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CHAPTER 1

Getting Started

This documentation describes the software package PHCpack.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

1.1 What is PHCpack?

PHCpack implements a collection of algorithms to solve polynomial systems by homotopy continuation methods.

On input is a sequence of polynomials in several variables, on output are the solutions to the polynomial system given
on input. The computational complexity of this problem is #P-hard because of the exponential growth of the number
of solutions as the number of input polynomials increases. For example, ten polynomials of degree two may intersect
in 1,024 isolated points (that is two to the power ten). Twenty quadratic polynomials may lead to 1,048,576 solutions
(that is 1,024 times 1,024). So it is not too difficult to write down small input sequences that lead to a huge output.

Even as the computation of the total number of solutions may take a long time, numerical homotopy continuation
methods have the advantage that they compute one solution after the other. A homotopy is a family of polynomial
systems, connecting the system we want to solve with an easier to solve system, which is called the start system.
Numerical continuation methods track the solution paths starting at known solutions of an easier system to the system
we want to solve. We have an optimal homotopy if every path leads to a solution, that is: there are no divergent paths.

PHCpack offers optimal homotopies for systems that resemble linear-product structures, for geometric problems in
enumerative geometry, and for sparse polynomial systems with sufficiently generic choices of the coefficients. While
mathematically this sounds all good, most systems arising in practical applications have their own peculiar structure
and so most homotopies will lead to diverging solution paths. In general, a polynomial system may have solution sets
of many different dimensions, which renders the solving process challenging but at the same time still very interesting.

Version 1.0 of PHCpack was archived as Algorithm 795 by ACM Transactions on Mathematical Software. PHCpack
is open source and free software which gives any user the same rights as in free speech. You can redistribute PHCpack
and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation;
version 3 of the License.

1
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1.2 Downloading and Extracting the Executable

For Linux, MacOS X, and Windows, executable versions of the program are available via the releases made at github,
at <https://github.com/janverschelde/PHCpack>.

For the Windows operating systems, the executable version of phc is in the file phc.exe and is available for download
in its uncompressed format. Using the plain version of phc on a Windows system requires the opening of a command
prompt window and typing phc at the prompt. To run phc from any folder, different from the folder where you save phc.
exe, you have to change the environment variable path. On Windows 10, type env in the Search window and select
Edit the system environment variables under the Settings. After this selection, click on the Environment
Variables... button and select Path from the System Variables. Via the Edit button you can insert the name
of the folder where you saved the file phc.exe. Alternatively, you could of course save the phc.exe in a folder which
is already on your path.

For Mac OS X and Linux versions, the executable is tarred and gzipped. If the downloaded file is saved as *phcv2_4p.
tar.gz, then the following commands to unzip and untar the downloaded file can be typed at the command prompt:

gunzip *phcv2_4p.tar.gz
tar xpf *phcv2_4p.tar

If all went well, typing phc at the command prompt should bring up the welcome message and the screen with available
options.

The executable phc gives access to almost all the functionality of PHCpack, including the multitasking capabilities
for shared memory parallelism on multicore processors. For other parallel capabilities, such as distributed memory
parallelism with the Message Passing Interface (MPI) and massive parallelism on a Graphics Processing Unit (GPU),
one will need to compile the source code.

1.3 Compiling from Source

The source code is under version control at github, at <https://github.com/janverschelde/PHCpack>. To compile the
source code, the gnu-ada compiler is needed. The main executable phc is built with

gprbuild main.gpr

where the main.gpr is available in the folder Ada/Main of the source code. The same folder contains phclib.gpr
with instructions to build the library libPHCpack.

The GPRbuild is a multi-language builder tool. of the GNAT Project Manager. The folders of the source contain each
one file with the extension .gpr which defines the build-related characteristics of the main programs provided in the
source folder. Every source code folder defines many test procedures which are built with GPRbuild as defined in the
files with the .gpr extension.

An alire <https://alire.ada.dev> workspace is provided, with manifest in alire.toml. The default configuration is for
windows. To change this default, in the files of the config folder, change the strings "windows" into "linux" or
"macosx".

Type alr build to build and alr clean to clean.

On Linux and Mac OS X, for the libPHCpack it is best to select a native GNAT compiler, which can be obtained from
the package managers of the OS.

Since version 2.4.88, PHCpack is among the catalog of ready-to-use Ada/Spark libraries. Once alr is installed, then
typing

2 Chapter 1. Getting Started
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alr get phcpack

will retrieve and build the executable phc and the library libPHCpack.

1.4 Project History

The software originated in the development of new homotopy algorithms to solve polynomial systems. The main nov-
elty of the first release of the sources was the application of polyhedral homotopies in the blackbox solver. Polyhedral
homotopies are generically optimal for sparse polynomial systems. Although the number of solutions may grow expo-
nentially in the number of equations, variables, and degrees, for systems where the coefficients are sufficiently generic,
every solution path defined by a polyhedral homotopy will lead to one isolated solution.

Version 2.0 of the code implemented SAGBI and Pieri homotopies to solve problem in enumerative geometry. A
classical problem in Schubert calculus is the problem of the two lines that meet four general lines in 3-space. Pieri
homotopies are generically optimal to compute all solutions to such geometric problems. They solve the output pole
placement problem in linear systems control. With message passing, parallel versions of the Pieri homotopies lead to
good speedups on parallel distributed memory computers.

Starting with version 2.0 was the gradual introduction of new homotopies to deal with positive dimensional solution
sets. Cascades of homotopies provide generic points on every solution set, at every dimension. After the application
of cascade homotopies to compute generic points on all equidimensional components, the application of monodromy
loops with the linear trace stop test classifies the generic points on the equidimensional component into irreducible
components. This leads to a numerical irreducible decomposition of the solution set of a polynomial system. Cas-
cade of homotopies are the top down method. A bottom up method applies diagonal homotopies to intersect positive
dimensional solution sets in an equation-by-equation solver.

To deal with singular solutions of polynomial systems, the deflation method was added in version 2.3. Version 2.3 was
quickly followed by a bug release 2.3.01 and subsequently by many more quick releases. The introduction of the fast
mixed volume calculator MixedVol in 2.3.13 was followed by capabilities to compute stable mixed volumes in 2.3.31,
and an upgrade of the blackbox solver in version 2.3.34.

Shared memory multitasking provided the option -t, followed by the number of tasks, to speedup the path tracking.
Our main motivation of parallelism is to offset the extra cost of multiprecision arithmetic, in particular double double
and quad double arithmetic. Marking a milestone after one hundred quick releases, version 2.4 provided path tracking
methods on graphics processing units. A collection of Python scripts defines a simple web interface to the blackbox
solver and the path trackers, enabling the solution of polynomial systems in the cloud. DEMiCs applies dynamic
enumeration for all mixed cells and computes the mixed volume at a faster pace than MixedVol. Since version 2.4.53,
DEMiCs is distributed with PHCpack. Triple, penta, octo, and deca double arithmetic were added in version 2.4.80.

The effort to replace makefiles by project files to build the phc executable and the libPHCpack with gprbuild culmi-
nated into the addition of version 2.4.88 to the catalog of ready-to-use Ada/SPARK libraries, distributed with ALIRE,
via <https://alire.ada.dev>.

1.5 phcpy: An Application Programming Interface to PHCpack

The modernization of PHCpack happened through the development of the Python package phcpy. This package has
its own documentation at <http://www.math.uic.edu/~jan/phcpy_doc_html/index.html>.

The main executable phc built by the code in PHCpack is called at the command line with options to invoke specific
tools and with file names as arguments in which the input and output data goes. In contrast, the scripting interface
replaces the files with persistent objects and instead of selecting options from menus, the user runs scripts.

1.4. Project History 3
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1.6 PHCpack.jl: an interface to Julia

The Julia interface PHCpack.jl is under development, jointly with Kylash Viswanathan. A preliminary version, which
uses the executable phc, is available at <https://github.com/kviswa5/Julia-PHC-Interface>.

The version of the Julia interface which uses libPHCpack is available via the Julia folder of the source code of
PHCpack.

1.7 References

PHCpack relies for its fast mixed volume computation on MixedVol and DEMiCs. For its double double and quad
double arithmetic, there is QDlib which is integrated in PHCpack. For triple double, and other multiple doubles (penta,
octo, deca), code generated from the CAMPARY software is used. Pointers to the literature are mentioned below.
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brary and Applications. In Mathematical Software - ICMS 2016, pages 232-240, Springer-Verlag 2016.

7. A. Leykin and J. Verschelde: PHCmaple: A Maple Interface to the Numerical Homotopy Algorithms in
PHCpack. In the Proceedings of the Tenth International Conference on Applications of Computer Algebra
(ACA’2004), edited by Q. N. Tran, pages 139-147, 2004.

8. A. Leykin and J. Verschelde: Interfacing with the Numerical Homotopy Algorithms in PHCpack. In the
Proceedings of ICMS 2006, LNCS 4151, edited by A. Iglesias and N. Takayama, pages 354-360, Springer-Verlag,
2006.

9. T. Mizutani and A. Takeda. DEMiCs: A software package for computing the mixed volume via dynamic
enumeration of all mixed cells. In Software for Algebraic Geometry, edited by M.E. Stillman, N. Takayama, and
J. Verschelde, volume 148 of The IMA Volumes in Mathematics and its Applications, pages 59-79. Springer-
Verlag, 2008.

10. T. Mizutani, A. Takeda, and M. Kojima. Dynamic enumeration of all mixed cells. Discrete Comput. Geom.
37(3):351-367, 2007.

11. M. Lu., B. He and Q. Luo. Supporting extended precision on graphics processors. In the Proceedings of
the Sixth International Workshop on Data Management on New Hardware (DaMoN 2010), June 7, 2010, Indi-
anapolis, Indiana, edited by A. Ailamaki and P.A. Boncz, pages 19-26, 2010.
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12. J. Otto, A. Forbes, and J. Verschelde. Solving Polynomial Systems with phcpy. In the Proceedings of the 18th
Python in Science Conference (SciPy 2019), edited by Chris Calloway, David Lippa, Dillon Niederhut and David
Shupe, pages 58-64, 2019.

13. K. Piret and J. Verschelde: Sweeping Algebraic Curves for Singular Solutions. Journal of Computational and
Applied Mathematics, 234(4): 1228-1237, 2010.

14. A. J. Sommese, J. Verschelde, and C. W. Wampler. Numerical irreducible decomposition using PHCpack.
In Algebra, Geometry, and Software Systems, edited by M. Joswig and N. Takayama, pages 109-130. Springer-
Verlag, 2003.

15. J. Verschelde: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy
continuation. ACM Transactions on Mathematical Software, 25(2):251–276, 1999.

16. J. Verschelde: Polynomial homotopy continuation with PHCpack. ACM Communications in Computer Alge-
bra, 44(4):217-220, 2010.

17. J. Verschelde: Modernizing PHCpack through phcpy. In the Proceedings of the 6th European Conference on
Python in Science (EuroSciPy 2013), edited by Pierre de Buyl and Nelle Varoquaux, pages 71-76, 2014, available
at <http://arxiv.org/abs/1310.0056>.

18. J. Verschelde: A Blackbox Polynomial System Solver on Parallel Shared Memory Computers. In the Pro-
ceedings of the 20th International Workshop on Computer Algebra in Scientific Computing (CASC 2018), edited
by V.P. Gerdt, W. Koepf, W.M. Seiler, and E.V. Vorozhtsov, volume 11077 of Lecture Notes in Computer Science,
pages 361-375, Springer-Verlag, 2018.

19. J. Verschelde: Parallel Software to Offset the Cost of Higher Precision. In the Proceedings of HILT 2020,
Workshop on Safe Languages and Technologies for Structured and Efficient Parallel and Distributed/Cloud Com-
puting. Online workshop at SPLASH 2020. ACM SIGAda Ada Letters 40(2):59-64, 2020.

20. J. Verschelde: Exporting Ada Software to Python and Julia. ACM SIGAda Ada Letters 42(1):76-78, 2022.

21. J. Verschelde and G. Yoffe. Polynomial homotopies on multicore workstations. In the Proceedings of the 4th
International Workshop on Parallel Symbolic Computation (PASCO 2010), July 21-23 2010, Grenoble, France,
edited by M.M. Maza and J.-L. Roch, pages 131–140. ACM, 2010.

22. J. Verschelde and X. Yu: Polynomial Homotopy Continuation on GPUs. ACM Communications in Computer
Algebra, 49(4):130-133, 2015.

1.8 Users

To demonstrate the relevance of the software, the first version of the software was released with a collection of about
eighty different polynomial systems, collected from the literature. This section points to a different collection of prob-
lems, problems that have been solved by users of the software, without intervention of its developers.

The papers listed below report the use of PHCpack in the fields of algebraic statistics, communication networks, ge-
ometric constraint solving, real algebraic geometry, computation of Nash equilibria, signal processing, magnetism,
mechanical design, computational geometry, computer vision, optimal control, image processing, pattern recognition,
global optimization, and computational physics:

1. M. Abdullahi, B.I. Mshelia, and S. Hamma: Solution of polynomial system using PHCpack. Journal of
Physical Sciences and Innovation, 4:44-53, 2012.

2. Michael F. Adamer and Martin Helmer: Complexity of model testing for dynamical systems with toric steady
states. Advances in Applied Mathematics 110: 42-75, 2019.

3. Min-Ho Ahn, Dong-Oh Nam and Chung-Nim Lee: Self-Calibration with Varying Focal Lengths Using the
Infinity Homography. In Proceedings of the 4th Asian Conference on Computer Vision (ACCV2000), pages
140-145, 2000.
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4. Carlos Amendola, Nathan Bliss, Isaac Burke, Courtney R. Gibbons, Martin Helmer, Serkan Hosten, Evan D.
Nash, Jose Israel Rodriguez, Daniel Smolkin: The maximum likelihood degree of toric varieties. Journal of
Symbolic Computation, article in Press, 2018.

5. Gianni Amisano and Oreste Tristani: Exact likelihood computation for nonlinear DSGE models with het-
eroskedastic innovations. Journal of Economic Dynamics and Control 35:2167-2185, 2011.

6. D. Arzelier, C. Louembet, A. Rondepierre, and M. Kara-Zaitri: A New Mixed Iterative Algorithm to Solve
the Fuel-Optimal Linear Impulsive Rendezvous Problem. Journal of Optimization Theory and Applications,
2013.

7. E. Bartzos, I. Emiris, J. Legersky, and E. Tsigaridas: On the maximal number of real embeddings of spa-
tial minimally rigid graphs. In Proceedings of the 2018 International Symposium on Symbolic and Algebraic
Computation (ISSAC 2018), pages 55-62, ACM 2018.

8. Bassi, I.G., Abdullahi Mohammed, and Okechukwu C.E.: Analysis Of Solving Polynomial Equations Us-
ing Homotopy Continuation Method. International Journal of Engineering Research & Technology (IJERT)
2(8):1401-1411, 2013.

9. Dmitry Batenkov: Accurate solution of near-colliding Prony systems via decimation and homotopy contin-
uation. Theoretical Computer Science 681:1-232, 2017.

10. Daniel J. Bates and Frank Sottile: Khovanskii-Rolle Continuation for Real Solutions. Foundations of Com-
putational Mathematics 11:563-587, 2011.

11. Jahan Bayat and Carl D. Crane III: Closed-Form Equilibrium Analysis of Planar Tensegrity Mechanisms. In
2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006.

12. Genevieve Belanger, Kristjan Kannike, Alexander Pukhov, and Martti Raidal: Minimal semi-annihilating Z_n
scalar dark matter. Journal of Cosmology and Astroparticle Physics, June 2014 (Open Access).

13. Ivo W.M. Bleylevens, Michiel E. Hostenbach, and Ralf L.M. Peeters: Polynomial Optimization and a Jacobi-
Davidson type method for commuting matrices, Applied Mathematics and Computation 224(1): 564-580,
2013.

14. Guy Bresler, Dustin Cartwright, David Tse: Feasibility of Interference Alignment for the MIMO interference
channel. IEEE Transactions on Information Theory 60(9):5573-5586, 2014.

15. Taylor Brysiewicz, Jose Israel Rodriguez, Frank Sottile, and Thomas Yahl: Solving decomposable sparse sys-
tems. Numerical Algorithms 88:453-474, 2021.

16. M.-L. G. Buot and D. St. P. Richards: Counting and Locating the Solutions of Polynomial Systems of Max-
imum Likelihood Equations I. Journal of Symbolic Computation 41(2): 234-244, 2005.

17. Max-Louis G. Buot, Serkan Hosten and Donald St. P. Richards: Counting and locating the solutions of
polynomial systems of maximum likelihood equations, II: The Behrens-Fisher problem. Statistica Sinica
17(4):1343-1354, 2007.

18. M. Casanellas, J. Fernandez-Sachez, and M. Garrote-Lopez: Distance to the stochastic part of phylogenetic
varieties. Journal of Symbolic Computation 104:653-682, 2021.

19. Enric Celaya, Tom Creemers, Lluis Ros: Exact interval propagation for the efficient solution of position
analysis problems on planar linkages. Mechanism and Machine Theory 54: 116-131, 2012.

20. Zachary Charles and Nigel Boston: Exploiting algebraic structure in global optimization and the Belgian
chocolate problem. Journal of Global Optimization 72(2): 241-254, 2018.

21. Tom Creemers, Josep M. Porta, Lluis Ros, and Federico Thomas: Fast Multiresolutive Approximations of
Planar Linkage Configuration Spaces. IEEE 2006 International Conference on Robotics and Automation.

22. Marc Culler and Nathan M. Dunfield: Orderability and Dehn filling. Geometry and Topology 22: 1405-1457,
2018.
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23. R.S. Datta: Using Computer Algebra To Compute Nash Equilibria. In Proceedings of the 2003 International
Symposium on Symbolic and Algebraic Computation (ISSAC 2003), pages 74-79, ACM 2003.

24. R.S. Datta: Finding all Nash equilibria of a finite game using polynomial algebra. Economic Theory
42(1):55-96, 2009.

25. B.H. Dayton: Numerical Local Rings and Local Solution of Nonlinear Systems. In Proceedings of the 2007
International Workshop on Symbolic-Numeric Computation (SNC’07), pages 79-86, ACM 2007.

26. Max Demenkov: Estimating region of attraction for polynomial vector fields by homotopy methods. ACM
Communications in Computer Algebra 46(3):84-85, 2012.

27. Max Demenkov: A Matlab Tool for Regions of Attraction Estimation via Numerical Algebraic Geometry.</B>
In the 2015 International Conference on Mechanics - Seventh Polyakhov’s Reading, February 2-6, 2015, Russia,
Saint Petersburg State University, Proceedings Edited by A.A. Tikhonov. IEEE 2015.

