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Abstract. Let H be an infinite-dimensional (real or complex) Hilbert
space, viewed as a metric structure in its natural signature. We char-
acterize the definable linear operators on H as exactly the “scalar plus
compact” operators.

1. Introduction

The continuous theory of infinite-dimensional (real) Hilbert spaces, de-
noted IHS in [2], is one of the most well-understood theories in continuous
logic. For example, IHS admits quantifier elimination, is κ-categorical for
every infinite cardinal κ, and is ω-stable; moreover, one can identify the
relation of nonforking independence concretely in terms of orthogonality of
vectors. In addition, one can completely understand the definable closure
relation and the natural metric on the type spaces. (See Section 15 of [2] for
a more thorough discussion of the theory IHS.) However, there has yet to
be any mention of what the definable sets or functions are in this theory. In
fact, there had yet to be any real study of definable functions in any metric
structure until the paper [4] analyzed the definable functions in the Urysohn
sphere.

In this paper, we only study the definable linear operators on Hilbert
spaces, for studying arbitrary definable functions seems a bit out of reach at
the moment. As in [4], the key observation is the following: IfM is a metric
structure, A ⊆ M is a parameterset, and f : M → M is an A-definable
function, then for every x ∈ M , we have f(x) ∈ dcl(Ax), where dcl stands
for definable closure. Thus, in any theory where dcl is well-understood, one
can begin to understand the definable functions. In models of IHS, the
definable closure of a parameterset is equal to its closed linear span; see
Lemma 15.3 of [2].

Our main result is the following: Let H be an infinite-dimensional real
(resp. complex) Hilbert space. Then the definable linear operators on H
are exactly the “scalar plus compact” operators λI +K, where λ ∈ R (resp.
λ ∈ C), I : H → H is the identity operator, and K : H → H is a com-
pact operator. In particular, this shows that many “intuitively definable”
bounded linear operators on H are not actually definable; for example, the
left- and right-shift operators on `2 are not definable. This result shows that
there can be an inherent gap between what is “intuitively” definable in a
metric structure and what is actually definable. (This is in contrast to [4],
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where many functions on the Urysohn sphere are shown to be non-definable;
these functions are constructed in such a way that they do not appear to be
definable in any reasonable sense of the word, whence the intuition and the
logic agree.) Another consequence of our main theorem is that the definable
linear operators are closed under taking adjoints.

We also introduce a natural signature for complex Hilbert spaces and show
that the characterization of definable linear operators as exactly the scalar
plus compact operators persists in this context as well. Since there are a
few more structural results specific to operators on complex Hilbert spaces,
our characterization of definable operators yields some extra corollaries in
the complex situation, most notably the fact that the invariant subspace
problem has a positive solution when restricted to definable operators.

On a side note, one should mention that the class of “scalar plus compact”
operators has shown up in the recent work of Argyros-Haydon [1] where
Banach spaces X are constructed so that the only bounded linear operators
on X are the “scalar plus compact” operators. According to Gowers’ blog
[5], “the Argyros-Haydon space has very definitely taken over as the new
‘nastiest known Banach space’, in a sense that it has almost no non-trivial
structure.”

We assume that the reader is familiar with the basics of continuous logic.
For the reader unacquainted with continuous logic, the survey [2] is the
natural place to start.

I would like to thank Alex Berenstein and Christian Rosendal for useful
discussions concerning this work.

2. Preliminaries

In this section, we let H be an arbitrary infinite-dimensional real Hilbert
space, viewed as a metric structure in the natural many-sorted language for
Hilbert spaces, which we now briefly recall for the convenience of the reader.
For each n ≥ 1, we have a sort for Bn(H) := {x ∈ H | ‖x‖ ≤ n}. For each
1 ≤ m ≤ n, we have a function symbol Im,n : Bm(H) → Bn(H) for the
inclusion mapping. We also have, for each n ≥ 1, the following symbols:

• function symbols +,− : Bn(H)×Bn(H)→ B2n(H);
• function symbols r· : Bn(H)→ Bkn(H) for all r ∈ R, where k is the
unique natural number satisfying k − 1 ≤ |r| < k;
• a predicate symbol 〈·, ·〉 : Bn(H)×Bn(H)→ [−n2, n2];
• a predicate symbol ‖ · ‖ : Bn(H)→ [0, n].

