and Z, $\alpha \in \operatorname{Corr}^{-d}(X,Y) = \operatorname{CH}^{-d}(X \times_S Y \to X), and$ $\beta \in \operatorname{Corr}^{-e}(Y,Z) = \operatorname{CH}^{-e}(Y \times_S Z \to Y), their composition is defined$ by:

 β induces $\beta_{X \times_S Y} \in CH^{-e}(X \times_S Y \times_S Z \to X \times_S Y)$ hence $\beta \cdot \alpha_Z \in A^{-d-e}(\pi_Z \cdot \pi'_Y : X \times_S Y \times_S Z \to X)$, which we push forward by $X \times_S Y \times_S Z \to X \times_S Z$ to get $\beta \cdot \alpha$. **Proposition 9.** Composition of correspondences is a bilinear pairing, and is associative.

Definition 10. We write Corr_S for the graded \mathbb{Q} -linear category with Hom-sets equal to the graded vector space of correspondences.

Note that there is a *covariant* functor Γ from the category of proper morphisms between varieties to Corr_S^0 :

$$(g: X \to Y) \to \Gamma(g) = (\Gamma_g)_* : \operatorname{CH}_*(X) \to \operatorname{CH}^*(X \times_S Y)$$

 Γ extends to a functor from simplicial objects to Chain complexes in \mathbf{Corr}^*_S

Exact Sequence

Definition 11. A (homological) complex X_* in Corr_S is said to be acyclic if for all regular T, i, $\operatorname{Corr}_S^i(T, X_*)$ is exact.

A map of complexes $f_* : X_* \to Y_*$ is said to be a quasi-isomorphism if for all T, $\operatorname{Corr}^i_S(T, X_*) \to \operatorname{Corr}^i_S(T, Y_*)$ is a quasi-iso.

Triviality: If X_* is a bounded below acyclic complex, and T_* is a complex of regular varieties, then $\operatorname{Corr}_S(T_*, X_*)$ is acyclic.

Proper Hypercovers

Theorem 12. $f : X \to Y$. a proper hypercover $\Rightarrow \Gamma(f)$ a quasi-iso.

Proof. For all regular T, $CH_*(X \times_S T) \to CH_*(Y \times_S T)$, is a quasiiso.

Key point: Proper morphisms satisfy universal homological descent for CH_* .

Remark 13. This was not in the Crelle paper.

Complexes associated to stacks

Let \mathfrak{X} be a Deligne-Mumford stack over S.

Chow's lemma $\Rightarrow \exists f : X \to \mathfrak{X}$ proper & surjective, X a variety, and hence a proper hypercover $f : X \to \mathfrak{X}$.

Proposition 14. For all $k \ge 0$, we have a quasi-isomorphism:

$$(i \mapsto \mathsf{CH}_k(X_i)) \simeq CH_k(\mathfrak{X})$$

Proof. Reduce to points, then homology of finite groups.

 $De Jong \Rightarrow \exists f : X \rightarrow \mathfrak{X}$ proper hypercover, X_i regular $\forall i$.

Let P be the category of varieties proper over S, and let Ar(s.P) be the category of morphisms between simplicial objects in P.

Functor $T : Ar(s.P) \rightarrow Hot(Corr)$:

Given $f: Y_{\cdot} \rightarrow Z_{\cdot}$, choose a regular proper hypercover:

 $T(f) := \operatorname{Cone}(\Gamma(\tilde{f}))[-1]$

Suppose that g is a morphism in Ar(s.P):

$$\begin{array}{cccc} Y_{\cdot 1} & \xrightarrow{f_1} & Z_{\cdot 1} \\ g_Y & & & & \downarrow g_Z \\ Y_{\cdot 2} & \xrightarrow{f_2} & Z_{\cdot 2} \end{array}$$

Then there is a canonical map $T(g) : T(f_1) \to T(f_2)$ in Hot(Corr)

Proof: regular=projective.

We say that g is a morphism in Ar(s.P) is a *Gersten Equivalence* if for all q:

$$R_{q,*}(Y_{\cdot 1}) \to R_{q,*}(Y_{\cdot 2}) \oplus R_{q,*}(Z_{\cdot 1}) \to R_{q,*}(Z_{2})$$

Lemma 15. If the Y_{i} and Z_{i} are regular, and g is a Gersten equivalence, then T(g) is a quasi-isomorphism.

Let \mathfrak{X} be a stack. There exists: $p: X. \to \mathfrak{X}$, a proper hypercover, and $i: X. \hookrightarrow \overline{X}$., a compactification over Ssuch that $Y. = \overline{X} \setminus X$. is a closed subsimplicial scheme.

If \overline{X} . above is regular, and $f: \widetilde{Y} \to Y$. is a regular hypercover, we call

$$\tilde{Y}. \to \bar{X}. \longleftrightarrow X. \to \mathfrak{X}$$

a resolution of \mathfrak{X} .

Theorem 16. Given two resolutions f_1 and f_2 of \mathfrak{X} , there is a canonical quasi-isomorphism $T(f_1) \to T(f_2)$.

More generally, given a morphism $g : \mathfrak{X}_1 \to \mathfrak{X}_2$ of stacks, and resolutions f_1, f_2 , there is a canonical $T(g) : T(f_1) \to T(f_2)$.

Proof: dense compactifications form a directed poset.

Definition of W

Definition 17. The category M_S of motives over S is defined by taking adding projectors to $Corr_S$ and reversing arrows. W is the associated functor.

Boundedness

Every stack \mathfrak{X} has a dense open set of the form [X/G] for some finite group G.

Pick equivariant compactification $[\bar{X}/G]$

Apply De Jong to \overline{X} with G acting on it:

There exists $\pi : Y \to X$ with a group H acting on Y, and a homomorphism $H \to G$ so that the map is equivariant, Y is regular, and there is an equivariant dense open $U \subset X$ such that $[\pi^{-1}(U)/H] \simeq [U/G]$.

Then use M-V sequence for W plus noetherian induction.

No compact supports

Theorem 18. There is a contravariant functor from the category of ALL morphisms between varieties in V to Hot(M), $X \mapsto \hat{W}(X)$, such that:

(i) If $Y \subset X$ is a closed subvariety, there is a canonical triangle: $\widehat{W}(X) \to \widehat{W}(X \setminus Y) \to \widehat{W}^Y(X) \to \widehat{W}(X \setminus Y)[1]$

(ii) If X is a smooth projective variety, then $\hat{W}(X) = (X, 1_X)$.

(iii) If X is regular, proper over S, and $Y \subset X$ is closed, then $\widehat{W}^{Y}(X) \simeq W(Y)$.

Idea of Proof

Let X be a variety over S. Choose a compactification $X \subset \overline{X}$, with complement Y. Given a regular hypercover \widetilde{X} . $\rightarrow \overline{X}$, with $Y \subset \widetilde{X} = \widetilde{X} \setminus X$. we want to define $W^{Y}(\widetilde{X})$, and then set

$$W(X) := \operatorname{Cone}(W^{Y_{\cdot}}(\tilde{X}_{\cdot}) \to W(\tilde{X}_{\cdot}))[\pm 1]$$

Use operational Chow groups, together with "projective" resolutions of the ΓY_i .