28. Ian H. Dinwoodie, Emily Gamundi, and Ed Mosteig: Multiple Solutions for Blocking Probabilities in Asym-
metric Networks. Open Systems and Information Dynamics 12(3):273-288, 2005.

29. Csaba Domokos and Zoltan Kato: Parametric Estimation of Affine Deformations of Planar Shapes. Pattern
Recognition, 2009. In press.

30. C. Durand and C.M. Hoffmann: Variational Constraints in 3D. In Proceedings of the International Conference
on Shape Modeling and Applications, Aizu-Wakamatsu, Japan, pages 90-98, IEEE Computer Society, 1999.

31. C. Durand and C.M. Hoffmann: A systematic framework for solving geometric constraints analytically.
Journal of Symbolic Computation 30(5):493-520, 2000.

32. I.Z. Emiris, E. Tsigaridas, G. Tzoumas: The predicates for the Voronoi diagram of ellipses. In Proc. ACM
Symp. Comput. Geom. 2006.

33. Jonathan P. Epperlein and Bassam Bamieh: A Frequency Domain Method for Optimal Periodic Control.
2012 American Control Conference (ACC), pages 5501-5506, IEEE 2012.

34. F. Ferrari: On the geometry of super Yang-Mills theories: phases and irreducible polynomials. Journal of
High Energy Physics 1, paper 26, 2009.

35. Jaime Gallardo-Alvarado: A simple method to solve the forward displacement analysis of the general six-
legged parallel manipulator. Robotics and Computer-Integrated Manufacturing 30:55-61, 2014.

36. Jaime Gallardo-Alvarado: Gough’s Tyre Testing Machine. Chapter 12 of Kinematic Analysis of Parallel Ma-
nipulators by Algebraic Screw Theory, pages 255-280, Springer-Verslag, 2016.

37. Jaime Gallardo-Alvarado and Juan-de-Dios Posadas-Garcia: Mobility analysis and kinematics of the semi-
general 2(3-RPS) series-parallel manipulator. Robotics and Computer-Integrated Manufactoring 29(6): 463-
472, 2013.

38. Jaime Gallardo-Alvarado, Mohammad H. Abedinnasab, and Daniel Lichtblau: Simplified Kinematics for a Par-
allel Manipulator Generator of the Schoenflies Motion. Journal of Mechanisms and Robotics 8(6):061020-
061020-10, 2016.

39. Bertrand Haas: A Simple Counterexample to Kouchnirenko’s Conjecture. Beitraege zur Algebra und Ge-
ometrie/Contributions to Algebra and Geometry 43(1):1-8, 2002.

40. Adlane Habed and Boubakeur Boufama: Camera self-calibration from bivariate polynomial equations and
the coplanarity constraint. Image and Vision Computing 24(5):498-514, 2006.

41. Marshall Hampton and Richard Moeckel: Finiteness of stationary configurations of the four-vortex problem.
Transactions of the American Mathematical Society 361(3): 1317-1332, 2009.

42. Jonathan Hauenstein, Jose Israel Rodriguez, and Bernd Sturmfels: Maximum Likelihood for Matrices with
Rank Constraints. Journal of Algebraic Statistics 5(1): 18-38, 2014.
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43. Christoph Hellings, David A. Schmidt, and Wolfgang Utschick: Optimized beamforming for the two stream
MIMO interference channel at high SNR. In 2009 Internatial ITG Workshop on Smart Antennas (WSA 2009),
February 16-19, Berlin, Germany, pages 88-95.

44. Gabor Horvath: Moment Matching-Based Distribution Fitting with Generalized Hyper-Erlang Distribu-
tions. In Analytical and Stochastic Modeling Techniques and Applications, Lecture Notes in Computer Science,
Volume 7984, pages 232-246, 2013.

45. X.G. Huang: Forward Kinematics for a Parallel Platform Robot. Communications in Computer and Infor-
mation Sciences 86:529-532, 2011.

46. Xiguang Huang, Qizheng Liao, Shimin Wei, and Qiang Xu: Five precision point-path synthesis of planar four-
bar linkage using algebraic method. Frontiers of Electrical and Electronic Engineering in China 3(4):470-474,
2008.

47. Xiguang Huang, Qizheng Liao, Shimin Wei, Qiang Xu, and Shuguang Huang: The 4SPS-2CCS generalized
Stewart-Gough Platform mechanisms and its direct kinematics. In Proceedings of the 2007 IEEE Interna-
tional Conference on Mechatronics and Automation, August 5-8, 2007, Harbin, China. Pages 2472-2477, 2007.

48. Hamadi Jamali, Tokunbo Ogunfunmi: Stationary points of the finite length constant modulus optimization.
Signal Processing 82(4): 625-641, 2002.

49. Hamadi Jamali: The unsupervised optimum linear finite length filter for fourth order wide sense stationary
single output systems. Digital Signal Processing, in press, 2018.

50. A. Jensen, A. Leykin, and J. Yu: Computing tropical curves via homotopy continuation. Experimental Math-
ematics 25(1): 83–93, 2016.

51. Libin Jiao, Bo Dong, Jintao Zhang, and Bo Yu: Polynomial Homotopy Methods for the Sparse Interpolation
Problem Part I: Equally Spaced Sampling. SIAM J. Numer. Anal. 54(1): 462-480, 2016.

52. Bjorn Johansson, Magnus Oskarsson, and Kalle Astrom: Structure and motion estimation from complex
features in three views. In the Online ICVGIP-2002 Proceedings (Indian Conference on Computer Vision,
Graphics and Image Processing).

53. M. Kara-Zaitri, D. Arzelier, and C. Louembet: Mixed iterative algorithm for solving optimal implusive time-
fixed rendezvous problem. American Institute of Aeronautics and Astronautics Guidance, Navigation, and
Control Conference, Toronto, Canada, 02-05 August 2010.

54. Yoni Kasten, Meirav Galun, Ronen Basri: Resultant Based Incremental Recovery of Camera Pose from Pair-
wise Matches. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village,
HI, USA, 7-11 January 2019, pages 1080-1088, IEEE 2019.

55. Dimitra Kosta and Kaie Kubjas: Maximum Likelihood Estimation of Symmetric Group-Based Models via
Numerical Algebraic Geometry. Bulletin of Mathematical Biology, October 2018, pages 1-24.

56. P.U. Lamalle, A. Messiaen, P. Dumortier, F. Durodie, M. Evrard, F. Louche: Study of mutual coupling effects
in the antenna array of the ICRH plug-in for ITER. Fusion Engineering and Design 74:359-365, 2005.

57. E. Lee and C. Mavroidis: Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using
Polynomial Continuation. Journal of Mechanical Design, Transactions of the ASME 124(4):652-661, 2002.

58. E. Lee and C. Mavroidis: Four Precision Points Geometric Design of Spatial 3R Manipulators. In the Pro-
ceedings of the 11th World Congress in Mechanism and Machine Sciences, August 18-21, 2003, Tianjin, China.
China Machinery Press, edited by Tian Huang.

59. E. Lee and C. Mavroidis: Geometric Design of 3R Manipulators for Reaching Four End-Effector Spatial
Poses. International Journal for Robotics Research, 23(3):247-254, 2004.

60. E. Lee, C. Mavroidis, and J. Morman: Geometric Design of Spatial 3R Manipulators. In Proceedings of
the 2002 NSF Design, Service, and Manufacturing Grantees and Research Conference, San Juan, Puerto Rico,
January 7-10, 2002.
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61. Dimitri Leggas and Oleg V. Tsodikov: Determination of small crystal structures from a minimum set of
diffraction intensities by homotopy continuation. Acta Crystallographica Section A 71(3): 319-324, 2015.

62. Dawei Leng and Weidong Sun: Finding All the Solutions of PnP Problem. In IST 2009 - International Work-
shop on Imaging Systems and Techniques, Shenzhen, China, May 11-12, 2009. Pages 348-352, IEEE, 2009.

63. Anton Leykin: Numerical Primary Decomposition. In Proceedings of ISSAC 2008, edited by David Jeffrey,
pages 165-164, ACM 2008.

64. Anton Leykin and Frank Sottile: Computing Monodromy via Parallel Homotopy Continuation. In Proceed-
ings of the 2007 International Workshop on Parallel Symbolic Computation (PASCO’07), pages 97-98, ACM
2007. (on CDROM)

65. Anton Leykin and Frank Sottile: Galois groups of Schubert problems via homotopy computation. Mathe-
matics of Computation 78: 1749-1765, 2009.

66. Shaobai Li, Srinandan Dasmahapatra, and Koushik Maharatna: Dynamical System Approach for Edge Detec-
tion Using Coupled FitzHugh-Naguma Neurons. IEEE Transactions on Image Processing 24(12), 5206-5219,
2015.

67. Ross A. Lippert: Fixing multiple eigenvalues by a minimal perturbation. Linear Algebra Appl. 432(7):
1785-1817, 2010.

68. Abdrhaman Mahmoud, Bo Yu, Xuping Zhang: Solving Variable-Coefficient Fourth-Order ODEs with Poly-
nomial Nonlinearity by Symmetric Homotopy Method. Applied and Computational Mathematics 7(2): 58-70,
2018.

69. M. Maniatis and O. Nachtmann: Stability and symmetry breaking in the general three-Higgs-double model.
Journal of High Energy Physics 2015:58, February 2015.

70. F. Meng, J. W. Banks, W. D. Henshaw, and D. W. Schwendeman: A stable and accurate partitioned algorithm
for conjugate heat transfer. Journal of Computational Physics 344: 51-85, 2017.

71. Hyosang Moon and Nina P. Robson: Design of spatial non-anthropomorphic articulated systems based on
arm joint constraint kinematic data for human interactive robotics applications. DETC2015-46530. In
the Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference. IDETC/CIE 2015. August 2-5, 2015, Boston Massachusetts.

72. Marc Moreno Maza, Greg Reid, Robin Scott, and Wenyuan Wu: On Approximate Triangular Decompositions
I. Dimension Zero. In the SNC 2005 Proceedings. International Workshop on Symbolic-Numeric Computation.
Xi’an, China, July 19-21, 2005. Edited by Dongming Wang and Lihong Zhi. Pages 250-275, 2005.

73. Andrew J. Newell: Transition to supermagnetism in chains of magnetosome crystals. Geochemistry Geo-
physics Geosystems 10(11):1-19, 2009.

74. Girijanandan Nucha, Georges-Pierre Bonneau, Stefanie Hahmann, and Vijay Natarajan. Computing Contour
Trees for 2D piecewise Polynomial Functions. In Eurographics Conference on Visualization (EuroVis) 2017,
edited by J. Heer, T. Ropinski, and J. van Wijk, pages 24-33, Computer Graphics Forum, Wiley & Sons Ltd.,
2017.

75. Nida Obatake, Anne Shiu, Xiaoxian Tang, and Angelica Torres: Oscillations and bistability in a model of
ERK regulation. arXiv:1903.02617

76. M. Oskarsson, A. Zisserman and K. Astrom: Minimal Projective Reconstruction for combinations of Points
and Lines in Three Views. In the Electronic Proceedings of BMVC2002 - The 13th British Machine Vision
Conference 2002, pages 63 - 72.

77. P.A. Parrilo and B. Sturmfels. Minimizing polynomial functions. In S. Basu and L. Gonzalez-Vega, editors,
Algorithmic and quantitative real algebraic geometry, volume 60 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 83-99. AMS, 2003.
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78. Alba Perez and J.M. McCarthy: Dual Quaternion Synthesis of Constrained Robotic Systems. Journal of
Mechanical Design 126(3): 425-435, 2004.

79. Nina Patarinsky-Robson, J. Michael McCarthy, and Irem Y. Tumer: The algebraic synthesis of a spatial TS
chain for a prescribed acceleration task. Mechanism and Machine Theory 43(10): 1268-1280, 2008.

80. Nina Patarinsky-Robson, J. Michael McCarthy, and Irem Y. Tumer: Failure Recovery Planning for an Arm
Mounted on an Exploratory Rover. IEEE Transactions on Robotics 25(6):1448-1453, 2009.

81. Jose Israel Rodriguez: Combinatorial excess intersection. Journal of Symbolic Computation 68(2): 297-307,
2015.

82. Roger E. Sanchez-Alonso, Jose-Joel Gonzalez-Barbosa, Eduardo Castilo-Castaneda, and Jaime Gallardo-
Alvarado: Kinematic analysis of a novel 2(3-RUS) parallel manipulator. Robotica, available on CJO2015.

83. H. Schreiber, K. Meer, and B.J. Schmitt: Dimensional synthesis of planar Stephenson mechanisms for motion
generation using circlepoint search and homotopy methods. Mechanism and Machine Theory 37(7):717-737,
2002.

84. Ben Shirt-Ediss, Ricard V. Sole, and Kepa Ruiz-Mirazo: Emergent Chemical Behavior in Variable-Volume
Protocells. Life 5: 181-121, 2015.

85. Hythem Sidky, Jonathan K. Whitmer, and Dhagash Mehta: Reliable mixture critical point computation us-
ing polynomial homotopy continuation. AIChE Journal. Thermodynamics and Molecular-Scale Phenomena,
2016. doi:10.1002/aic.15319

86. J. Song, M. Cheah-Mane, E. Prieto-Araujo, and O. Gomis-Bellmunt: On the solution of equilibrium points
of power systems with penetration of power electronics considering converter limitation. IEEE Access,
9:67143-67153, 2021.

87. Frank Sottile: Real Schubert Calculus: Polynomial systems and a conjecture of Shapiro and Shapiro. Ex-
perimental Mathematics 9(2): 161-182, 2000.

88. H. Stewenius and K. Astrom: Structure and Motion Problems for Multiple Rigidly Moving Cameras. In
Computer Vision - ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, May
11-14, 2004. Proceedings, Part III. Edited by T. Pajdla and J. Matas. Lecture Notes in Computer Science 3023,
pages 252-263, Springer, 2004.

89. H.-J. Su and J.M. McCarthy: Kinematic Synthesis of RPS Serial Chains. In the Proceedings of the ASME
Design Engineering Technical Conferences (CDROM). Paper DETC03/DAC-48813. Chicago, IL, Sept. 02-06,
2003.

90. H.-J. Su and J.M. McCarthy: Synthesis of Compliant Mechanisms with Specified Equilibrium Positions.
In the Proceedings of the ASME International Design Engineering Technical Conferences. Paper DETC 2005-
85085. Long Beach, CA, Sept. 24-28 2005.

91. H.-J. Su and J.M. McCarthy: Kinematic Synthesis of RPS Serial Chains for a Given Set of Task Positions.
Mechanism and Machine Theory 40(7):757-775, 2005

92. H.-J. Su and J.M. McCarthy: A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar
Compliant Mechanisms. ASME Journal of Mechanical Design 128(4): 776-786, 2006.

93. H.-J. Su, C.W. Wampler, and J.M. McCarthy: Geometric Design of Cylindric PRS Serial Chains. ASME
Design Engineering Technical Conferences, Chicago, IL, Sep 2-6, 2003.

94. Weronika J. Swiechowicz and Yuanfang Xiang: Numerical Methods for Estimating Correlation Coefficient of
Trivariate Gaussians (sponsor: Sonja Petrovic) in Volume 8 of SIAM Undergraduate Research Online (SIURO),
2015.

95. Attila Tanács and Joakim Lindblad and Nataša Sladoje and Zoltan Ka: Estimation of linear deformations of
2D and 3D fuzzy objects. Pattern Recognition 48(4):1391-1403, 2015.
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96. N. Trawny, X.S. Zhou, K.X. Zhou, S.I. Roumeliotis: 3D Relative Pose Estimation from Distance-Only Mea-
surements. In the Proceedings of the 2007/IEEE/RSJ International Conference on intelligent Robots and Sys-
tems. San Diego, CA, Oct 29-Nov 2, 2007, pages 1071-1078, IEEE, 2007.

97. T. Turocy: Towards a black-box solver for finite games: Computing all equilibria with Gambit and PHC-
pack. In Software for Algebraic Geometry, volume 148 of the IMA volumes in Mathematics and its Applications,
edited by M.E. Stillman, N. Takayama, and J. Verschelde, pages 133-148, Springer-Verlag, 2008.

98. Konstantin Usevich and Ivan Markovsky: Structured low-rank approximation as a rational function mini-
mization. In 16th IFAC Symposium on System Identification Brussels, 11-13 Jul 2012, pages 722-727.

99. J. Vanderstukken, A. Stegeman, and L. De Lathauwer: Systems of polynomial equations, higher-
order tensor decompositions and multidimensional harmonic retrieval: A unifying framework. Part
I: The canonical polyadic decomposition. Available as ftp://ftp.esat.kuleuven.be/pub/stadius/nvervliet/
vanderstukken2017systems1.pdf

100. A.D. Viquerat: A continuation-based method for finding laminated composite stacking sequences. Com-
posite Structures 238 (2020) 111872. https://doi.org/10.1016/j.compstruct.2020.111872

101. C.W. Wampler: Isotropic coordinates, circularity and Bezout numbers: planar kinematics from a new
perspective. In the Proceedings of the 1996 ASME Design Engineering Technical Conference. Irvine, CA, Aug
18-22, 1996. Available on CD-ROM.

102. Wenyuan Wu and Greg Reid: Symbolic-numeric computation of implicit Riquier bases for PDE. In the
Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, edited by C.W.
Brown, pages 377-385, ACM 2007.

103. Wenyuan Wu and Zhonggang Zeng: The Numerical Factorization of Polynomials. Foundations of Computa-
tional Mathematics 17(1): 259-286, 2017.

104. Jonathan Widger and Daniel Grosu: Parallel Computation of Nash Equilibria in N-Player Games. In the
Proceedings of the 12th IEEE International Conference on Computational Science and Engineering (CSE 2009),
August 29-31, 2009, Vancouver, Canada, pages 209-215.

105. F. Xie, G. Reid, and S. Valluri: A numerical method for the one dimensional action functional for FBG
structures. Can J. Phys. 76: 1-21, 2002.

106. Hong Bing Xin, Qiang Huang, and Yueqing Yu: Position and Orientation Analyses of Mechanism by PHC-
pack Solver of Homotopy Continuation. Applied Mechanics and Materials 152-254: 1779-1784, 2012.

107. Ke-hu Yang, Dan-ying Lu, Xiao-qing Kuang, and Wen-Shen Yu: Harmonic Elimination for Multilevel Con-
verters with Unequal DC levels by Using the Polynomial Homotopy Continuation Algorithm. In the Pro-
ceedings of the 35th Chinese Control Conference, July 27-29, 2016, Chengdu, China, pages 9969-9973, IEEE.

108. K. Yang and R. Orsi: Static output feedback pole placement via a trust region approach. IEEE Transactions
on Automatic Control 52(11): 2146-2150, 2007.

109. Yan Yang, Yao Zhang, Fangxing Li, and Haoyong Chen: Computing All Nash Equilibria of Multiplayer
Games in Electricity Markets by Solving Polynomial Equations. IEEE Transactions on Power Systems 27(1):
81-91, 2012.