Observe that adding the norm as a predicate symbol is not altogether
necessary since the norm is given by a quantifier-free formula using the inner
product. Finally, the metric on each sort is given by d(x, y) := ‖x− y‖.

Normally, the notion of a definable function is defined for functions from
a product of sorts to another sort. Thus, we must say exactly what we mean
by a definable function f : H → H.
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Definition 2.1. Let A ⊆ H. We say that a function f : H → H is A-
definable if:

(1) for each n ≥ 1, f(Bn(H)) is bounded; in this case, we letm(n, f) ∈ N
be the minimal m such that f(Bn(H)) is contained in Bm(H);

(2) for each n ≥ 1 and each m ≥ m(n, f), the function

fn,m : Bn(H)→ Bm(H), fn,m(x) = f(x)

is A-definable, that is, the predicate Pn,m : Bn(H)×Bm(H)→ [0, 1]
defined by Pn,m(x, y) = d(f(x), y) is A-definable.

Observe that, since each fn,m can be defined using only countably many
elements of A, a definable function H → H is always definable using only
countably many parameters. We will also need the following basic facts
about definable functions:

Lemma 2.2. If f1, f2 : H → H are A-definable and r ∈ R, then:
(1) r · f1 is A-definable;
(2) f1 + f2 is A-definable;
(3) f2 ◦ f1 is A-definable.

Proof. (1) Without loss of generality, we may suppose that r 6= 0. Fix
n ≥ 1 and m ≥ m(n, r · f1). Fix x a variable of sort Bn(H) and y a
variable of sort Bm(H). Let k be the unique natural number such that
k − 1 ≤ 1

|r| < k. Let Q : Bn(H) × Bkm(H) → [0, 1] be the A-definable
predicate Q(x, z) = ‖f1(x) − z‖. Then ‖(r · f1)(x) − y‖ = |r| · Q(x, 1

r · y),
which is an A-definable predicate.

(2) Fix n ≥ 1 and m ≥ m(n, f1 + f2). Fix x a variable of sort Bn(H)
and y a variable of sort Bm(H). Set m′ := max(m,m(n, f1),m(n, f2)). Let
Q′ : Bn(H) × B2m′(H) → [0, 1] be the A-definable predicate Q′(x, z) =
‖f1(x)− z‖. Then we have

‖(f1 + f2)(x)− y‖ = Q′(x, Im,m′(y)− Im(n,f2),m′(f2(x))),

which is an A-definable predicate since f2 is an A-definable function.

(3) One can just adapt the proof of this fact from 1-sorted continuous logic,
keeping track of the sorts of variables as in the first two parts of the proof. �

It is evident from the proof of the above theorem that keeping track of
which sorts various terms lie in can become quite cumbersome. Thus, in the
rest of this paper, we reserve the right to become a bit looser in this regards.

In the rest of this section, we fix A ⊆ H and let P : H → H denote the
orthogonal projection map onto sp(A); here, and in the rest of this paper,
sp denotes closed linear span.

Lemma 2.3. Given x ∈ H, we have that sp(A∪{x}) = sp(A)⊕R ·(x−Px).
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Proof. The inclusion ⊇ is clear. We now prove the inclusion ⊆. We may
suppose that Px 6= x. Now suppose that z ∈ sp(A ∪ {x}), so z = lim zn,
where zn ∈ span(A ∪ {x}). Write zn = yn + λnx, where yn ∈ span(A) and
λn ∈ R. Then zn = (yn+λnPx)+λn(x−Px). Set wn := yn+λnPx ∈ sp(A).
Now

‖zm − zn‖2 = ‖wm − wn‖2 + |λm − λn|2‖x− Px‖2,
so wn → w ∈ sp(A) and λn → λ ∈ R. It follows that

z = w + λ(x− Px) ∈ sp(A)⊕ R · (x− Px).

�

Corollary 2.4. Suppose that f : H → H is A-definable and x ∈ H. Then
f(x) ∈ sp(A)⊕ R · (x− Px).

Proof. This follows from the fact that dcl(B) = sp(B) for any B ⊆ H. �

Suppose that H is an elementary extension ofH. Suppose that f : H → H
is an A-definable function. Fix n ≥ 1 and m ≥ m(n, f). By Proposition of
9.25 of [2], there is a natural extension of fn,m to an A-definable function
fn,m : Bn(H) → Bm(H). Moreover, by elementarity, we see that if n′ ≥ n,
m ≥ m(n, f), m′ ≥ m(n′, f) and x ∈ Bn(H), then fn,m(x) = fn′,m′(x),
whence the fn,m’s piece together to yield an A-definable function f : H→ H.

3. Definable Operators on Real Hilbert Spaces

In this section, we continue to let H be an infinite-dimensional real Hilbert
space. We aim to prove the following:

Theorem 3.1. Suppose that T : H → H is a bounded linear map. Then T
is definable if and only if there is λ ∈ R and a compact operator K : H → H
such that T = λI +K.

We can rephrase this theorem as follows. Let D(H) denote the algebra
of definable linear operators on H. Let B(H) denote the Banach algebra
of bounded linear operators on H and let B0(H) denote the closed, two-
sided ideal of B(H) consisting of the compact operators on H. Finally, let
C(H) = B(H)/B0(H) denote the Calkin algebra of H with quotient map
π : B(H) → C(H). If e is the unit element of C(H), then we view R as a
subalgebra of C(H) by identifying it with R · e. Then Theorem 3.1 states
that D(H) = π−1(R).

We first prove the “if” direction of Theorem 3.1.

Proposition 3.2. Suppose that T : H → H is a linear operator on H.
(1) If T is a finite-rank operator, then T is definable. In fact, d(T (x), y)

is given by a formula.
(2) If T is a compact operator, then T is definable.
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Proof. (1) Suppose that e1, . . . , en is an orthonormal basis for T (H). Then
there exist bounded linear functionals f1, . . . , fn : H → R so that

T (x) = f1(x)e1 + · · ·+ fn(x)en

for all x ∈ H. For each i ∈ {1, . . . , n}, let zi ∈ H be the unique vector so
that fi(x) = 〈x, zi〉 for all x ∈ H; this is possible by the Riesz Representation
Theorem (see [3] Prop I.3.4). Then T (x) =

∑n
i=1〈x, zi〉ei, whence, for y ∈ H,

we have

d(T (x), y) =

√√√√ n∑
i=1

(〈x, zi〉2)− 2
n∑
i=1

(〈x, zi〉〈ei, y〉) + ‖y‖2.

For (2), let T be a compact operator and let (Tn) be a sequence of finite-
rank operators such that ‖T − Tn‖ → 0; see, for example, [3] II.4.4. Given
ε > 0 and n > 0, choose N such that ‖T − TN‖ < ε

n . Fix m ≥ m(n, T ) and
let x and y range over Bn(H) and Bm(H) respectively. We then have∣∣‖T (x)− y‖ − ‖TN (x)− y‖

∣∣ ≤ ‖T (x)− TN (x)‖ < ε.

Since ‖TN (x) − y‖ is given by a formula, we have that ‖T (x) − y‖ is given
by a definable predicate. �

Since λI is a definable linear map for every λ ∈ R, the preceding proposi-
tion implies that λI +K is definable for every λ ∈ R and every K ∈ B0(H).

We now aim to prove the “only if” direction of Theorem 3.1. Until other-
wise stated, we suppose that T : H → H is an A-definable linear operator,
where A ⊆ H is countable. Furthermore, we fix a proper ω1-saturated ele-
mentary extension H of H and we consider T : H→ H, the natural extension
of T to H as described at the end of the previous section.

Lemma 3.3. T : H→ H is also linear.

Proof. Fix n ≥ 1 and set m := m(2n, T ). Let (ϕk(x, y)) be a sequence
of formulae with parameters from A such that, for all x ∈ B2n(H) and
y ∈ Bm(H) we have |d(T (x), y)− ϕk(x, y)| ≤ 1

k . Then

H |= sup
x,y,∈Bn(H)

sup
z,w1,w2∈Bm(H)

(max(ϕk(x+ y, z), ϕk(x,w1), ϕk(x,w2)) ≤
1
k

⇒ d(z, w1 + w2) ≤
6
k
)).