110. Jun Zhang and Mohan Sarovar: Identification of open quantum systems from observable time traces. Phys-
ical Review A 91, 052121, 2015.

111. Shiqiang Zhang, Shufang Zhang, and Yan Wan: Biorthogonal Wavelet Construction Using Homotopy
Method. Chinese Journal of Electronics 24(4), pages 772-775, 2015.

112. X. Zhang, J. Zhang, and B. Yu: Symmetric Homotopy Method for Discretized Elliptic Equations with Cubic
and Quintic Nonlinearities. Journal of Scientific Computing 70(3): 1316-1335, 2017.

113. Xun S. Zhou and Stergios I. Roumeliotis: Determining 3-D Relative Transformations for Any Combination
of Range and Bearing Measurements. IEEE Transactions on Robotics 29(2):458-474, 2013.
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114. Lifeng Zhou, Hai-Jun Su, Alexander E. Marras, Chao-Min Huang, Carlos E. Castro: Projection kinematic
analysis of DNA origami mechanisms based on a two-dimensional TEM image. Mechanisms and Machine
Theory 109:22-38, 2017.

115. Lailai Zhu and Howard A. Stone: Harnessing elasticity to generate self-oscillation via an electrohydrody-
namic instability. J. Fluid Mech. 888, Article ID A31, 35 p., 2020.

In addition to the publications listed above, PHCpack was used as a benchmark to measure the progress of new algo-
rithms in the following papers:

113. Ali Baharev, Ferenc Domes, Arnold Neumaier: A robust approach for finding all well-separated solutions of
sparse systems of nonlinear equations. Numerical Algorithms 76:163-189, 2017.

114. Ada Boralevi, Jasper van Doornmalen, Jan Draisma, Michiel E. Hochstenbach, and Bor Plestenjak: Uniform
Determinantal Representations. SIAM J. Appl. Algebra Geometry, vol. 1, pages 415-441, 2017.

115. P. Breiding and S. Timme. HomotopyContinuation.jl: A package for homotopy continuation in Julia. In
J. H. Davenport, M. Kauers, G. Labahn, and J. Urban, editors, Mathematical Software – ICMS 2018. 6th Inter-
national Conference, South Bend, IN, USA, July 24-27, 2018. Proceedings, volume 10931 of Lecture Notes in
Computer Science, pages 458-465. Springer-Verlag, 2018.

116. Timothy Duff, Cvetelina Hill, Anders Jensen, Kisun Lee, Anton Leykin, and Jeff Sommars: Solving polynomial
systems via homotopy continuation and monodromy. IMA Journal of Numerical Analysis. In Press, available
online 13 April 2018.

117. T. Gao and T.Y. Li: Mixed volume computation via linear programming. Taiwanese Journal of Mathematics
4(4): 599-619, 2000.

118. T. Gao and T.Y. Li: Mixed volume computation for semi-mixed systems. Discrete Comput. Geom. 29(2):257-
277, 2003.

119. L. Granvilliers: On the Combination of Interval Constraint Solvers. Reliable Computing 7(6): 467-483,
2001.

120. Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler: Regeneration Homotopies for Solving
Systems of Polynomials Mathematics of Computation 80(273): 345-377, 2011.

121. S. Kim and M. Kojima: Numerical Stability of Path Tracing in Polyhedral Homotopy Continuation Meth-
ods. Computing 73(4): 329-348, 2004.

122. Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.P. Merlet: Efficient and safe global constraints for handling
numerical constraint systems. SIAM J. Numer. Anal. 42(5):2076-2097, 2005.

123. T.L. Lee, T.Y. Li, and C.H. Tsai: HOM4PS-2.0: a software package for solving polynomial systems by the
polyhedral homotopy continuation method. Computing 83(2-3): 109-133, 2008.

124. Anton Leykin: Numerical Algebraic Geometry. The Journal of Software for Algebra and Geometry volume 3,
pages 5-10, 2011.

125. T.Y. Li and X. Li: Finding Mixed Cells in the Mixed Volume Computation. Foundations of Computational
Mathematics 1(2): 161-181, 2001.

126. T.Y. Li, X. Wang, and M. Wu: Numerical Schubert Calculus by the Pieri Homotopy Algorithm. SIAM J.
Numer Anal. 40(2): 578-600, 2002.

127. Bernard Mourrain, Simon Telen, and Marc Van Barel: Solving Polynomial Systems Efficiently and Accurately.
arXiv:1803.07974v2 [math.AG] 22 Mar 2018.

128. J.M. Porta, L. Ros, T. Creemers, and F. Thomas: Box approximations of planar linkage configuration spaces.
Journal of Mechanical Design 129(4):397-405, 2007.

129. Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer: Numerical solution of bivariate and polyanalytic
polynomial systems. SIAM J. Numer. Anal. 52(4):1551-1572, 2014.
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130. Yang Sun, Yu-Hui Tao, Feng-Shan Bai: Incomplete Groebner basis as a preconditioner for polynomial sys-
tems. Journal of Computational and Applied Mathematics 226(1):2-9, 2009.

131. Simon Telen and Marc Van Barel: A stabilized normal form algorithm for generic systems of polynomial
equations. Journal of Computational and Applied Mathematics 342(November 2018): 119-132, 2018.

132. S. Telen, B. Mourrain, and M. Van Barel: Solving Polynomial Systems via a Stabilized Representation of
Quotient Algebras. arXiv:1711.04543v1 [math.AG] 13 Nov 2017

133. S. Telen, B. Mourrain, and M. Van Barel: Solving Polynomial Systems via Truncated Normal Forms. SIAM
J. Matrix Anal. Appl. 39(3):1421-1447, 2018.

134. A. Zachariah and Z. Charles: Efficiently Finding All Power Flow Solutions to Tree Networks. In Fifty-Fifth
Annual Allerton Conference. Allerton House, UIUC, Illinois, USA. October 3-6, 2017, pages 1107-1114, IEEE,
2017.

PHCpack was used to develop new homotopy algorithms:

135. Bo Dong, Bo Yu, and Yan Yu: A symmetric and hybrid polynomial system solving method for mixed trigono-
metric polynomial systems. Mathematics of Computation 83(288): 1847-1868, 2014.

136. Bo Yu and Bo Dong: A hybrid polynomial system solving method for mixed trigonometric polynomial
systems. SIAM J. Numer. Anal. 46(3): 1503-1518, 2008.

137. Xuping Zhang, Jintao Zhang, and Bo Yu: Eigenfunction expansion method for multiple solutions of semilin-
ear elliptic equations with polynomial nonlinearity SIAM J. Numer. Anal. 51(5): 2680-2699, 2013.

Last, but certainly not least, there is the wonderful book of Bernd Sturmfels which contains a section on computing
Nash equilibria with PHCpack.

138. B. Sturmfels: Solving Systems of Polynomial Equations. CBMS Regional Conference Series of the AMS,
Number 97, 2002.

So we have to end quoting Bernd Sturmfels: polynomial systems are for everyone.
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Since 2001, the code in PHCpack improved thanks to the contributions of many PhD students at the University of
Illinois at Chicago. Their names, titles of PhD dissertation, and year of PhD are listed below:

1. Yusong Wang: Computing Dynamic Output Feedback Laws with Pieri Homotopies on a Parallel Computer,
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3. Yan Zhuang: Parallel Implementation of Polyhedral Homotopy Methods, 2007.

4. Kathy Piret: Computing Critical Points of Polynomial Systems using PHCpack and Python, 2008.

5. Yun Guan: Numerical Homotopies for Algebraic Sets on a Parallel Computer, 2010.

6. Genady Yoffe: Using Parallelism to compensate for Extended Precision in Path Tracking for Polynomial System
Solving, 2012.

7. Danko Adrovic: Solving Polynomial Systems with Tropical Methods, 2012.

8. Xiangcheng Yu: Accelerating Polynomial Homotopy Continuation on Graphics Processing Units, 2015.

9. Jeff Sommars: Algorithms and Implementations in Computational Algebraic Geometry, 2018.

10. Nathan Bliss: Computing Series Expansions of Algebraic Space Curves, 2018.
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Anton Leykin contributed to the application of message passing in a parallel implementation of monodromy to de-
compose an equidimensional solution set into irreducible components. The Maple interface PHCmaple was written
jointly with Anton Leykin. The work of Anton Leykin also paved the way for the Macaulay2 interface, which was fur-
ther developed into PHCpack.m2 in joint work with Elizabeth Gross and Sonja Petrovic. The PHCpack.m2 (and also
PHCpack itself) improved during various Macaulay2 workshops, with the help of Taylor Brysiewicz, Diego Cifuentes,
Corey Harris, Kaie Kubjas, Anne Seigal, and Jeff Sommars.

Jasmine Otto helped with the setup of the JupyterHub and the development of the code snippets for the menu structure
of the notebook interface to phcpy.

Thanks to the efforts of Doug Torrance, both PHCpack and phcpy can be installed with the package managers of Ubuntu.

The software has been developed with GNAT GPL, the gnu-ada compiler, and belongs to the catalog of ready-to-use
Ada/SPARK libraries available through the package manager Alire. The development benefited from participation to
the Ada devroom at various FOSDEM conferences.

This material is based upon work supported by the National Science Foundation under Grants No. 9804846, 0105739,
0134611, 0410036, 0713018, 1115777, 1440534, and 1854513. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.
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CHAPTER 2

Tutorial

This chapter provides a short tutorial, mainly for use at the command line. Interfaces for Maple, MATLAB (Octave),
SageMath, and Python provide a scripting environment.

2.1 Input Formats

A lot of examples are contained in the database of Demo systems, which can be downloaded in zipped and tarred format
from the above web site.

The input file starts with the number of equations and (optionally, but necessary in case of an unequal number) the
number of unknowns. For example, the polynomial system of Bertrand Haas (which provided a counterexample for the
conjecture of Koushnirenko) is represented as follows

2
x**108 + 1.1*y**54 - 1.1*y;
y**108 + 1.1*x**54 - 1.1*x;

For future use, we save this system in the file haas. Observe that every polynomial terminates with a semicolon. The
exponentiation may also be denoted by a hat instead of a double asterix.

The forbidden symbols to denote names of variables are i and I, because they both represent the square root of -1.
Also forbidden are e and E because they are used in the scientific notation of floating-point numbers, like 0.01 = 1.0e-2
= 1.0E-2.

The equations defining the adjacent 2-by-2 minors of a general 2-by-4 matrix are represented as

3 8
x11*x22 - x21*x12;
x12*x23 - x22*x13;
x13*x24 - x23*x14;

thus as 3 polynomials in the 8 undeterminates of a general 2-by-4 matrix. We save this file as adjmin4.

The program also accepts polynomials in factored form, for example,

15
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5
(a-1)*(b-5)*(c-9)*(d-13) - 21;
(a-2)*(b-6)*(c-10)*(f-17) - 22;
(a-3)*(b-7)*(d-14)*(f-18) - 23;
(a-4)*(c-11)*(d-15)*(f-19) - 24;
(b-8)*(c-12)*(d-16)*(f-20) - 25;

is a valid input file for phc. Note that we replaced the logical e variable by f. We save this input in the file with name
multilin.

2.2 Interfaces

The software is developed for command line interactions. Because there is no interpreter provided with PHCpack, there
are interfaces to computer algebra systems such as for example Maple.

From the web site mentioned above we can download the Maple procedure run_phc and an example worksheet on how
to use this procedure. The Maple procedure requires only two arguments: the path name ending in the name of the
executable version of the program, and a list of polynomials. This procedure sets up the input file for phc, calls the
blackbox solver and returns the list of approximate solutions. This list is returned in Maple format.

Other interfaces are PHClab (for Octave and MATLAB), phc.py (for SageMath), and PHCpack.m2 (for Macaulay
2). These interfaces require only the executable phc to be present in some directory contained in the execution path.
Interfaces for C and C++ programmers require the compilation of the source code. For Python, a shared object file
needs to exist for the particular architecture.

A diagram of the interfaces to PHCpack and phc is depicted in Fig. 2.1.

Fig. 2.1: Interfaces either require the source code or only the executable.
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The interfaces PHCpack.m2, PHCmaple, PHClab, shown to the right of the antidiagonal require only the executable
version phc. The other interfaces PHClib, PHCmpi, and phcpy are tied to the source code.

The phc.py (observe the dot between phc and py) is an optional package, available in the distribution of SageMath.
Another, perhaps more natural interface to SageMath, is to extend the Python interpreter of SageMath with phcpy.

Runs in a Jupyter notebook work with a Python or SageMath kernel, using the interpreter with phcpy installed. For
Julia, use PHCpack.jl, either as standalone or in a Jupyter notebook with a Julia kernel.

2.3 The Blackbox Solvers

Depending on whether the polynomial system has only isolated solutions, or whether also positive dimensional solution
sets, select one of those two blackbox options:

1. phc -b to approximate all isolated solutions; or

2. phc -B for a numerical irreducible decomposition.

To use phc -b on the system we saved earlier in the file multilin, we invoke the blackbox solver typing at the command
prompt

phc -b multilin multilin.phc

The output of the solver will be sent to the file multilin.phc. In case the input file did not yet contain any solutions, the
solution list will be appended to the input file.

The output can also appear directly on screen, if the name of the output file is omitted at the command line.

We now explain the format of the solutions, for example, the last solution in the list occurs in the following format:

solution 44 : start residual : 1.887E-14 #iterations : 1 success
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
a : 5.50304308029581E+00 -6.13068078142107E-44
b : 8.32523889626848E+00 -5.18918337570284E-45
c : 1.01021324864917E+01 -1.29182202179944E-45
d : 1.42724963260133E+01 1.38159270467025E-44
f : 4.34451307203401E+01 -6.26380413553193E-43
== err : 3.829E-12 = rco : 3.749E-03 = res : 2.730E-14 = real regular ==

This is the actual output of the root refiner. As the residual at the end of the solution path and at the start of the root
refinement is already 1.887E-14, one iteration of Newton’s method suffices to confirm the quality of the root.

The next line in the output indicates that we reached the end of the path, at t : 1.00000000000000E+00 0.
00000000000000E+00 properly. The multiplicity of the root is one, as indicated by m : 1. Then we see the values
for the five variables, as pairs of two floating-point numbers: the real and imaginary part of each value. The last line
summarizes the numerical quality of the root. The value for err is the magnitude of the last correction term used in
Newton’s method. The number for rco is an estimate for the inverse condition number of the root. Here this means
that we are guaranteed to have all decimal places correct, except for the last three decimal places. The last number
represents the residual, the magnitude of the vector evaluated at the root.

The blackbox solver has two other interesting options:

1. To change the default working precision from hardware double precision into double double or quad double
precision, call phc respectively with the options -b2 or -b4.

2.3. The Blackbox Solvers 17
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2. To use multiple threads in the solver, call phcwith the option -t immediately followed by the number of threads.
For example, to run the blackbox solver on 4 threads, type phc -b -t4.

Those two options may be combined. For example phc -b2 -t8 runs the blackbox solver on 8 threads in double double
precision. If the computer has 8-core processors available, then phc -b2 -t8 may compensate for the overhead of
double double arithmetic and be just as fast as the phc -b in double precision.

For the system adjmin4 above, representing the equations defining the adjacent 2-by-2 minors of a general 2-by-4
matrix, running phc -b does not make sense, as there are no isolated solutions. Instead, we can compute a numerical
irreducible decompsition with the option -B, typing at the command prompt

phc -B adjmin4 adjmin4.phc

The user is then prompted to enter the top dimension of the solution set, which by default equals the number of variables
minus one.

For this system, the output file will show that the solution set is a 5-dimensional solution set of degree 8, which factors
into three irreducible components, of degrees 2, 2, and 4.

Double double, quad double, and multithreading is also supported in the numerical irreducible decomposition. To run
in quad double precision on 16 threads, type phc -B4 -t16 at the command prompt.

2.4 Running the Program in Full Mode

If we just type in phc without any option, we run the program in full mode and will pass through all the main menus.
A nice application is the verification of the counterexample of Bertrand Haas. We type in haas when the program asks
us for the name of the input file. As the output may be rather large, we better save the output file on /tmp. As we
run through all the menus, for this system, a good choice is given by the default, so we can type in 0 to answer every
question. At the very end, for the output format, it may be good to type in 1 instead of 0, so we can see the progress of
the program as it adds solution after solution to the output file.

If we look at the output file for the system in multilin, then we see that the mixed volume equals the 4-homogeneous
Bezout number. Since polyhedral methods (e.g. to compute the mixed volume) are computationally more expensive
than the solvers based on product homotopies, we can solve the same problem faster. If we run the program on the
system in multilin in full mode, we can construct a multi-homogeneous homotopy as follows. At the menu for Root
Counts and Method to Construct Start Systems, we type in 1 to select a multi-homogeneous Bezout number. Since
there are only 52 possible partitions of a set of four unknowns, it does not take that long for the program to try all 52
partitions and to retain that partition that yields the lowest Bezout number. Once we have this partition, we leave the
root counting menu with 0, and construct a linear-product system typing 2 in the menu to construct m-homogeneous
start systems. We can save the start system in the file multilin_start (only used for backup). Now we continue just as
before.

2.5 Running Toolbox Mode

The blackbox mode makes a selection of algorithms and runs them with default settings of the tolerances and parame-
ters. In toolbox mode, defaults can be alterned and the stages in the solver are separated.
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2.5.1 For Isolated Solutions Only

Skipping the preconditioning stage (scaling and reduction), we can compute root counts and construct start systems via
the option -r, thus calling the program as phc -r. One important submenu is the mixed-volume computation, invoked
via phc -m.

Once we created an appropriate start system, we can call the path trackers via the option -p. Calling the program as
phc -p is useful if we have to solve a slightly modified problem. For instance, suppose we change the coefficients of
the system in multilin, then we can still use multilin_start to solve the system with modified coefficients, using the -p
option. In this way we use a cheater’s homotopy, alternatively called coefficient-parameter polynomial continuation.

2.5.2 Computing Components of Solutions

Consider the system of adjacent minors, we previously saved as adjmin4. We first must construct a suitable embedding
to get to a system with as many equations as unknowns. We call phc -c and type 5 as top dimension. The system the
program produces is saved as adjmin4e5. The blackbox solver has no difficulty to solve this problem and appends the
witness points to the file adjmin4e5. To compute the irreducible decomposition, we may use the monodromy breakup
algorithm, selecting 2 from the menu that comes up when we run with the option -f.

2.5. Running Toolbox Mode 19
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CHAPTER 3

User Manual

This chapter describes all options of the executable phc.

3.1 Text Options of the Executable phc

Text options of phc do not compute anything, but provide text information about phc.

While the regular options of phc start with a single dash -, the text options are double dashed, they start with --.

3.1.1 phc –version : displays the current version string

Typing at the command prompt phc --version displays the version string which includes the current version number
and the release date.

3.1.2 phc –license : writes the license to screen

The output of

phc --license

is

PHCpack is free and open source software.
You can redistribute the code and/or modify it under
the GNU General Pulic License as published by
the Free Software Foundation.
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3.1.3 phc –cite : how to cite PHCpack

Typing phc --cite at the command prompt displays

To cite PHCpack in publications use:

Jan Verschelde:
Algorithm 795: PHCpack: A general-purpose solver for polynomial
systems by homotopy continuation.
ACM Transactions on Mathematical Software, 25(2):251--276, 1999.

3.1.4 phc –help : writes helpful information to screen

Typing at the command prompt phc --help provides some help to get started with the quickest use, that is: with the
blackbox solver.

To obtain help about the blackbox solver, type phc -b --help or phc --help -b where the --help may be abbre-
viated by -h.

3.2 Options of the Executable phc

For many small to moderate size problems, the most convenient way to get an answer of phc is to call the blackbox
solver with the option -b.

3.2.1 phc -0 : random numbers with fixed seed for repeatable runs

Many homotopy algorithms generate random constants. With each run, the current time is used to generate another
seed for the random number generator, leading to different random constants in each run. As different random values
give different random start systems, this may cause differences in the solution paths and fluctuations in the execution
time. Another notable effect of generating a different random constant each time is that the order of the solutions in
the list may differ. Although the same solutions should be found with each run, a solution that appears first in one run
may turn out last in another run.

With the option -0, a fixed seed is used in each run. This option can be combined with the blackbox solver (phc -b),
e.g.: phc -b -0 or phc -0 -b.

Since version 2.3.89, the option -0 is extended so the user may give the digits of the seed to be used. For example,
calling phc as phc -089348224 will initialize the random number generator with the seed 89348224. Just calling phc
as phc -0 will still result in using the same fixed seed as before in each run.

To reproduce a run with any seed (when the option -0 was not used), we can look at the output file, for the line

Seed used in random number generators : 407.

which appears at the end of the output of phc -b. Running phc -b -0407 on the same input file as before will generate
the same sequences of random numbers and thus the same output.

A homotopy is a family of polynomial systems. In an artificial parameter homotopy there is one parameter 𝑡 usually
going from 0 to 1. If we want to solve the system 𝑓(x) = 0 and we have a system 𝑔(x) = 0 then a typical homotopy
is ℎ(x, 𝑡) = 0 as below.

ℎ(x, 𝑡) = 𝛾(1− 𝑡)𝑔(x) + 𝑡𝑓(x) = 0.
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The 𝛾 is a complex constant on the unit circle in the complex plane, generated uniformly at random. If all solutions
of 𝑔(x) = 0 are isolated and of multiplicity one, then only for a finite number of complex values for 𝑡 the homotopy
ℎ(x, 𝑡) = 0 has singular solutions. But since we consider 𝑡 ∈ [0, 1] and since the values for 𝑡 for which ℎ(x, 𝑡) = 0
are complex, the interval [0, 1( will with probability one not contain any of the bad complex values for 𝑡 and therefore
no singular solutions for 𝑡 ∈ [0, 1( will occur.

Note that, for this gamma trick to work, the order of the operations matters. We first give the program the system
𝑓(x) = 0 and then either also give the system 𝑔(x) = 0 or let the program generate a suitable 𝑔(x) = 0. Only then, in
the construction of the homotopy will a random number generator determine a constant 𝛾. If the 𝛾 is predetermined,
then it is possible to construct an input system 𝑓(x) = 0 and a start system 𝑔(x) = 0 for which there are bad values
for 𝑡 ∈ [0, 1(. But reverting the usual order of operations is a bit similar to guessing the outcome of a coin toss after
the coin toss and not before the coin toss. Therefore phc -0 should be used only for debugging purposes.

3.2.2 phc -a : solving polynomial systems equation-by-equation

The equation-by-equation solver applies the diagonal homotopies to intersect the solution set of the current set of
polynomials with the next polynomial equation. The user has the possibility to shuffle the order of input polynomials.

Consider for example the following system:

3
(x-1)*(x^2 - y)*(x-0.5);
(x-1)*(x^3 - z)*(y-0.5);
(x-1)*(x*y - z)*(z-0.5);

Because of its factored form, we see that its solution set contains

0. at least one isolated point (0.5, 0.5, 0.5);

1. the twisted cubic (𝑦 = 𝑥2, 𝑧 = 𝑥3); and

2. the two dimensional plane defined by 𝑥− 1 = 0.

The output of phc -a will produce three files, with suffixes _w0, _w1, _w2, respectively for the zero dimensional, the
one dimensional, and the two dimensional parts of the solution set.

0. a list of candidate isolated points;

1. generic points on the twisted cubic; and

2. one generic point on the plane 𝑥 = 1.

The positive dimensional solution sets are each represented by a witness set. A witness set for a k-dimensional solution
set of a system f consists of the system f, augmented with k linear equations with random coefficients, and solutions
which satisfy the augmented system. Because the linear equations have random coefficients, each solution of the
augmented system is a generic point. The number of generic points equals the degree of the solution set.

The output of phc -a gives a list of candidate witness points. In the example, the list of candidate isolated points will
most likely contains points on higher dimensional solution sets. Such points can be filtered away with the homotopy
membership test available in phc -f.

After filtering the points on higher dimensional solution sets, each pure dimensional solution set may decompose in
irreducible components. The factorization methods of phc -f will partition the witness points of a pure dimensional
solution set according to the irreducible factors.

The equation-by-equation solver gives bottom up way to compute a numerical irreducible decomposition. The diagonal
homotopies can be called explicitly at each level with the option -c. The alternative top down way is available in phc
-c as well.

3.2. Options of the Executable phc 23
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3.2.3 phc -b : batch or blackbox processing

As a simple example of the input format for phc -b, consider the following three lines

2
x**2 + 4*y**2 - 4;

2*y**2 - x;

as the content of the file input. See the section on phc -g for a description of the input format.

To run the blackbox solver at the command line, type phc -b input output. The solutions of the system are ap-
pended to the polynomials in the file input. The file output also contains the solutions, in addition to more diagnostics
about the solving, such as the root counts, start system, execution times.

The blackbox solver operates in four stages:

1. Preprocessing: scaling (phc -s), handle special cases such as binomial systems.

2. Counting the roots and constructing a start system (phc -r). Various root counts, based on the degrees and
Newton polytopes, are computed. The blackbox solver selects the smallest upper bound on the number of isolated
solution in the computation of a start system to solve the given polynomial system.

3. Track the solution paths from the solutions of the start system to the solutions of the target system (phc -p).

4. Verify whether all end points of the solution paths are distinct, apply Newton’s method with deflation on singular
solutions (phc -v).

Through the options -s, -r, -p, and -v, the user can go through the stages separately. See the documentation for phc
-v for a description of the quality indicators for the numerically computed solutions.

The blackbox solver recognizes several special cases:

1. one polynomial in one variable;

2. one system of linear equations;

3. a system with exactly two monomials in every equation.

For these special cases, no polynomial continuation is needed.

Polyhedral homotopies can solve Laurent systems, systems where the exponents of the variables can be negative. If the
system on input is a Laurent system, then polyhedral homotopies (see the documentation for -m) are applied directly
and no upper bounds based on the degrees are computed.

New since version 2.4.02 are the options -b2 and -b4 to run the blackbox solver respectively in double double and
quad double precision, for example as

phc -b2 cyclic7 /tmp/c7out2
phc -b4 cyclic7 /tmp/c7out4

The most computational intensive stage in the solver is in the path tracking. Shared memory multitasked path trackers
are available in the path trackers for both the polyhedral homotopies to solve a random coefficient system and for the
artificial-parameter homotopy towards the target system. See the documentation for the option phc -t below.

When combining -bwith -t (for example as phc -b -t4 to use 4 threads in the blackbox solver), the m-homogeneous
and linear-product degree bounds are not computed, because the polyhedral homotopies are applied with pipelining,
interlacing the production of the mixed cells on one thread with the solving of a random coefficient system with the
other threads. To run on all available cores, call as phc -b -t, omitting the number of tasks.

The focus on -b is on isolated solutions. For a numerical irreducible decomposition of all solutions, including the
positive dimensional ones, consider the options -a, -c, and -f.
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3.2.4 phc -B : numerical irreducible decomposition in blackbox mode

The -B option bundles the functionality of

1. phc -c to run a cascade homotopy to compute candidate generic points on all components of the solution set;
and

2. phc -f to filter the junk points (which are not generic points) and to factor pure dimensional solution sets into
irreducible factors.

Since version 2.4.48, running phc -B provides a complete numerical irreducible decomposition.

Consider for example the system

4
(x1-1)*(x1-2)*(x1-3)*(x1-4);
(x1-1)*(x2-1)*(x2-2)*(x2-3);
(x1-1)*(x1-2)*(x3-1)*(x3-2);
(x1-1)*(x2-1)*(x3-1)*(x4-1);

The system has 4 isolated solutions, 12 solution lines, one solution plane of dimension 2, and one solution plane of
dimension 3. A numerical irreducible decomposition returns the 4 isolated solution points and one generic point on
each of the 12 solution lines, one generic point on the 2-dimensional solution plane, and one generic point on the
3-dimensional solution plane.

3.2.5 phc -c : irreducible decomposition for solution components

In a numerical irreducible decomposition, positive dimensional solution sets are represented by a set of generic points
that satisfy the given system and as many linear equations with random coefficients as the dimension of the solution
set. The number of generic points in that so-called witness set then equals the degree of the solution set.

The menu structure for a numerical irreducible decomposition consists of three parts:

1. Running a cascade of homotopies to compute witness points.

2. Intersecting witness sets with diagonal homotopies.

3. For binomial systems, the irreducible decomposition yields lists of monomial maps.

For the cascade of homotopies, the first choice in the menu combines the next two ones. The user is prompted to
enter the top dimension (which by default is the ambient dimension minus one) and then as many linear equations with
random coefficients are added to the input system. In addition, as many slack variables are added as the top dimension.
Each stage in the cascade removes one linear equation and solutions with nonzero slack variables at the start of the
homotopy may end at solutions of lower dimension.

The classification of the witness points along irreducible factors may happen with the third menu choice or, using
different methods, with phc -f. The third menu choice of phc -c applies bivariate interpolation methods, while phc
-f offers monodromy breakup and a combinatorial factorization procedure.

The intersection of witness sets with diagonal homotopies may be performed with extrinsic coordinates, which doubles
the total number of variables, or in an intrinsic fashion. The intersection of witness sets is wrapped in phc -w.

The third block of menu options of phc -c concerns binomial systems. Every polynomial equation in a binomial
system has exactly two monomials with a nonzero coefficient. The positive dimensional solution sets of such a system
can be represented by monomial maps. For sparse polynomial systems, monomial maps are much more efficient data
structures than witness sets.
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3.2.6 phc -d : linear and nonlinear reduction w.r.t. the total degree

Degree bounds for the number of isolated solution often overshoot the actual number of solution because of relation-
ships between the coefficients. Consider for example the intersection of two circles. A simple linear reduction of the
coefficient matrix gives an equivalent polynomial system (having the same number of affine solutions) but with lower
degrees. Reducing polynomials to introduce more sparsity may also benefit polyhedral methods.

As an example, consider the intersection of two circles:

2
x^2 + y^2 - 1;
(x - 0.5)^2 + y^2 - 1;

A simple linear combination of the two polynomials gives:

2
x^2 + y^2 - 1;
x - 2.5E-1;

This reduced system has the same solutions, but only two instead of four solution paths need to be tracked.

Nonlinear reduction attempts to replace higher degree polynomials in the system by S-polynomials.

3.2.7 phc -e : SAGBI/Pieri/Littlewood-Richardson homotopies

Numerical Schubert calculus is the development of numerical homotopy algorithms to solve Schubert problems. A
classical problem in Schubert calculus is the problem of four lines. Given four lines in three dimensional space, find
all lines that meet the four given lines in a point. If the lines are in general position, then there are exactly two lines
that satisfy the problem specification. Numerical homotopy continuation methods deform a given generic problem into
special position, solve the problem in special position, and then deform the solutions from the special into the generic
problem.

As Schubert calculus is a classical topic in algebraic geometry, what seems less well known is that Schubert calculus
offers a solution to the output pole placement problem in linear systems control. The option phc -k offers one particular
interface dedicated to the Pieri homotopies to solve the output pole placement problem. A related problem that can
be solved with Schubert calculus is the completion of a matrix so that the completed matrix has a prescribed set of
eigenvalues.

In numerical Schubert calculus, we have three types of homotopies:

1. SAGBI homotopies solve hypersurface intersection conditions the extrinsic way. The problem is: in 𝑛-space,
where 𝑛 = 𝑚+ 𝑝, for 𝑚𝑝 given 𝑚-planes, compute all 𝑝-planes which meet the 𝑚-planes nontrivially.

2. Pieri homotopies are intrinsically geometric and are better able to solve more general problems in enumerate
geometry. Pieri homotopies generalize SAGBI homotopies in two ways:

a. The intersection conditions may require that the planes meet in a space of a dimension higher than one. In
addition to the 𝑚-planes, the intersection conditions contain the dimensions of the spaces of intersection.

b. The solutions may be curves that produce 𝑝-planes. The problem may then be formulated as an interpolation
problem. Given are 𝑚𝑝+ 𝑞(𝑚+ 𝑝) interpolation points and as many 𝑚-planes on input. The solutions are
curves of degree 𝑞 that meet the given 𝑚-planes at the given interpolation points.

3. Littlewood-Richardson homotopies solve general Schubert problems. On input is a sequence of square matrices.
With each matrix corresponds a bracket of intersection conditions on 𝑝-planes. Each intersection condition is
the dimension of the intersection of a solution 𝑝-plane with a linear space with generators in one of the matrices
in the sequence on input.
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The earliest instances of SAGBI and Pieri homotopies were already available in version 2.0 of PHCpack. Since version
2.3.95, a more complete implementation of the Littlewood-Richardson homotopies is available.

3.2.8 phc -f : factor a pure dimensional solution set into irreducibles

The f in -f is the f of factor and filter.

The first basic filter allows for example to extract the real solutions from a given list. Other filtering criteria involve
for example the residual, the estimate of the inverse condition numbers, and a test whether a coordinate of a solution is
zero or not.

The second filter implements the homotopy membership test to decide whether a point belongs to a witness set. This
filter is needed to process the superwitness sets computed by phc -a or phc -c. Given on input a witness set and a
point, this filter runs a homotopy to decide if the point belongs to the positive dimensional solution set represented by
the given witness set.

The factorization method take on input a witness set for a pure dimensional solution set of a polynomial system. For
small degrees, a combinatorial factorization method will be fast. The second factorization method applies monodromy
loops, using the linear trace test as a stop criterion.

Another option in the menu of phc -f gives access to a tropical method to detect a common factor of two Laurent
polynomials.

3.2.9 phc -g : check the format of an input polynomial system

The purpose of phc -g is to check whether a given input system has the right syntax. A related option is phc -o.

Use -g as phc -g input output where input and output are the names of input and output files respectively. If
output is omitted, then the output can be written to screen. If both input and output are omitted, then the user will
be prompted to provide the polynomials in the input system.

The input system can be a system of polynomials in several variables with complex coefficients. The first line on the
input file must be the number of polynomials. If the number of variables is different from the number of polynomials,
then the second number on the first line must be the number of variables. Variables may have negative exponents, in
which case the system is recognized as a Laurent polynomial system. Working with negative exponents can be useful
to exclude solutions with zero coordinates, as polyhedral homotopies (see phc -m) are capable of avoiding to compute
those type of solutions.

The division operator / may not appear in a monomial, e.g.: x/y is invalid, but may be used in a coefficient, such
as in 5/7. While phc -g will parse 5/7 in double precision, phc -v will use the proper extended precision in its
multiprecision root refinement.

The coefficients of the system will be parsed by phc -g as complex numbers in double precision. There is also no
need to declare variables, the names of the variables will be added to the symbol table, in the order of which they occur
in the polynomials in the system. A trick to impose an order on the variables is to start the first polynomial with the
zero polynomial, written as x - x + y - y, to ensure that the symbol x comes prior to y. Internally, the terms in a
polynomial are ordered in a graded lexicographical order.

Names that may not be used as names for variables are e, E (because of the scientific format of floating-point numbers)
and i, I (because of the imaginary unit

√
−1). Every polynomial must be terminated by a semicolon, the ; symbol.

Starting the name of a variable with ; is in general a bad idea anyway, but semicolons are used as terminating symbols
in a polynomial.

Round brackets are for grouping the real and imaginary parts of complex coefficients, e.g.: (1.e-3 + 3/7*I)*x^2*y
or for grouping factors, e.g.: 3.14*(x+y)*(x-1)^4.
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3.2.10 phc -h : writes helpful information to screen

The information written by phc -h is the condensed version of this document. For every option, some helpful infor-
mation is defined. For example, typing phc -z -h or phc -h -z displays information about phc -z.

Typing phc -h -h displays the list of all available options.

Instead of -h, one can also type --help.

3.2.11 phc -j : path tracking with algorithmic differentiation

In the tracking of a solution path we frequently apply Newton’s method. To run Newton’s method we need to evaluate
the system and compute all its partial derivatives. The cost of evaluation and differentiation is a significant factor in
the total cost. For large systems, this cost may even dominate.

The phc -j gives access to the Path library developed to accelerate the path trackers with graphics processing units.
The code is capable to evaluate and differentiate large polynomial systems efficiently, in double, double double, and
quad double precision.

3.2.12 phc -k : realization of dynamic output feedback placing poles

The homotopies in numerical Schubert calculus (see the option -e) solve the output pole placement problem in linear
systems control. The option -k applies the Pieri homotopies to compute feedback laws for plants defined by (A,B,C)
matrices.

For examples of input, see the Feedback/Data folder of the source code.

The feedback laws in the output file are realized and written in a format ready for parsing with MATLAB or Octave.
The computation of output feedback laws is an application of the Pieri homotopies, available via phc -e.

3.2.13 phc -l : witness set for hypersurface cutting with random line

A hypersurface defined by a polynomial in several variables is cut with one general line. The number of points on the
hypersurface and the general line equal the degree of the hypersurface. This collection of points on the intersection of
a hypersurface and a general line form a witness set.

For example, if the file sphere contains

1 3
x^2 + y^2 + z^2 - 1;

then typing at the command prompt

phc -l sphere sphere.out

results in the creation of the file sphere_w2 which contains a witness set of dimension two for the unit sphere. The
output file sphere.out contains diagnostics about the computation.