By Proposition 7.14 of [2], this implication is true in H. It follows that
T (x+ y) = T (x) + T (y) for all x, y ∈ H. A similar argument proves that T
preserves scalar multiplication. �

As in the previous section, we let P : H → H denote the orthogonal
projection onto sp(A).

Proposition 3.4. There exists a unique λ ∈ R such that T = P ◦T+λI−λP .
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Proof. First suppose that x ∈ sp(A)⊥ ⊆ H. Then T (x) − P (T (x)) ∈ R · x.
Suppose further that y ∈ sp(A)⊥. Then there exist constants λ1, λ2, λ3 ∈ R
such that T (x) = P (T (x)) + λ1x, T (y) = P (T (y)) + λ2y, and T (x + y) =
P (T (x+ y)) + λ3(x+ y). From this we gather that λ1x+ λ2y = λ3(x+ y).
It follows that if x, y 6= 0, then λ1 = λ2. Observe that, by ω1-saturation,
sp(A)⊥ 6= {0}. Thus, there is a unique λ ∈ R such that, for all x ∈ sp(A)⊥,
T (x) = P (T (x))+λx. Fix this λ and suppose that x ∈ H is arbitrary. Then

T (x) = T (Px) + T (x− Px) = T (Px) + PT (x− Px) + λ(x− Px).

Since Px ∈ sp(A), we have P (T (x)) = T (Px) + PT (x − Px) and thus
T (x) = PT (x) + λ(x− Px). �

From now on, we write λ(T ) for the unique λ for which T = P ◦T +λI−λP .

Proposition 3.5. T − λ(T )I is a compact operator.

Proof. Set λ := λ(T ). Observe that T − λI = P ◦ (T − λI), whence (T −
λI)(H) ⊆ sp(A). Since H is ω1-saturated, we know that (T − λI)(B1(H))
is closed. We thus need to show that (T − λI)(B1(H)) is compact. Let
ε > 0 be given. Set m := m(1, T ). Let (an) be a countable dense subset of
(T − λI)(B1(H)). Let k := max(|λ|,m). Let x range over variables of sort
B1(H) and y range over variables of sort B2k(H). Let ϕ(x, y) be a formula
such that

∣∣‖T (x)− y‖ − ϕ(x, y)
∣∣ < ε

4 . Then the following set of formulae is
inconsistent:

{ϕ(x, λx+ an) ≥
ε

2
| n ∈ N}.

By saturation, there are a1, . . . , an such that a1, . . . , an form an ε-net for
(T − λI)(B1(H)). �

This finishes the proof of Theorem 3.1. Let us now consider some of its
consequences.

Corollary 3.6. D(H) is a C∗-subalgebra of B(H).

The preceding corollary is interesting because it is not at all clear, from
first principles, that D(H) is closed under taking adjoints. However, it is
easy to see that the adjoint of a definable normal operator T : H → H is
definable, for we then have

‖T ∗(x)−y‖2 = ‖T ∗(x)‖2−2〈T ∗(x), y〉+‖y‖2 = ‖T (x)‖2−2〈T (y), x〉+‖y‖2,

which is a definable predicate since T is definable.

Corollary 3.7. Suppose that T ∈ D(H) is not compact. Then Ker(T ) and
Coker(T ) are finite-dimensional. Moreover, Ker(T ) ⊆ sp(A).