For hypersurfaces of higher degree, the double precision as provided by the hardware may turn out to be insufficient
to compute as many generic points as the degree of the hypersurface. Therefore, the options l2 and l4 perform the
computations respectively in double double and quad double precision. To continue the example from above, typing at
the command prompt

phc -l4 sphere sphere.qd

will give two generic points on the sphere, computed in quad double precision.
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3.2.14 phc -m : mixed volumes, MixedVol, DEMiCs, polyhedral homotopies

The menu choices of phc -m are a subset of the menu of phc -r. The focus on phc -m is on mixed volumes. For
polynomial systems with as many equations as unknowns, the mixed volume of the Newton polytopes gives a generically
sharp upper bound on the number of isolated solutions with coordinates different from zero.

The ability to focus only on solutions with all coordinates different from zero stems from the fact that shifting Newton
polytopes (which corresponds to multiplying the polynomials with one monomial) does not increase their volumes.
With polyhedral homotopies, we can solve systems of polynomials with negative exponents for the variables, the so-
called Laurent polynomials.

The mixed volume of a tuple of Newton polytopes is defined as the coefficient in the expansion of the volume of a linear
combination of Newton polytopes. For example, for a 3-tuple of Newton polytopes:

𝑣𝑜𝑙(𝜆1𝑃1 + 𝜆2𝑃2 + 𝜆3𝑃3) = 𝑉 (𝑃1, 𝑃1, 𝑃1)𝜆
3
1

+ 𝑉 (𝑃1, 𝑃1, 𝑃2)𝜆
2
1𝜆2

+ 𝑉 (𝑃1, 𝑃2, 𝑃2)𝜆1𝜆
2
2

+ 𝑉 (𝑃1, 𝑃2, 𝑃3)𝜆1𝜆2𝜆3

+ 𝑉 (𝑃2, 𝑃2, 𝑃2)𝜆
3
2

+ 𝑉 (𝑃2, 𝑃2, 𝑃3)𝜆
2
2𝜆3

+ 𝑉 (𝑃2, 𝑃3, 𝑃3)𝜆2𝜆
2
3

+ 𝑉 (𝑃3, 𝑃3, 𝑃3)𝜆
3
3

where 𝑣𝑜𝑙(·) is the volume function and 𝑉 (·) is the mixed volume. For the tuple (𝑃1, 𝑃2, 𝑃3), its mixed volume is
𝑉 (𝑃1, 𝑃2, 𝑃3) in the expansion above.

The polynomial above can be called the Minkowski polynomial and with the Cayley trick we can compute all its
coefficients. This is implemented with the dynamic lifting algorithm.

The menu with 6 different lifting strategies is displayed as follows:

MENU with available Lifting Strategies (0 is default) :
0. Static lifting : lift points and prune lower hull.
1. Implicit lifting : based on recursive formula.
2. Dynamic lifting : incrementally add the points.
3. Symmetric lifting : points in same orbit get same lifting.
4. MixedVol Algorithm : a faster mixed volume computation.
5. DEMiCs Algorithm : dynamic enumeration for mixed cells.

The menu of phc -m offers 5 different algorithms:

0. Static lifting: a lifting function is applied to the points in the support sets of the polynomials in the system and
the lower hull defines the mixed cells. The users can specify the lifting values interactively. Liftings that do not
lead to cells that are fine mixed are subdivided with a random lifting.

1. Implicit lifting: based on a recursive formula used in Bernshtein’s original proof that the mixed volumes bounds
the number of isolated solutions with nonzero coordinates.

2. Dynamic lifting: points are added one after the other in an incremental construction of a mixed cell configuration.
An implementation of the Cayley trick gives the Minkowski polynomial.

3. Symmetric lifting: many systems have Newton polytopes that are invariant to permutation symmetry. Even if
the original system is not symmetric, the construction of the start system could benefit from the exploitation of
this permutation symmetry.

4. The MixedVol Algorithm is a specific implementation of the static lifting method, applying a floating random
lifting function.

The code offered with this option is a translation of software described in the paper by Tangan Gao, T. Y. Li,
Mengnien Wu: Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Transac-
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tions on Mathematical Software, 31(4):555-560, 2005; distributed under the terms of the GNU General Public
License as published by the Free Software Foundation.

With the stable mixed volume we count all affine solutions (not only those with nonzero coordinates) and then
and obtain polyhedral homotopies that compute all affine solutions.

5. The DEMiCs Algorithm is faster than MixedVol for larger polynomial systems with many different supports.
The algorithm is described in the paper by T. Mizutani, A. Takeda, and M. Kojima: Dynamic enumeration of all
mixed cells, published in Discrete Comput. Geom. 37(3):351-367, 2007. The software DEMiCs is distributed
under the GNU GPL license as well.

On multicore computers, the solution of a random coefficient system with polyhedral homotopies runs in parallel when
calling phc with the option -t. For example, phc -m -t8 will run the polyhedral path trackers with 8 tasks. To run
on all available cores, call as phc -m -t, omitting the number of tasks.

Since version 2.4.06, the mixed volume computation by the MixedVol algorithm (option 4 of phc -m) is interlaced
with the path tracking in a heterogenous pipelined application of multitasking.

3.2.15 phc -o : writes the symbol table of an input system

Running phc -owith as input argument a polynomial system writes the symbols for the variables in the order in which
they are stored internally after parsing the system. For example, if the file /tmp/ex1 contains the lines

2
y + x + 1;
x*y - 1;

then running phc -o at the command prompt as

phc -o /tmp/ex1 /tmp/ex1.out

makes the file /tmp/ex1.out which contains the line

y x

because in the formulation of the polynomial system, the variable with name y occurred before the variable with name
x. Consequently, the order of the coordinates of the solutions will then also be stored in the same order as of the
occurrence of the variable names. If a particular order of variables would be inconvenient, then a trick to force an
order on the variables is to insert a simple polynomial that simplifies to zero. For example, a modification of the file
/tmp/ex1 could be

2
x + y - x - y +
y + x + 1;
x*y - 1;

and the first four monomials x + y - x - y will initialize the symbol table with the names x and y, in that order.
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3.2.16 phc -p : polynomial continuation in one parameter

We distinguish between two types of homotopies. In an artificial parameter homotopy, the user is prompted for a target
system and a start system with start solutions. If the input to phc -p is a polynomial system with one more unknown
than the number of equations, then we have a natural parameter homotopy and the user is then prompted to define one
unknown as the continuation parameter.

We first illustrate artificial parameter homotopy continuation. In the example below, the artificial parameter is denoted
by 𝑡 and, as 𝑡 goes from zero to one, a simpler polynomial system, the start system, is deformed to the target system,
the system we want to solve:

𝛾(1− 𝑡)

(︂{︂
𝑥2 − 𝑐1 = 0
𝑦 − 𝑐2 = 0

)︂
+ 𝑡

(︂{︂
𝑥2 + 𝑦2 − 1 = 0
𝑥+ 𝑦 − 2 = 0

)︂
,

where 𝛾, 𝑐1, and 𝑐2 are constants, generated at random on the unit circle in the complex plane.

For this example, the file with the target system contains

2
x^2 + y^2 - 1;
x + y - 2;

and the start system is then stored in the file with contents

2
x^2 +(-7.43124688174374E-01 - 6.69152970422862E-01*i);
y +(-7.98423708079157E-01 + 6.02095990999051E-01*i);

THE SOLUTIONS :
2 2
===========================================================================
solution 1 :
t : 0.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : -9.33575033988799E-01 -3.58381997194074E-01
y : 7.98423708079157E-01 -6.02095990999051E-01
== err : 0.000E+00 = rco : 1.000E+00 = res : 0.000E+00 ==
solution 2 :
t : 0.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : 9.33575033988799E-01 3.58381997194074E-01
y : 7.98423708079157E-01 -6.02095990999051E-01
== err : 0.000E+00 = rco : 1.000E+00 = res : 0.000E+00 ==

The start system can be constructed with phc -r.

With phc -p, the user has full access to all numerical tolerances that define how close the numerical approximations
have to stay along a solution path. By default, path tracking happens in double precision, but the user can increase the
precision via the menu of the homotopy settings. At the command line, launching phc with the options -p2 and -p4
will run the path tracking respectively in double double and quad double precision.

To rerun a selection of solution paths, the user should submit a start system which contains only the start solutions of
those paths that need to be recomputed. In a rerun, one must choose the same 𝛾 as in the previous run.

In addition to the artificial parameter increment-and-fix continuation, there is support for complex parameter contin-
uation and real pseudo arc length path tracking with detection of singularities using the determinant of the Jacobian
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along the solution path.

To run pseudo arc length continuation, the user has to submit a system that has fewer equations than variables. For
example, for a real sweep of the unit circle, the input would be

2 3
x^2 + y^2 - 1;
y*(1-s) + (y-2)*s;

where the last equation moves the line 𝑦 = 0 to 𝑦 = 2. The sweep will stop at the first singularity it encounters on the
solution path, which in this case is the quadratic turning point at (0, 1).

The corresponding list of solutions should then contain the following:

2 3
===========================================================================
solution 1 :
t : 0.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : -1.00000000000000E+00 0.00000000000000E+00
y : 0.00000000000000E+00 0.00000000000000E+00
s : 0.00000000000000E+00 0.00000000000000E+00
== err : 0.000E+00 = rco : 1.863E-01 = res : 0.000E+00 ==
solution 2 :
t : 0.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : 1.00000000000000E+00 0.00000000000000E+00
y : 0.00000000000000E+00 0.00000000000000E+00
s : 0.00000000000000E+00 0.00000000000000E+00
== err : 0.000E+00 = rco : 1.863E-01 = res : 0.000E+00 ==

After launching the program as phc -p the user can determine the working precision. This happens differently for the
two types of homotopies, depending on whether the parameter is natural or artificial:

1. For a natural parameter homotopy like the sweep, the user will be prompted explicitly to choose between double,
double double, or quad double precision.

2. For an artificial parameter homotopy, the user can determine the working precision at the construction of the
homotopy.

In both types of homotopies, natural parameter and aritificial parameter, the user can preset the working precision
respectively to double double or quad double, calling the program as phc -p2 or as phc -p4.

Since version 2.4.13, phc -p provides path tracking for overdetermined homotopies, where both target and start system
are given as overconstrained systems and every convex linear combination between target and start system admits
solutions.
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3.2.17 phc -q : tracking solution paths with incremental read/write

For huge polynomial systems, all solutions may not fit in memory. The jumpstarting method for a polynomial homotopy
does not require the computation of all solutions of the start system and neither does it keep the complete solution list
in memory.

The phc -q is a byproduct of the distributed memory parallel path trackers with developed with the Message Passing
Interface (MPI). Even if one is not concerned about memory use, phc -q is an example of program inversion. Instead
of first completely solving the start system before tracking solution paths to the target system, one can ask for the next
start solution whenever one wants to compute another solution of the target system.

The menu of types of supported homotopies is

MENU for type of start system or homotopy :
1. start system is based on total degree;
2. a linear-product start system will be given;
3. start system and start solutions are provided;
4. polyhedral continuation on a generic system;
5. diagonal homotopy to intersect algebraic sets;
6. descend one level down in a cascade of homotopies;
7. remove last slack variable in a witness set.

The first four options concern isolated solutions of polynomial systems. To construct a start system based on total
degree or a linear-product start system, use phc -r. The polyhedral continuation needs a mixed cell configuration,
which can be computed with phc -m.

Options 5 and 6 deal with positive dimensional solution sets, see phc -c.

3.2.18 phc -r : root counting and construction of start systems

The root count determines the number of solution paths that are tracked in a homotopy connecting the input system
with the start system that has as many solutions as the root count. We have an optimal homotopy to solve a given system
if the number of solution paths equals the number of solutions of the system.

Methods to bound the number of isolated solutions of a polynomial system fall in two classes:

1. Bounds based on the highest degrees of polynomials and variable groupings.

2. Bounds based on the Newton polytopes of the polynomials in the system. See the documentation for phc -m.

The complete menu (called with cyclic 5-roots, with total degree 120) is shown below:

MENU with ROOT COUNTS and Methods to Construct START SYSTEMS :
0. exit - current root count is based on total degree : 120

PRODUCT HOMOTOPIES based on DEGREES ------------------------------
1. multi-homogeneous Bezout number (one partition)
2. partitioned linear-product Bezout number (many partitions)
3. general linear-product Bezout number (set structure)
4. symmetric general linear-product Bezout number (group action)

POLYHEDRAL HOMOTOPIES based on NEWTON POLYTOPES ------------------
5. combination between Bezout and BKK Bound (implicit lifting)
6. mixed-volume computation (static lifting)
7. incremental mixed-volume computation (dynamic lifting)
8. symmetric mixed-volume computation (symmetric lifting)
9. using MixedVol Algorithm to compute the mixed volume fast (!)
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At the start, the current root count is the total degree, which is the product of the degrees of the polynomials in the
system. The options 5 to 9 of the menu are also available in phc -m.

Three different generalizations of the total degree are available:

1. For a multi-homogeneous Bezout number, we split the set of variables into a partition. A classical example is the
eigenvalue problem. When viewed as a polynomial system 𝜆𝑥−𝐴𝑥 = 0 we see quadratic equations. Separating
the variable for the eigenvalue 𝜆 from the coordinates 𝑥 of the eigenvectors turns the system into a multilinear
problem and provides the correct root count.

2. In a partitioned linear-product Bezout number, we allow that the different partitions of the sets of variables are
used for different polynomials in the system. This may lead to a lower upper bound than the multi-homogeneous
Bezout number.

3. A general linear-product Bezout number groups the variables in a collection of sets where each variable occurs at
most once in each set. Every set then corresponds to one linear equation. The formal root count is a generalized
permanent, computed formally via algorithms for the bipartite matching problem.

Each of these three generalizations leads to a linear-product start system. Every start solution is the solution of a linear
system. One can view the construction of a linear-product start system as the degeneration of the given polynomial
system on input such that every input polynomial is degenerated to a product of linear factors.

The fourth option of the -r allows one to take permutation symmetry into account to construct symmetric start systems.
If the start system respects the same permutation symmetry as the system on input, then one must track only those paths
starting at the generators of the set of start solutions.

After the selection of the type of start system, the user has the option to delay the calculation of all start solutions. All
start solutions can be computed at the time when needed by phc -q. To use the start system with phc -p, the user
must ask to compute all start solutions with -r.

3.2.19 phc -s : equation and variable scaling on system and solutions

A system is badly scaled if the difference in magnitude between the coefficients is large. In a badly scaled system we
observe very small and very large coefficients, often in the same polynomial. The solutions in a badly scaled system
are ill conditioned: small changes in the input coefficients may lead to huge changes in the coordinates of the solutions.

Scaling is a form of preconditioning. Before we solve the system, we attempt to reformulate the original problem into
a better scaled one. We distinguish two types of scaling:

1. equation scaling: multiply every coefficient in the same equation by the same constant; and

2. variable scaling: multiply variables by constants.

Chapter 5 of the book of Alexander Morgan on Solving Polynomial Systems Using Continuation for Engineering and
Scientific Problems (volume 57 in the SIAM Classics in Applied Mathematics, 2009) describes the setup of an opti-
mization problem to compute coordinate transformations that lead to better values of the coefficients.

If the file /tmp/example contains the following lines

2
0.000001*x^2 + 0.000004*y^2 - 4;
0.000002*y^2 - 0.001*x;

then a session with phc -s (at the command prompt) to scale the system goes as follows.

$ phc -s
Welcome to PHC (Polynomial Homotopy Continuation) v2.3.99 31 Jul 2015
Equation/variable Scaling on polynomial system and solution list.

(continues on next page)
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(continued from previous page)

MENU for the precision of the scalers :
0. standard double precision;
1. double double precision;
2. quad double precision.

Type 0, 1, or 2 to select the precision : 0

Is the system on a file ? (y/n/i=info) y

Reading the name of the input file.
Give a string of characters : /tmp/example

Reading the name of the output file.
Give a string of characters : /tmp/example.out

MENU for Scaling Polynomial Systems :
1 : Equation Scaling : divide by average coefficient
2 : Variable Scaling : change of variables, as z = (2^c)*x
3 : Solution Scaling : back to original coordinates

Type 1, 2, or 3 to select scaling, or i for info : 2
Reducing the variability of coefficients ? (y/n) y
The inverse condition is 4.029E-02.

Do you want the scaled system on separate file ? (y/n) y
Reading the name of the output file.
Give a string of characters : /tmp/scaled

$

Then the contents of the file /tmp/scaled is

2
x^2+ 9.99999999999998E-01*y^2-1.00000000000000E+00;
y^2-1.00000000000000E+00*x;

SCALING COEFFICIENTS :

10
3.30102999566398E+00 0.00000000000000E+00
3.00000000000000E+00 0.00000000000000E+00
-6.02059991327962E-01 0.00000000000000E+00
-3.01029995663981E-01 0.00000000000000E+00

We see that the coefficients of the scaled system are much nicer than the coefficients of the original problem. The scaling
coefficients are needed to transform the solutions of the scaled system into the coordinates of the original problem. To
transform the solutions, choose the third option of the second menu of phc -s.
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3.2.20 phc -t : tasking for tracking paths using multiple threads

The problem of tracking a number of solution paths can be viewed as a pleasingly parallel problem, because the paths
can be tracked independently from each other.

The option -t allows the user to take advantage of multicore processors. For example, typing at the command prompt.

phc -b -t4 cyclic7 /tmp/cyclic7.out

makes that the blackbox solver uses 4 threads to solve the system. If there are at least 4 computational cores available,
then the solver may finish its computations up to 4 times faster than a sequential run. To run on all available cores, call
as phc -b -t, omitting the number of tasks.

With the time command, we can compare the wall clock time between a sequential run and a run with 16 tasks:

time phc -b cyclic7 /tmp/cyc7t1

real 0m10.256s
user 0m10.202s
sys 0m0.009s

time phc -b -t16 cyclic7 /tmp/cyc7t16

real 0m0.851s
user 0m11.149s
sys 0m0.009s

The speedup on the wall clock time is about 12, obtained as 10.256/0.851.

The relationship with double double and quad double precision is interesting, consider the following sequence of runs:

time phc -b cyclic7 /tmp/c7out1

real 0m9.337s
user 0m9.292s
sys 0m0.014s

time phc -b -t16 cyclic7 /tmp/c7out2

real 0m0.923s
user 0m13.034s
sys 0m0.010s

With 16 tasks we get about a tenfold speedup, but what if we ask to double the precision?

time phc -b2 -t16 cyclic7 /tmp/c7out3

real 0m4.107s
user 0m59.164s
sys 0m0.018s

We see that with 16 tasks in double precision, the elapsed time equals 4.107 seconds, whereas the time without tasking
was 9.337 seconds. This means that with 16 tasks, for this example, we can double the working precision and still finish
the computation is less than half of the time without tasking. We call this quality up.

For quad double precision, more than 16 tasks are needed to offset the overhead caused by the quad double arithmetic:
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time phc -b4 -t16 cyclic7 /tmp/c7out4

real 0m53.865s
user 11m56.630s
sys 0m0.248s

To track solution paths in parallel with phc -p, for example with 4 threads, one needs to add -t4 to the command
line and call phc as phc -p -t4. The option -t can also be added to phc -m at the command line, to solve random
coefficient start systems with polyhedral homotopies with multiple tasks.

3.2.21 phc -u : Newton’s method and continuation with power series

The application of Newton’s method over the field of truncated power series in double, double double, or quad double
precision, can be done with phc -u.

On input is a polynomial system where one of the variables will be considered as a parameter in the series. The other
input to phc -u is a list of solution for the zero value of the series variable.

Consider for example the intersection of the Viviani curve with a plane, as defined in the homotopy:

3 4
(1-s)*y + s*(y-1);
x^2 + y^2 + z^2 - 4;
(x-1)^2 + y^2 - 1;

At s=0, the point (0,0,2) is a regular solution and the file with the homotopy should contain

solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
s : 0.00000000000000E+00 0.00000000000000E+00
y : 0.00000000000000E+00 0.00000000000000E+00
x : 0.00000000000000E+00 0.00000000000000E+00
z : 2.00000000000000E+00 0.00000000000000E+00
== err : 0.000E+00 = rco : 3.186E-01 = res : 0.000E+00 ==

The input file can be prepared inserting the s=0 into the homotopy and giving to the blackbox solver phc -b a file with
contents:

4
s;
(1-s)*y + s*(y-1);
x^2 + y^2 + z^2 - 4;
(x-1)^2 + y^2 - 1;

The output of phc -b will have the point (0,0,2) for s=0.
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3.2.22 phc -v : verification, refinement and purification of solutions

While solution paths do in general not become singular or diverge, at the end of the paths, solutions may turn out to be
singular and/or at infinity.

Consider for example the system

2
x*y + x - 0.333;
x^2 + y - 1000;

where the first solution obtained by some run with phc -b is

solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : 3.32667332704111E-04 -2.78531008415435E-26
y : 9.99999999889332E+02 0.00000000000000E+00
== err : 3.374E-09 = rco : 2.326E-06 = res : 3.613E-16 ==

The last three numbers labeled with err, rco, and res are indicators for the quality of the solution:

1. err : the magnitude of the last correction made by Newton’s method to the approximate solution. The err
measures the forward error on the solution. The forward error is the magnitude of the correction we have to
make to the approximate solution to obtain the exact solution. As the value of err is about 1.0e-9 we can hope
to have about eight correct decimal places in the solution.

2. rco : an estimate for the inverse of the condition number of the Jacobian matrix at the approximation for the
solution. A condition number measures by how much a solution may change as by a change on the input coeffi-
cients. In the example above, the 0.333 could be a three digit approximation for 1/3, so the error on the input
could be as large as 1.0e-4. As rco is about 1.0e-6, the condition number is estimated to be of order 1.0e+6.
For this example, an error of 10−4 on the input coefficients can result in an error of 10−4 × 106 = 102 on the
solutions.

3. res : the magnitude of the polynomials in the system evaluated at the approximate solution, the so-called resid-
ual. For this problem, the residual is the backward error. Because of numerical representation errors, we have
not solved an exact problem, but a nearby problem. The backward error measures by much we should change
the input coefficients for the approximate solution to be an exact solution of a nearby problem.

With phc -v one can do the following tasks:

1. Perform a basic verification of the solutions based on Newton’s method and weed out spurious solutions. The
main result of a basic verification is the tally of good solutions, versus solutions at infinity and/or singular solu-
tions. Solution paths may also have ended at points that are clustered at a regular solution so with ‘-v’ we can
detect some cases of occurrences of path crossing.

To select solutions subject to given criteria, use phc -f.

2. Apply Newton’s method with multiprecision arithmetic. Note that this may require that also the input coefficients
are evaluated at a higher precision.

3. For isolated singular solutions, the deflation method may recondition the solutions and restore quadratic conver-
gence. Note that a large condition number may also be due to a bad scaling of the input coefficients.

With phc -s one may improve the condition numbers of the solutions.

4. Based on condition number estimates the working precision is set to meet the wanted number of accurate decimal
places in the solutions when applying Newton’s method.
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The blackbox version uses default settings for the parameters, use as phc -v -b or phc -b -v, for double precision.
For double double precision, use as phc -b2 -v or phc -b -v2. For quad double precision, use as phc -b4 -v or
phc -b -v4. The order of -b and -v at the command line does not matter.

The option 0 (the first option in the phc -vmenu) runs solution scanners, to run through huge lists of solutions, in the
range of one million or more.

3.2.23 phc -V : run in verbose mode

To run the blackbox solver in verbose mode, at level 17, type phc -b -V17 at the command prompt. In this mode, the
names of the called procedures will be shown on screen, up to the 17-th level of nesting deep.

This option is helpful to obtain a dynamic view of the tree of code and, in case of a crash, to track down the procedure
where the crash happened.

3.2.24 phc -w : witness set intersection using diagonal homotopies

This option wraps the diagonal homotopies to intersect two witness sets, see the option -c for more choices in the
algorithms.

For example, to intersect the unit sphere (see the making of sphere_w2with phc -l) with a cylinder to form a quartic
curve, we first make a witness set for a cylinder, putting in the file cylinder the two lines:

1 3
x^2 + y - y + (z - 0.5)^2 - 1;

Please note the introduction of the symbol y even though the symbol does not appear in the equation of a cylinder
about the y-axis. But to intersect this cylinder with the unit sphere the symbols of both witness sets must match. After
executing phc -l cylinder cylinder.out we get the witness set cylinder_w2 and then we intersect with phc
-w:

phc -w sphere_w2 cylinder_w2 quartic

The file quartic contains diagnostics of the computation. Four general points on the quartic solution curve of the
intersection of the sphere and the cylinder are in the file quartic_w1 which represents a witness set.

3.2.25 phc -x : convert solutions from PHCpack into Python dictionary

To work with solution lists in Python scripts, running phc -x converts a solution list in PHCpack format to a list of
dictionaries. Given a Python list of dictionaries, phc -x returns a list of solutions in PHCpack format. For example:

phc -x cyclic5 /tmp/cyclic5.dic
phc -x /tmp/cyclic5.dic

The first phc -x writes to the file /tmp/cyclic5.dic a list of dictionaries, ready for processing by a Python script.
If no output file is given as second argument, then the output is written to screen. The second phc -x writes a solution
list to PHCpack format, because a list of dictionaries is given on input.

If the second argument of phc -x is omitted, then the output is written to screen. For example, if the file /tmp/
example contains
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2
x*y + x - 3;
x^2 + y - 1;

THE SOLUTIONS :
3 2
===========================================================================
solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : -1.89328919630450E+00 0.00000000000000E+00
y : -2.58454398084333E+00 0.00000000000000E+00
== err : 2.024E-16 = rco : 2.402E-01 = res : 2.220E-16 ==
solution 2 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : 9.46644598152249E-01 -8.29703552862405E-01
y : 7.92271990421665E-01 1.57086877276985E+00
== err : 1.362E-16 = rco : 1.693E-01 = res : 2.220E-16 ==
solution 3 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x : 9.46644598152249E-01 8.29703552862405E-01
y : 7.92271990421665E-01 -1.57086877276985E+00
== err : 1.362E-16 = rco : 1.693E-01 = res : 2.220E-16 ==

then the conversion executed by

phc -x /tmp/example

write to screen the following:

[
{'time': 1.00000000000000E+00 + 0.00000000000000E+00*1j, \
'multiplicity':1,'x':-1.89328919630450E+00 + 0.00000000000000E+00*1j, \
'y':-2.58454398084333E+00 + 0.00000000000000E+00*1j, \
'err': 2.024E-16,'rco': 2.402E-01,'res': 2.220E-16}, \
{'time': 1.00000000000000E+00 + 0.00000000000000E+00*1j, \
'multiplicity':1,'x': 9.46644598152249E-01-8.29703552862405E-01*1j, \
'y': 7.92271990421665E-01 + 1.57086877276985E+00*1j, \
'err': 1.362E-16,'rco': 1.693E-01,'res': 2.220E-16}, \
{'time': 1.00000000000000E+00 + 0.00000000000000E+00*1j, \
'multiplicity':1,'x': 9.46644598152249E-01 + 8.29703552862405E-01*1j, \
'y': 7.92271990421665E-01-1.57086877276985E+00*1j, \
'err': 1.362E-16,'rco': 1.693E-01,'res': 2.220E-16}
]

In the output above, for readabiility, extra line breaks were added, after each continuation symbol (the back slash). In
the output of phc -x, every dictionary is written on one single line.

The keys in the dictionary are the same as the left hand sides in the equations in the Maple format, see phc -z.
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3.2.26 phc -y : sample points from an algebraic set, given witness set

The points on a positive dimensional solution set are fixed by the position of hyperplanes that define a linear space of
the dimension equal to the co-dimension of the solution set. For example, in 3-space, a 2-dimensional set is cut with a
line and a 1-dimensional set is cut with a plane.

Given in sphere_w2 a witness set for the unit sphere (made with phc -l, see above), we can make a new witness set
with phc -y, typing at the command prompt:

phc -y sphere_w2 new_sphere

and answering two questions with parameter settings (type 0 for the defaults). The output file new_sphere contains
diagnostics of the run and a new witness set is in the file new_sphere_w2.

3.2.27 phc -z : strip phc output solution lists into Maple format

Parsing solution lists in PHCpack format can be a bit tedious. Therefore, the phc -z defines a simpler format, rep-
resenting a list of solutions as a list of lists, where lists are enclosed by square brackets. Every solution is a list of
equations, using a comma to separate the items in the list.

The phc -z commands converts solution lists in PHCpack format into Maple lists and converts Maple lists into solutions
lists in PHCpack format. For example:

phc -z cyclic5 /tmp/cyclic5.mpl
phc -z /tmp/cyclic5.mpl

If the file cyclic5 contains the solutions of the cyclic 5-roots problem in PHCpack format, then the first command
makes the file /tmp/cyclic5.mpl which can be parsed by Maple. The next command has no second argument for
output file and the output is written directly to screen, converting the solutions in Maple format into solution lists in
PHCpack format.

If the output file is omitted, then the output is written to screen. For example, if the file /tmp/example has as content

2
x*y + x - 3;
x^2 + y - 1;

Then we first can solve the system with the blackbox solver as

phc -b /tmp/example /tmp/example.out

Because phc -b appends the solution to an input file without solutions, we can convert the format of the PHCpack
solutions into Maple format as follows:

phc -z /tmp/example
[[time = 1.0 + 0*I,
multiplicity = 1,
x = -1.8932891963045 + 0*I,
y = -2.58454398084333 + 0*I,
err = 2.024E-16, rco = 2.402E-01, res = 2.220E-16],
[time = 1.0 + 0*I,
multiplicity = 1,
x = 9.46644598152249E-1 - 8.29703552862405E-1*I,
y = 7.92271990421665E-1 + 1.57086877276985*I,
err = 1.362E-16, rco = 1.693E-01, res = 2.220E-16],

(continues on next page)
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[time = 1.0 + 0*I,
multiplicity = 1,
x = 9.46644598152249E-1 + 8.29703552862405E-1*I,
y = 7.92271990421665E-1 - 1.57086877276985*I,
err = 1.362E-16, rco = 1.693E-01, res = 2.220E-16]];

The left hand sides of the equations are the same as the keys in the dictionaries of the Python format, see phc -x.

3.2.28 phc -z -p : extract start system and its solutions

For general polynomial systems, the blackbox solver constructs a start system and writes the start system and its solu-
tions to the output file. For a rerun with different tolerances or for a system with the same structure but with altered
coefficients, the start system and start solutions can serve as the input for phc -p.

For a system in the file input.txt, we can do the following:

phc -b input.txt output.txt
phc -z -p output.txt startsys.txt

The second run of phc makes the new file startsys.txt with the start system and start solutions used to solve the
polynomial system in the file input.txt.

Alternatively, phc -p -z works just as well.
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Reference Manual

The code is written in the following languages: Ada, C, C++, NVIDIA CUDA, Python, and most recently Julia. The
following description documents the organization and design decisions which led to the current state of the code.

The main executable phc compiles on Linux, MacOS X, and Windows computers. Shared memory parallelism works
on all three operating systems. The message passing with MPI has not been tested on Windows. The development of
the accelerator code with NVIDIA CUDA was done on Linux computers and gaming laptops running Windows.

The Python code was developed and tested on Linux and MacOS X, not on Windows.

4.1 The Test Procedures

A dynamic manner to experience the structure of the source code is to run through all test procecures. There over three
hundred test programs which can be built typing with the .gpr files in the folders.

For example, typing

gprbuild deformations.gpr

at the command prompt in the Deformations folder builds all test procedures in this folder. The tests are organized
along the source code directories. Every directory in the source code hierarchy has its own test procedures which focus
on the particular functionality coded in that directory. To test the mathematical library, running gprbuild math_lib
invokes ten other gprbuilds, one for each subdirectory of the mathematical library.
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4.2 Organization of the Ada code

The code in the first release was written in Ada 83. Release 2 featured a new mathematical library, rebuilt using Ada
95 concepts and offering multi-precision arithmetic.

There are four major layers in the code:

1. Math_Lib: linear algebra, representations of polynomials, Newton polytopes, and power series;

2. Deformations: Newton’s method, path trackers, end games, solutions and homotopies, deflation;

3. Root_Counts: root counting methods and constructions of homotopies, linear-product start start systems based
on Bézout bounds, mixed volumes and polyhedral homotopies;

4. Components: witness sets, cascades of homotopies, monodromy, diagonal homotopies, to compute a numerical
irreducible decomposition.

There are five other parts, called System, Schubert, CtoPHC, PHCtoC, and Tasking. The top down perspective starts
at the folder Main.

The Ada sources are organized in a tree of directories:

Ada : Ada source code of PHC
|-- System : 0. OS dependencies, e.g.: timing package
|-- Math_Lib : 1. general mathematical library
| |-- Numbers : 1.1. number representations
| |-- QD : 1.2. multiple double arithmetic
| |-- Vectors : 1.3. vectors and vectors of vectors
| |-- Matrices : 1.4. matrices and linear-system solvers
| |-- Divisors : 1.5. common divisors, integer linear algebra
| |-- Reduction : 1.6. row reduction, numerical linear algebra
| |-- Polynomials : 1.7. multivariate polynomial systems
| |-- Functions : 1.8. evaluation and differentiation
| |-- Supports : 1.9. support sets and linear programming
| |-- Circuits : 1.A. circuits for algorithmic differentation
| |-- Series : 1.B. manipulating truncated series
| |-- Laurent : 1.C. series with integer leading exponents
| |-- AD : 1.D. algorithmic differentiation of Path library
|-- Deformations : 2. homotopies, Newton's method & path trackers
| |-- Solutions : 2.1. solutions of systems and homotopies
| |-- Homotopy : 2.2. homotopies, scaling and reduction
| |-- Newton : 2.3. root refining and modified Newton's method
| |-- Curves : 2.4. univariate solving & plane algebraic curves
| |-- End_Games : 2.5. extrapolation end games with Puiseux series
| |-- Trackers : 2.6. path-tracking routines
| |-- Sweep : 2.7. sweeping for singularities
| |-- Continuation : 2.8. drivers and data management
|-- Root_Counts : 3. root counts and homotopy construction
| |-- Product : 3.1. linear-product start systems
| |-- Binomials : 3.2. solvers for binomial and simplicial systems
| |-- Implift : 3.3. implicit lifting
| |-- Stalift : 3.4. static lifting
| |-- Dynlift : 3.5. dynamic lifting
| |-- Symmetry : 3.6. exploitation of symmetry relations
| |-- MixedVol : 3.7. translation of ACM TOMS Algorithm 846
| |-- DEMiCs : 3.8. interface to the DEMiCs program

(continues on next page)
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| |-- Puiseux : 3.9. Puiseux series for curves
|-- Schubert : 4. numerical Schubert calculus
| |-- SAGBI : 4.1. SAGBI homotopies
| |-- Pieri : 4.2. deformations based on Pieri's rule
| |-- Induction : 4.3. Schubert induction
|-- Components : 5. numerical irreducible decomposition
| |-- Samplers : 5.1. computing witness points
| |-- Interpolators : 5.2. finding equations for components
| |-- Factorization : 5.3. factorization into irreducible components
| |-- Decomposition : 5.4. sequence of homotopies to filter and factor
| |-- Solver : 5.5. incremental equation by equation solver
| |-- Tropical : 5.6. tropical view on witness sets
|-- CtoPHC : 6. interface from C to phc
| |-- Types : 6.1. C types equivalent to Ada
| |-- Structures : 6.2. system and solution wrappers
| |-- Funky : 6.3. functional interface, C -> Ada -> C
| |-- State : 6.4. state machine gateway, C <-> Ada
|-- PHCtoC : 7. GPU acceleration via a C interface
|-- Tasking : 8. multitasking
|-- Main : 9. the main programs

Every directory contains a collection of test procedures. The following sections describe the functionality defined in
each of the directories. Then the subdirectories are described in separate sections.

4.2.1 System: OS Dependencies such as Timing

The System directory defines operations that may have different definitions on different operation systems. One such
operation is to compute the elapsed CPU time of a computation. The timer for Ada on Unix like operation systems
was originally developed by Dave Emory of the MITRE corporation. Not everything in this timing package could be
mapped to Windows, in particular the resource usage report for Unix. While the interface of the timing package is the
same for all operating systems, the implementation differs for Windows

When multithreaded runs on multicore processors, the elapsed CPU time is most often not a good time measurement
and one comes interested in the wall clock time. The end of the output contains the start and end date of the computation.
With the Ada.Calendar, the time stamping is defined in a portable, operating system independent manner.

The directory system contains several very useful utilities, such as procedures to prompt the user for a yes or no answer,
or for a selection between various alternatives. While restricting the user selection, the prompting procedures allow to
retry in case of type errors. Similar user friendly guards are defined when the user gives the name of an existing file for
output. Before overwriting the existing file, the user is prompted to confirm. When reading a file, the user is allowed
to retry in case the given name of the file does not match an existing file.

The handling of the command line options is also defined in this directory. Thanks to the Ada.Command_Line, this
definition is operating system independent.

The package machines wraps some system calls. One such system call is to get the process identification number
(pid). This pid is used to seed the random number generators.
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4.2.2 The Mathematical Library

The mathematical library defines code that is not specific to polynomial homotopy continuation, but nevertheless nec-
essary. To make PHCpack self contained, the code does not require the installation of outside libraries. Although there
are eleven subdirectories, there are three main parts:

1. number representations, general multiprecision and quad doubles;

2. linear algebra with integers and floating-point numbers;

3. polynomials, polynomial functions, series, and Newton polytopes.