Proof. Suppose that T is not a compact operator. Then λ(T ) 6= 0 and we
have, by Proposition 3.4, that Ker(T ) ⊆ sp(A). Let m := m(1, T ). Let x
and y range over B1(H) and Bm(H) respectively. For each k ≥ 1, let ϕk(x, y)
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be a formula such that |d(T (x), y) − ϕk(x, y)| < 1
k for all x and y. Let (ai)

be a countable dense subset of sp(A). Fix ε > 0. Then the set of conditions

{ϕk(x, 0) ≤ 1
k
| k ≥ 1} ∪ {d(x, ai) ≥ ε | i ≥ 1}

is unsatisfiable. By ω1-saturation, there are a1, . . . , ak which form an ε-net
for the unit ball of Ker(T ). Since ε > 0 was arbitrary, this shows that the
unit ball of Ker(T ) is compact, whence Ker(T ) is finite-dimensional. Since
T ∗ is also definable, we see that Ker(T ∗) is also finite-dimensional, implying
that Coker(T ) is finite-dimensional. �

Corollary 3.8. Suppose that K is a closed subspace of H and T : H → H
is the orthogonal projection onto K. Then T is definable if and only if K is
of finite dimension or finite codimension.

Proof. If K is of finite dimension or finite codimension, then T or I − T
is finite-rank, whence definable. Conversely, suppose that T is definable.
If T is compact, then T is finite-rank (as it is idempotent), whence K is
finite-dimensional. Otherwise, by Corollary 3.7, we have

dim(H/K) = dim(K⊥) = dim(Ker(T )) <∞.

�

In this paper, we let `2R (resp. `2C) denote the real (resp. complex) Hilbert
space of all real (resp. complex) square-summable sequences indexed by N.

Corollary 3.9. Let I = {i1, i2, . . . , } be an infinite and co-infinite subset of
N and let T : `2R → `2R be defined by T (x)n = xin. Then T is not definable.

Proof. Observe that T (B1(`2R)) = B1(`2R), so T is not a compact operator.
Since Ker(T ) is infinite-dimensional, T cannot be definable by Corollary
3.7. �

Corollary 3.10. Suppose that T : H → H is a definable linear operator and
µ is an eigenvalue of T satisfying µ 6= λ(T ). Then the eigenspace Eµ(T ) is
a finite-dimensional subspace of sp(A).

Proof. Set λ := λ(T ). Fix µ 6= λ and suppose that z 6= 0 is such that
T (z) = µz. We know that T (z) = P (T (z)) + λ(z − Pz). Thus

(µ− λ)z = P (T (z))− λPz ∈ sp(A),

whence z ∈ sp(A). Thus Eµ(T ) is contained in sp(A). Now observe that
µ−λ is a nonzero eigenvalue of T−λI; since T−λI is compact, Eµ−λ(T−λI)
is finite-dimensional by the Spectral Theorem for Compact Operators (see
[3], VII.7.1). Now use the fact that Eµ(T ) = Eµ−λ(T − λI). �

In particular, if T : H → H is an A-definable linear operator, where sp(A)
is finite-dimensional, then T has only finitely many eigenvalues.
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4. Definable Operators on Complex Hilbert Spaces

In this section, we let H be an infinite-dimensional complex Hilbert space.
We treat H as a metric structure just as in the case of real Hilbert spaces
except for two important differences. First, in addition to all of the function
symbols for scalar multiplication by real numbers, we include, for each n ≥
1, a function symbol i· : Bn(H) → Bn(H) for scalar multiplication by i.
Secondly, for each n ≥ 1, we replace the predicate symbol for the inner
product by two predicate symbols Re, Im : Bn(H) × Bn(H) → [−n2, n2],
which are to be interpreted as the real and imaginary parts of the inner
product.

In this signature, it is still true that definable closure in H coincides with
closed linear span in H. Moreover, it is straightforward to verify that all of
the results from Section 2 as well as all of the results leading up to the proof
of Theorem 3.1 remain true in the complex context. For example, consider
the finite-rank operator T : H → H given by T (x) =

∑n
i=1〈x, zi〉ei, where

{e1, . . . , en} is an orthonormal set in H and z1, . . . , zn ∈ H are arbitrary.
Then we have

d(T (x), y) =

√√√√ n∑
i=1

(
|〈x, zi〉|2 − 〈x, zi〉〈ei, y〉 − 〈zi, x〉〈y, ei〉

)
+ ‖y‖2.

Now |〈x, zi〉|2 = Re(x, zi)2 + Im(x, zi)2 and

〈x, zi〉〈ei, y〉+ 〈zi, x〉〈y, ei〉 = 2(Re(x, zi)Re(ei, y)− Im(x, zi)Im(ei, y)).