The input to a polynomial system solver is a list of polynomials in several variables. This input consists of exact data,
such as the integer exponents in the monomials, and approximate data, such as the floating-point coefficients of the
monomials. Solving a polynomial system with homotopy continuation is therefore always a hybrid computation, in-
volving exact and approximate data. While the machine arithmetic may still suffice for many applications, the increasing
available computational power has led to the formulation of large problems for which software defined multiprecision
arithmetic is required. The linear algebra operations are defined over exact number rings and over arbitrary precision
floating-point numbers.

The next subsections contain more detailed descriptions of each subdirectory of the mathematical library. The following
three paragraphs briefly summarize the eleven subdirectories in the three main parts.

The number representations are defined in the subdirectory Numbers and the QD library of Y. Hida, X. S. Li, and D.
H. Bailey is integrated in the subdirectory QD. Code generated by the CAMPARY software of M. Joldes, J.-M. Muller,
V. Popescu, and W. Tucker support triple, penta, octo, deca, and hexa double arithmetic.

The linear algebra data structures are defined in the subdirectories Vectors and Matrices. The Divisors subdi-
rectory relies on the greatest common divisor algorithm to define the Hermite and Smith normal forms to solve linear
systems over the integer numbers. The linear system solvers of numerical linear algebra are provided in the subdirectory
Reduction.

The third main part of the mathematical library consists in the remaining five of the eleven subdirectories. Multivariate
polynomials over various number rings in the subdirectory Polynomials. The subdirectory Functions contains
definitions of nested Horner schemes to efficiently evaluate dense polynomials. The support of a polynomial is the set
of exponents of the monomials which appear with nonzero coefficients. Basic linear programming and tools to work
with polytopes are provided in the subdirectory Supports. The subdirectory Circuits defines arithmetic circuits
to evaluate and differentiate polynomials via the reverse mode of algorithmic differentiation. A better algorithmic
differentiation library is in the subdirectory AD, modeled after the Path library of Xiangcheng Yu. Truncated power
series define a field (that is: dividing two series gives again a series) and the arithmetic to manipulate power series is
exported by the packages in the subdirectory Series.

4.2.3 Deforming Polynomial Systems

A homotopy is a family of polynomial systems defined by one parameter. The parameter may be introduced in an
artificial manner, such as the parameter 𝑡 in the classical homotopy

ℎ(x, 𝑡) = (1− 𝑡)𝑔(x) + 𝑡𝑓(x) = 0.

The homotopy ℎ(x, 𝑡) connects the system 𝑔(x) = 0 (the so-called start system) to the system 𝑓(x) = 0 (the so-called
target system), as ℎ(x, 0) = 𝑔(x) and ℎ(x, 1) = 𝑓(x). The solutions x(𝑡) to the homotopy are solution paths, starting
at 𝑡 = 0 at the solutions of the start system and ended at 𝑡 = 1 at the solutions of the target system.

The code was developed mainly for constructing artificial-parameter homotopies, but there is some still limited sup-
port for polynomial homotopies with natural parameters. Artificial-parameter homotopies can be constructed so that
singular solutions occur only at the end of the paths. For natural-parameter homotopies, the detection and accurate
computation of singularities along the paths becomes an important topic.
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There are eight subdirectories in the Deformations directory. The subdirectories Solutions and Homotopies pro-
vide the data structures for the solutions on the paths defined by the polynomial homotopies. Newton’s method and
deflation are implemented in the subdirectory Newton. In Curves are the extrapolation methods for the predictors
in the path trackers. Extrapolation for winding numbers is coded in the subdirectory End_Games. Path trackers for
artificial-parameter homotopies are available in the Trackers subdirectory. In Sweep arc length parameter continu-
ation is implemented for sweeping solution paths for singularities. Finally, the subdirectory Continuation contains
the data management and driver procedures.

Observe that in the layered organization of the source code, the Deformations directory is placed before the
Root_Counts directory, where the start systems are defined. This organization implies that the path trackers are
written independently from the constructors for the polynomial homotopies.

4.2.4 Homotopy Construction via Root Counting Methods

At first, it seems counter intuitive to construct a polynomial homotopy to solve an unknown system by counting its
roots. But consider the degeneration of two planar quadrics into lines. Each quadric degenerates to a pair of lines. How
many solutions could we get intersection two pairs of lines in general position? Indeed, four, computed as two by two.
Observe that in this simple argument we have no information about the particular representation of the quadrics. To
get to this root count, we assumed only that the lines after degeneration were generic enough and the count involved
only the degrees of the polynomials.

Of critical importance for the performance of a polynomial homotopy is the accuracy of the root count. If the root
count is a too large upper bound for the number of solutions of the system that will be solved, then too many solution
paths will diverge to infinity, representing a very wasteful computation.

We can construct homotopies based on the degree information alone or rely on the Newton polytopes. Sparse polyno-
mial systems are systems where relatively few monomials appear with nonzero coefficient, relative to the degrees of
the polynomials in the system. For sparse system, the information of the Newton polytopes provides a much sharper
root count than the ones provided by the degrees.

There are nine subdirecties in the Root_Counts directory. Total degree and linear-product start systems are constructed
in the subdirectory Product. The subdirectory Binomials provides solvers for the sparsest polynomial systems.
The subdirectories Implift, Stalift, and Dynlift implement polyhedral homotopies, respectively with implicit,
static, and dynamic lifting methods. In MixedVol is an adaptation of a fast mixed volume calculator. The code in
the folder DEMiCs applies dynamic enumeration to compute mixed cells. Code to exploit permutation symmetry is
in the subdirectory Symmetry. A generalization of the Newton-Puiseux algorithm is implemented in the subdirectory
Puiseux.

4.2.5 Numerical Schubert Calculus

The classical problem in Schubert calculus asks for the number of lines which meet four given general lines in 3-
space. With polynomial homotopies, we not only count, but also compute the actual number of solutions to a Schubert
problem.

The problem of four lines is a special case of a Pieri problem: compute all p-planes which meet 𝑚× 𝑝 given m-planes
in a space of dimension 𝑚 + 𝑝. If the given m-planes are sufficiently generic, then all solution p-planes are isolated
and finite in number. Pieri homotopies solve the output pole placement problem in linear systems control.

There are three subdirectories to the Schubert directory, each exporting a different type of homotopy to solve Schubert
problems. The subdirectory SAGBI applies the concept of subalgebra analog to Groebner basis for ideals with polyhe-
dral homotopies to solve Pieri problems. Pieri homotopies are defined in the subdirectory Pieri. The subdirectory
Induction implements a geometric Littlewood-Richardson rule to solve general Schubert problems.
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4.2.6 Numerical Irreducible Decomposition

Two important characteristics of a pure dimensional solution set of a polynomial system are its dimension and its degree.
The dimension of a solution set equals the number of general linear equations we need to add to the polynomial system
so the intersection of the solution set of the system with the hyperplanes consists of isolated points. The degree of a
solution set then equals the number of isolated points we find after intersecting the solution set with as many general
hyperplanes as the dimension of the set. These two characteristics are encoded in the witness set representation of a
pure dimensional solution set. Given a polynomial system, a numerical irreducible decomposition of its solution set
provides a witness set for each irreducible components, over all dimensions.

The decomposition can be computed in a top down fashion, with cascades of homotopies, starting a the top dimension.
The bottom up computation applies diagonal homotopies. Systems can be solved equation-by-equation or subsystem-
by-subsystem.

Three types of factorization methods are implemented. Interpolation with multivariate polynomials of increasing de-
grees is a local procedure. The second method runs monodromy loops to connect generic points on the same irreducible
component, using the linear trace test as stop criterion. Thirdly, we can apply the linear trace test combinatorially, which
often works very well for components of modest degrees.

The are six subdirectories of the Components directory. The Samplers subdirectory contains the definitions of the
data structures to store witness sets. The multivariate interpolation algorithms are implemented in the Interpolators
subdirectory. The subdirectory Factorization provides monodromy factorization and the linear trace test. Cascades
of homotopies and diagonal homotopies are implemented in the subdirectory Decomposition. The Solver sub-
directory provides an equation-by-equation solver. Finally, the Tropical subdirectory offers code to generalize the
polyhedral homotopies from isolated solutions to the computation of representations of positive dimensional solution
sets.

4.2.7 Calling Ada Code From C

The directory CtoPHC has two subdirectories, Funky and State, which define two different types of interfacing the Ada
code with C. The first type is a functional interface, the second type is an interface which operates as a state machine.
The first folder Types in CtoPHC defines the equivalenties between the basic array types in C and in Ada.

In a functional interface, the main C program calls an Ada function, which then calls a C function to process the results
computed by the Ada function. This interface was developed for the application of the Pieri homotopies to compute
output feedback laws for linear systems control. This type of interface is direct and efficient. Its main application is in
the Feedback folder which defines C functions to compute realizations of the computed feedback laws.

The goal of the state interface in the subdirectory State is to export all functionality of the Ada code to the C (and
C++) programmer. The subdirectory State contains the definition of the use_c2phc function, which defines more
than 700 jobs. The implementation of this function relies on various container packages which hold the persistent
objects, mainly polynomial systems and solution lists. Those container types are defined in the folder Structures
intended to give the C programming access to the main data structures.

If the main program is not an Ada procedure, but a C function, then adainit and adafinal must be called by the C
code, respectively at the beginning and at the end of the computations. The code for adainit is generated by the binder,
by gnatbind, which is executed before the linking. If the linking happens with the linker of the gnu-ada compiler, the
gnatlink (as is the default), then gnatlink compiles the output of gnatbind. Otherwise, if the linking is done by
another C compiler, we must explicitly compile the output of the binder, so the object code for the adainit can be
linked as well. These observations are important in building a shared object with statically compiled Ada code. The
shared object can then be used on systems where the gnu-ada compiler is not installed. The makefile_unix in the
Objects directory contains the precise compilation instructions for Linux systems.
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4.2.8 Calling C Code From Ada

The directory PHCtoC was set up to call the GPU code via a C interface. In its current state it defines the wrappers to
call the accelerated path trackers with algorithmic differentiation. Its main goal is to define the extension modules for
calling the accelerated path trackers from the Python package phcpy.

As a startup, to test the feasibility, the directory contains test code to compute the norm of a vector of numbers by C
code.

function normC ( n : integer32; -- n is the dimension
x : C_Double_Array; -- contains 2*n doubles
y : C_Double_Array ) -- on return is y(0)

return integer32;
pragma import(C, normC, "cpu2norm_d_in_c");

The function normC can be used as an Ada function. The connection with C is defined by the pragma import where
cpu2norm_d_in_c is the name of the file which contains the definition of the C code of the C function. The type
C_Double_Array is defined in the State subdirectory of the CtoPHC directory.

4.2.9 Multitasking

The Ada tasking mechanisms allows to define shared memory parallel programs at a high level. Tasks in Ada are
mapped to kernel threads. There are two main applications defined in the Tasking directory.

Given a queue of path tracking jobs, the tasks are arranged in a work crew model to execute all jobs. Dynamic load
balancing is achieved as tasks, when done with their current job, grab the next job from the queue. Synchronization
overhead is minimal, as only the movement of the current pointer in the job queue happens in a critical section. This
parallel work crew path tracking scheme is implemented for regular homotopies and polyhedral homotopies.

Another application of multitasking is pipelining. Polyhedral homotopies start at initial form systems computed by the
mixed cells. For large polynomial systems, the computation of the mixed volume could be a bottleneck for the parallel
execution. A pipelined multitasked implementation of the polyhedral homotopies combines the tracking of all paths
with the mixed cell computation as follows. One task computes the mixed cells and appends the mixed cells to the job
queue. Other tasks take the mixed cells as the jobs to solve the random coefficient system. As soon as one mixed cells
is available in the queue, the path tracking can start.

4.2.10 The Main Program

The directory Main contains the main program, called dispatch because its main function is to dispatch the options
given at the command line to the specific procedures.

The code for the blackbox solver (invoked by phc -b) is defined by the packages black_box_solvers and
black_box_root_counters.

A very specific solver is defined by the file use_phc.adb, mainly as an example how the code could be customized for
one particular application. The code is below:

with text_io; use text_io;
with Standard_Natural_Numbers; use Standard_Natural_Numbers;
with Standard_Complex_Poly_Systems; use Standard_Complex_Poly_Systems;
with Standard_Complex_Poly_Systems_io; use Standard_Complex_Poly_Systems_io;
with Standard_Complex_Solutions; use Standard_Complex_Solutions;
with PHCpack;

(continues on next page)
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(continued from previous page)

procedure use_phc is

infile,outfile : file_type; -- input and output file
p,q : Link_to_Poly_Sys; -- target and start system
mixed_volume : natural32; -- root count is mixed volume
sols : Solution_List; -- list of solutions

begin
Open(infile,in_file,"test.in");
get(infile,p);
Create(outfile,out_file,"test.out");
put(outfile,p.all);
q := new Poly_Sys(p'range);
PHCpack.Static_Lifting(outfile,p.all,mixed_volume,q.all,sols);
PHCpack.Artificial_Parameter_Continuation(outfile,p.all,q.all,sols);
PHCpack.Refine_Roots(outfile,p.all,sols);

end use_phc;

A more typical application calls the blackbox solver, as done in the procedure blackbox.adb (from the manual folder),
listed below:

with text_io; use text_io;
with Standard_Natural_Numbers; use Standard_Natural_Numbers;
with Standard_Natural_Numbers_io; use Standard_Natural_Numbers_io;
with Greeting_Banners;
with Standard_Complex_Laur_Systems;
with Standard_Complex_Laur_Systems_io;
with Standard_Complex_Laur_Strings;
with Standard_Complex_Solutions;
with Standard_Complex_Solutions_io;
with Black_Box_Solvers;

procedure blackbox is

-- DESCRIPTION :
-- Illustrates a basic application of the blackbox solver,
-- on a Laurent polynomial system.

procedure Main is

-- DESCRIPTION :
-- Solves a Laurent polynomial system given as a string.

s : constant string := "x*y + 2*x + 3; x^2 + y^(-2) + 4;";
p : constant Standard_Complex_Laur_Systems.Laur_Sys
:= Standard_Complex_Laur_Strings.Parse(2,2,s);

silent : constant boolean := false;
rc : natural32;
sols : Standard_Complex_Solutions.Solution_List;

begin
put_line(Greeting_Banners.welcome);

(continues on next page)
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put_line("An example polynomial system :");
Standard_Complex_Laur_Systems_io.put(p);
Black_Box_Solvers.Solve(p, silent, rc, sols);
put("The root count : "); put(rc,1); new_line;
put_line("The solutions :");
Standard_Complex_Solutions_io.write(standard_output,sols);

end Main;

begin
Main;

end blackbox;

The program confirms the polynomial system, displays the mixed volume as the root count and then lists all four
solutions of the system.

4.3 Numbers, Linear Algebra, Polynomials and Polytopes

In this section we take a closer look at the Math_Lib directory, which defines the basic mathematical data structures
and operations.

4.3.1 Numbers

The machine numbers are divided in two categories: integer and float. For the integer types, we distinguish between
the 32-bit and 64-bit versions, between natural and integer numbers. The following types are defined: natural32,
natural64, integer32, and integer64. For the float types, we have single precision and double precision, de-
fined respectively as single_float and double_float. The renaming of the hardware number types ensures the
independence of pre-defined number types.

For polynomial system solving, our default field is the field of complex numbers. The real and imaginary part of a
complex number are floating-point coefficients. The homotopy algorithms depend on the choice of random constants.
Random number generators are defined. The default seed for the random number generators is the process identification
number. For reproducible runs, the user can set the seed to a fixed number.

Multiprecision numbers are implemented as arrays of machine integers. Elementary school algorithms defined the
arithmetic. The implementation of the floating-point multiprecision numbers is directly based on the multiprecision
integer numbers, for the fraction and the exponent part of the multiprecision float. The precision of each multiprecision
number can be adjusted when needed, which is an advantage. Mixed-precision arithmetical operations are supported.
The disadvantage imposed by this flexibility is the frequent memory allocation and deallocation, which makes this type
of arbitrary multiprecision arithmetic unsuitable for shared memory parallelism.

The directory Numbers contains definitions of abstract rings, domains, and fields. These abstract classes are useful to
define composite generic types. Multiprecision complex numbers are defined via the instantiation of a generic complex
numbers package.
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4.3.2 Multiple Double Arithmetic

The directory QD provides the double double and quad double arithmetic, based on the QDlib package of Y. Hida, X.
S. Li, and D. H. Bailey.

Compared to arbitrary multiprecision arithmetic, double double and quad double numbers exploit the floating-point
hardware and have a simple memory management. While arbitrary multiprecision numbers are allocated via the heap,
the two doubles of a double double and the four doubles of a quad double use the stack. Thus the QD library is very
well suited for shared memory parallelism. Another advantage is the predictable cost overhead. Working with double
doubles has a similar cost overhead as working with complex numbers. Computations with double doubles are about
five to eight times slower compared to computations in double precision. With quad doubles, computations that took
seconds in double precision can turn into minutes.

The code in QDlib was hand translated into Ada. The directory contains the original C versions for comparison and
verification of correctness.

Code generated by the CAMPARY software of M. Joldes, J.-M. Muller, V. Popescu, and W. Tucker support triple, penta,
octo, deca, and hexa double arithmetic. The output of running the test program ts_errfree is below:

Computing the 2-norm of a vector of dimension 64
of random complex numbers on the unit circle equals 8.
Observe the second double of the multiple double 2-norm.

double double : 8.00000000000000E+00 - 5.50815964094749E-32
triple double : 8.00000000000000E+00 - 5.98699295060652E-49
quad double : 8.00000000000000E+00 + 2.68546525309769E-65
penta double : 8.00000000000000E+00 + 2.50428676727620E-81
octo double : 8.00000000000000E+00 - 6.27215893652071E-129
deca double : 8.00000000000000E+00 - 3.92388008492169E-161
hexa double : 8.00000000000000E+00 - 1.17947092065881E-257

When the result can be represented exactly by a double (as is the case of 8), then the second double in the result
represents the error of the calculation, which for the example above represents the precision of the multiple double
arithmetic. The procedure errorfree in the manual folder does the same as the test program ts_errfree.

4.3.3 Vectors and Matrices

The directories Vectors and Matrices contain the definitions of respectively all vector and matrix types. In both
directories, generic packages are defined, which allow to specify the ring of numbers (natural32, integer32, natural64,
integer64) or the number fields (double, double double, quad double, or arbitrary multiprecision). Input and output for
all types is provided.

Although both Vectors and Matrices are basic data structures, random number generators are provided, to generate
vectors and matrices of random numbers. The test procedures check the basic arithmetical operations.

The directory Vectors defines vectors of vectors and vectors of matrices are defined in the directory Matrices.
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4.3.4 Linear Systems with Integer Coefficients

The problem considered in the directory Divisors is the manipulation of matrices with integer coefficients.