It thus follows that d(T (x), y) is once again given by a formula. Performing
similar modifications to the rest of the above arguments yields a complex
version of our main theorem:

Theorem 4.1. A bounded linear operator T : H → H is definable if and
only if there exists λ ∈ C and a compact operator K : H → H such that
T = λI +K.

We once again write D(H) for the algebra of definable operators. Observe
that we have complex versions of Corollaries 3.6 through 3.10. In addition,
in the complex context, we may draw a few more conclusions from our result
on definable operators, which we discuss now.

Recall that a bounded operator T : H → H is said to be Fredholm if
both Ker(T ) and Coker(T ) are finite-dimensional. If T is Fredholm, then
the index of T is the integer ind(T ) := dim Ker(T )− dim Coker(T ).

Corollary 4.2. If T ∈ D(H), then either T is compact or else T is a
Fredholm operator of index 0. In the latter case, we have that Ker(T ) is a
finite-dimensional subspace of sp(A).

Proof. The first statement follows from the Fredholm alternative from func-
tional analysis; see [3], VII.7.9 and XI.3.3. If T is Fredholm, then the fact
that Ker(T ) ⊆ sp(A) follows directly from Proposition 3.4. �
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Let F denote either R or C. Recall the left- and right-shift operators LF and
RF on `2F:

LF : `2F → `2F, LF(x0, x1, x2, . . .) = (x1, x2, x3, . . .),

RF : `2F → `2F, RF(x0, x1, x2, . . .) = (0, x0, x1, x2, . . .).

Corollary 4.3. The left and right shift operators LC, RC : `2C → `2C are not
definable. Consequently, the left- and right-shift operators LR, RR : `2R → `2R
are not definable.

Proof. LC and RC are Fredholm operators of index 1 and −1 respectively,
whence not definable. If LR were definable, then there would be λ ∈ R and
a compact operator K : `2R → `2R such that LR = λI + K. Let KC denote
the canonical extension of K to a C-linear map on `2C; observe that KC is
a compact operator. Then LC = λI + KC, which is a scalar plus compact
operator on `2C, implying that LC is definable, a contradiction. The same
reasoning shows that RR is not definable. �

As above, we let C(H) denote the Calkin algebra of H with identity element
e and we let π : B(H)→ C(H) denote the canonical quotient map onto the
Calkin algebra of H. Given T ∈ B(H), recall that the essential spectrum of
T is

σe(T ) := {λ ∈ C | π(T )− λe is not invertible}.
The following result is clear from our main theorem.

Corollary 4.4. If T ∈ D(H), then σe(T ) = {λ(T )}.
Example 4.5. Consider the operator LC⊕RC ∈ B(`2C⊕`2C). Then LC⊕RC
is Fredholm of index 0 by XI.2.2 and X1.3.10 of [3]. Thus, Corollary 4.2 does
not rule out the possibility that LC ⊕ RC is definable. However, XI.4.11 of
[3] shows that σe(LC⊕RC) = {z ∈ C | |z| = 1}, whence Corollary 4.4 shows
that LC ⊕RC is not definable.

Recall the invariant subspace problem for Hilbert spaces: Let H be the
separable complex Hilbert space. Given T ∈ B(H), does there exist a non-
trivial closed subspace E of H such that T (E) ⊆ E? Here, by a nontrivial
subspace of H, we mean a subspace of H other than {0} and H. While this
problem remains open, we do know that the answer is positive if one restricts
attention to definable bounded operators:

Corollary 4.6. Suppose that H is the separable complex Hilbert space. Then
given any T ∈ D(H), there is a nontrivial closed subspace E of H such that
T (E) ⊆ E.
Proof. Write T = λI +K, where λ ∈ C and K ∈ B0(H). If K = {0}, then
take E := C · x, where x ∈ H \ {0} is arbitrary. Otherwise, observe that
T commutes with K; combine this with the result of Lomonosov (see [3],
VI.4.13) which states that a bounded linear operator on a complex Banach
space which commutes with a nonzero compact operator must have a proper
closed invariant subspace. �
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