With the greatest common divisor we can define unimodular coordinate transformations to compute an upper triangular
form of a matrix with integer coefficients. Such form is call the Hermite normal form. The diagonalization process
results in the Smith normal form.

Even if the input matrices have small integer coefficients, the size of the integers in the unimodular coordinate trans-
formations can outgrow the size of the hardware integers. Therefore, multiprecision versions of the normal forms are
provided.

This integer linear algebra is applied in the computation of the volumes of the mixed cells of subdivisions of Newton
polytopes.

4.3.5 Linear Systems with Floating-Point Coefficients

The directory Reduction contains several matrix factorizations as common in numerical linear algebra.

The LU factorization is based on the lufac, lufco, and lusolve of the F77 LINPACK libary. The Fortran77 code
was translated into Ada and extended with versions for double double, quad double, and arbitrary multiprecision; both
for real and complex number types.

To solve overdetermined linear systems in the least squares sense, packages are provided for the QR decomposition.
Also the Singular Value Decomposition (SVD) is implemented, for all precisions, and for real and complex number
types.

To implement a variable precision Newton’s method, there are variable precision linear system solvers. Given the
desired accuracy, the variable precision linear system solver sets the working precision based on a condition number
estimate.

4.3.6 Polynomials in Several Variables

Multivariable polynomials and polynomial systems are defined in the directory Polynomials. In addition to ordi-
nary polynomials, polynomials with integer exponents, so-called Laurent polynomials, are defined as well. In solving
Laurent polynomials, solutions with zero coordinates are excluded.

There are packages to read and parse polynomials in symbolic form, from the standard input, from a file, and from
a string. Also the writing of polynomials works for standard output, to file, or to string. The parsing from strings is
especially important in connection with the use of multiprecision arithmetic. An innocently looking constant such as
0.1 has no exact binary representation and will have a nonzero representation error, dependent on the working precision
with which it was evaluated. The input system given by the user is stored in its string representation. When later in the
program, the user wants to increase the working precision, all mathematical constants are evaluated anew in the higher
working precision. Numerical algorithms solve nearby problems not exact ones. Increasing the working precision may
increase only the distance to the exact input problem.

The symbolic form of a polynomial system makes the program user friendly. For some applications, a flat representation
of a polynomial into a tuple of coefficients and exponents is a more convenient data structure, both for internal and
external use, for a more direct interface. In addition to the symbolic format, code is available to represent a polynomial
system in a tableau format. For example,

2
3
1.00000000000000E+00 0.00000000000000E+00 2 0
4.00000000000000E+00 0.00000000000000E+00 0 2
-4.00000000000000E+00 0.00000000000000E+00 0 0

(continues on next page)
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2
2.00000000000000E+00 0.00000000000000E+00 0 2
-1.00000000000000E+00 0.00000000000000E+00 1 0

is the tableau format of the system, in symbolic format:

2
x**2 + 4*y**2 - 4;

2*y**2 - x;

where the variables are represented by the symbols x and y. In the tableau format, the term 4*y**2 is represented by

4.00000000000000E+00 0.00000000000000E+00 0 2

where the coefficient appears first as a complex number, as a sequence of two doubles, its real and imaginary part. The
monomial y**2 is represented as 0 2 as the y is the second variable which appeared in the symbolic format of the
system and 2 is its exponent.

4.3.7 Nested Horner Forms for Evaluation

Because the evaluation and differentiation of polynomials can be just as expensive as solving a linear system in the
application of Newton’s method, the distributed list of terms in a polynomial is converted into a nested Horner form,
for efficient evaluation. The directory Functions provides specific data structures to construct and evaluate the nested
Horner forms.

For polynomial systems of low degrees and dimensions, the change in data structure from a linked list of terms into
a recursive array structure yields significant improvements on the memory access, in addition to the saved multiplica-
tions. For larger polynomial systems, methods of algorithmic differentiation are required, as provided in the directory
Circuits.

4.3.8 Support Sets and Linear Programming

Given a list of vectors with integer coefficients, via linear programming we can extract from the list those points which
are vertex points of the polytope spanned by the points in the list. Another application of linear programming is the
computation of all k-dimensional faces of the polytope. The directory Supports provides the primitive operations for
the volume computations in the polyhedral root counts.

4.3.9 Circuits for Algorithmic Differentiation

The directory Circuits contains implementations of the algorithms which evaluate and differentiate polynomials in
several variables using the reverse mode of algorithmic differentiation.

The current state of the code in this directory is still experimental, mostly geared towards algorithmic correctness rather
than performance. An efficient implementation is available in the GPU part of the source code.
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4.3.10 AD: Algorithmic Differentiation of the Path Library

The code in this directory is based on the reference code on the host of the GPU library Path, developed by Xiangcheng
Yu.

The evaluation of monomials, vectors of monomials, and vectors of polynomials works over any ring. For higher degree
powers, the evaluated table of powers is cached and shared as a common factor among all derivatives.

The generic code (defined over any ring) is instantiated for complex numbers in double, double double, and quad double
precision.

4.3.11 Truncated Power Series

Similar to Taylor series approximations for general functions, we can approximate roots of polynomials in a parameter
by series. The directory Series defines truncated power series with complex numbers as coefficients. Composite
types are vectors, matrices, and polynomials where the coefficients are series.

The division of two truncated power series is computed via the solution of a triangular linear system. So we can have
a field and we can solve linear systems over this field of truncated power series. However to work efficiently, instead
of working with vectors and matrices of power series, we apply linearization and consider series where the coefficients
are vectors and matrices.

The directory exports packages to solve linear systems where the coefficient matrix is a power series of matrix coeffi-
cients. We can solve such linear systems with LU factorization, or for overdetermined problems we solve in the least
squares sense, either with a QR or an SVD decomposition. To solve Hermite-Laurent interpolation problems, a lower
triangular echelon form is provided.

The directory Laurent contains code to work with series that have a leading terms with negative or positive exponents.

4.4 Homotopies, Newton’s Method, and Path Trackers

The directory Deformations provides data structures for solutions and polynomial homotopies. Newton’s method
serves as a corrector in the path trackers and has been modified by deflation to compute isolated singularities. Predictors
are defined in the Curves subdirectory and polyhedral end games are provided in the subdirectory End_Games. Path
trackers for solutions defined by artificial-parameter homotopies and natural-parameters are provided respectively in
the subdirectories Trackers and Sweep.

4.4.1 Solutions of Systems and Homotopies

The second most important data structures, after the polynomials, are the data structures to represent solutions of
polynomial systems. There are three parts in the library.

1. The data structure for solutions are defined for double, double double, quad double, and general arbitrary mul-
tiprecision. The reading and writing of the solutions makes use of the symbol table, so the coordinates of the
solutions are connected to the symbols used to represent the variables in the system. The input and output is
implemented for the standard input and output, for files, and for strings.

2. The directory contains functions to filter solutions subject to certain given criteria. For example, one such crite-
rion is whether the solution is real or not. To process huge lists of solutions, in particular to check whether all
solutions are distinct from each other, a double hash function on a solution list fills a quad tree.

3. To export solutions to other programs, format conversions are implemented, in particular for Maple and Python.
For the computer algebra system Maple, a solution is represented as a list of equations. For the scripting language
Python, a solution is formatted into Python’s dictionary data structure.
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Conversions between solutions in various levels of precision are available for the variable precision Newton’s method.

4.4.2 Polynomial Homotopies

The Homotopy directory provides packages to define polynomial homotopies in double, double double, quad double,
and arbitrary multiprecision. These homotopy packages encapsulate the efficient evaluation data structures.

Stable mixed volumes allow to count the solutions with zero coordinates separately from the other solutions. For the
separate computation of the solutions with zero coordinates, as defined by the zero type of the stable mixed cells,
special, so-called stable homotopies are implemented. In these homotopies, the variables which correspond to zero
coordinates are removed so solutions with zero coordinates are thus computed more efficiently than the solution with
all their coordinates different from zero.

This directory also provides methods to scale the coefficients of polynomial systems via an optimization problem to
recenter the magnitudes of the coefficients. Another preconditioner is the reduction of the degrees of the polynomial
via linear row reduction and selective replacement with S-polynomials.

The blackbox solver recognizes linear systems as a particular case. Packages to check whether a given polynomial
system is linear and then to call a linear solver are provided in this directory.

4.4.3 Newton’s Method and Deflation for Isolated Singularities

The directory Newton has its focus on the implementation of Newton’s method and the modification to locate isolated
singularities accurately with deflation.

Newton’s method is applied as the corrector in the path trackers and to verify and refine solutions at the end of the
path tracking. The method is available in double, double double, quad double, and arbitrary multiprecision. The
variable precision Newton’s method estimates the condition number of the polynomial evaluation problem and the
condition number of the Jacobian matrix, both at the current approximation of the solution, to set the precision in order
to guarantee the desired number of correct decimal places in the answer.

To restore the quadratic convergence of Newton’s method in case the Jacobian matrix is no longer of full rank, the
deflation operator appends random combinations of the derivatives recursively, until the extended Jacobian matrix
becomes of full rank. The rank is computed using the singular value decomposition. Derivatives are computed in an
efficient hierarchy encoded in a tree data structure.

4.4.4 Curves, Univariate Solvers, and Newton for Power Series

The directory Curves contains an implementation of the method of Weierstrass (also called the Durand-Kerner method)
to compute all roots of a polynomial in one variable. A polynomial in one variable is another special case of the blackbox
system solver.

Divided differences are computed to extrapolate the solutions for the predictors. The higher order extrapolating predic-
tors are available in double, double double, quad double, and arbitrary multiprecision. Univariate polynomial solvers
are used to sample plane algebraic curves and to test the higher-order extrapolators.

The directory provides packages to run Newton’s method to compute series solutions of polynomial homotopies, both
in the basic version with operator overloading and the more efficient version with linearization. The power series are
the input to the methods to compute Padé approximants for the algebraic curves. The Padé approximants in turn lead
to more accurate predictors and path trackers, exported by phc -u.

The distinction should be made between

• apriori step size control; and

• aposteriori step size control.
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The aposteriori step size control adjusts the step size based on the convergence of Newton’s method, used as the correc-
tor. The apriori step size control applies the ratio theorem of Fabry to detect the nearest singularity and a criterion based
on the curvature of the paths to estimate the distance to the nearest solution path; combined with Padé approximants to
predict the next point on the solution path.

4.4.5 Polyhedral End Games

Deciding whether a solution path diverges to infinity is a critical decision. Solutions with coordinates of large magnitude
are difficult to distinguish from solutions at infinity.

The directory End_Games contains code for a polyhedral end game, implementing Bernshtein second theorem: if there
are fewer solutions than the mixed volume, then there are solutions of initial form systems, supported on faces of the
Newton polynomials of the given system.

In a polyhedral end game, the direction of the diverging path gives the inner normal which defines the initial form
system that has a solution with all its coordinates different from zero. What complicates the computation of this inner
normal is the presence of winding numbers larger than one. If the step size is decreased in a geometric rate, then the
winding number can be computed with extrapolation. The certificate for a diverging path consists of the inner normal
which defines an initial form system where every equation has at least two monomials with a nonzero coefficient. In
addition, the end point of the diverging path is (after a proper unimodular coordinate transformation) a solution of the
initial form system.

The polyhedral end games are implemented in double, double double, and quad double precision.

Recent developments apply extrapolation methods on Taylor series developments of solution curves defined by poly-
nomial homotopies. Therefore, in a future release, this folder may be renamed into Extrapolators to make the
distinction between the historical notion of end games.

4.4.6 Path Trackers for Artificial-Parameter Homotopies

In an artificial-parameter homotopy, singular solutions can only occur at the end of the solution paths. There are two
different parts in the directory Trackers, corresponding to the different ways to run a path tracker, depending on the
level of control.

In the first, most conventional way of running a path tracker, the procedure which implements the path tracker gets called
with data and various execution parameters. Then the procedure takes control of the execution thread and control is
only returned when the end of the solution path has been reached. This first way is available in double, double double,
and quad double precsion. The application of the QR decomposition in the corrector leads to the capability of tracking
paths defined by overdetermined polynomial homotopies.

In the second way of running a path tracker, the path tracker is initialized with a start solution and some initial settings
of the execution parameters. The procedure that calls the path tracker wants only the next point on the path and the
path tracker is then restarted when another next point is needed. This type of path tracker is particularly useful in a
scripting environment when the user wants to visualize the results of the path tracker and the responsibility for the
memory management of all data along a solution path is the responsibility of the calling procedure, not of the path
tracker.

A preliminary prototype of a variable precision path tracker has been implemented. Depending on the condition num-
bers of the evaluation and the Jacobian matrix, the precision is adjusted to ensure a desired number of correct decimal
places.
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4.4.7 Sweeping for Singularities

In a natural parameter homotopy, singular points along the solution paths are expected to occur. A path tracker for a
natural parameter homotopy has two tasks: the detection and the accurate location of singular solutions. The directory
Sweep provides packages to compute accurately quadratic turning points and to search for general singularities along
a solution path, in double, double double, and quad double precision.

If one is only interested in the real solutions, then tracking the solution paths in real instead of complex arithmetic can
go about five times faster. One has to tracker fewer paths, as the paths with nonzero imaginary coordinates appear in
pairs, thus it suffices to track only one path in the complex conjugated pair. For sufficiently generic real coefficients,
the only type of singular solutions that may occur are quadratic turning points. A quadratic turning point is where a
real path turns back in the direction of an increasing continuation parameter. At a quadratic turning point, the real path
touches the complex conjugated pair of paths where their imaginary parts become zero. If one forces the continuation
parameter to increase, then the real path turns complex or vice versa, a complex path turns real. Quadratic turning
points can be computed efficiently via an arc-length parameter continuation and the application of a shooting method
when the orientation of the tangent vector flips.

The detection and accurate location of general types of singular solutions is much more difficult. If the sign of the
determinant of the Jacobian matrix flips, then we passed a singularity. But the determinant of the Jacobian matrix may
remain of the same sign before and after passing through a singular solution. The criterion implemented monitors the
concavity of the determinant of the Jacobian matrix. If the value of the determinant increases in magnitude after a
decrease, then we may have missed a singular solution and we turn back with a finer granularity, in an attempt to locate
the singularity.

4.4.8 Polynomial Continuation

The directory Continuation provides data structure and data management procedures to organize the application of
path trackers to the solution paths defined by a polynomial homotopy.

The interactive tuning of the settings and tolerances for the path trackers are defined in this folder. Several different
levels of the amount of output information during the path trackers are possible, going from nothing to all data.

4.5 Root Counts and Start Systems

An important feature of the code is the automatic construction of a good start system in an artificial-parameter homotopy.
For a start system to be good, it needs to resemble as much as possible the structure of the target system.

For generic polynomial systems, where the coefficients are sufficiently generic, the mixed volume of the Newton poly-
topes offers an exact count on the number of isolated solutions, where all coordinates are nonzero.

4.5.1 Linear-Product Start Systems

The directory Product contains packages to construct start systems based on the degree structure of a polynomial
system. There are two main categories of start systems.

1. Total degree start systems. The classical theorem of Bézout that the product of the degrees of the polynomials
in the system gives an upper bound on the number of isolated solutions. A total degree start system consists of a
decoupled system, where the k-th polynomial equation in the start system equals 𝑥𝑑𝑘

𝑘 − 𝑐𝑘 = 0, where 𝑑𝑘 is the
degree of the k-th polynomial in the target system and where 𝑐𝑘 is some random nonzero complex coefficient.

2. Linear-product start systems. Every polynomial in a linear-product start system is a product of linear polynomials
with random coefficients. Which variables appear with a nonzero coefficient in the linear polynomials is deter-
mined in three ways. The first way is one single partition of the set of unknowns. In the second way, a different
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partition may be used for each different polynomial in the system. For general linear-product start systems, the
structure of each polynomial is represented by a sequence of sets of variables. Every variable should appear in
as many sets in the sequence as its degree in the polynomial.

Lexicographic enumeration of the solutions of a start system is supported. By this enumeration, it is not necessary to
compute the entire solution set of a start system in memory, as one can ask for the computation of a particular start
solution.

The generalized Bézout bounds are a special case of the polyhedral root counts. In case the Newton polytopes can be
written as the sum of simplices, the generalized Bézout bound matches the mixed volume.

4.5.2 Binomials are Polynomials with Two Terms

The sparsest (Laurent) polynomial systems which allow solutions with all coordinates different from zero are systems
where the polynomials have exactly two monomials with a nonzero coefficient. We call such polynomials binomials
and systems of binomials are binomial systems. The computation of all solutions with nonzero coordinates happens
via a unimodular coordinate transformation. An extension of a binomial system is a simplicial system: the support of
a simplicial system is a simplex. The directory Binomials provides solvers for binomial and simplicial systems.

Binomial and simplicial systems are start systems in a polyhedral homotopy, induced by a generic lifting, where all
mixed cells in the regular subdivision are fine. A simplicial system is reduced to a binomial system via a diagonalization
of its coefficient matrix. Binomial systems are solved via a Hermite normal form on the matrix of exponent vectors.
Because the solution of binomial and simplicial systems does not involve any path tracking (just linear algebra), the
systems can be solved much faster and the blackbox solver treats such systems as a special case.

Even though as the exponents in the binomial systems might be small in size, the size of the coefficients in the uni-
modular coordinate transformations may result in relatively high exponents. This height of the exponents could lead
to overflow in the floating-point exponentiation of the partial results in the forward substitution. Therefore, for a nu-
merically stable solution of a binomial system, we separate the radii from the arguments in the right hand side constant
coefficients. This scaled solving prevents overflow.

Underdetermined binomial systems are rational: their positive dimensional solution set admits an explicit parameter
representation. Packages are defined to represent and manipulate monomial maps. Monomial maps define the leading
terms of a Puiseux series expansion of a positive dimensional solution set.

4.5.3 Implicit Lifting

The directory Implift contains the code for the original version of the polyhedral homotopies, as provided in the
constructive proof of D. N. Bernshtein’s paper. The polyhedral homotopies induced by an implicit lifting are based
on the following formula to compute the mixed volume of the Newton polytopes. Given a tuple of Newton polytopes
P = (𝑃1, 𝑃2, . . . , 𝑃𝑛), the mixed volume 𝑉𝑛(P) can be computed via the formula

𝑉𝑛(𝑃1, 𝑃2, . . . , 𝑃𝑛) =
∑︁

v ∈ Z𝑛

gcd(v) = 1

𝑝1(v) 𝑉𝑛−1(𝜕v𝑃2, . . . , 𝜕v𝑃𝑛),

where 𝑝1 is the support function for 𝑃1 and 𝑉1 is the length of a line segment. Vectors v are normalized so the
components of v have their greatest common divisor equal to one.

Functionality is provided to extract the vertex points from the support sets of the polynomials in the system. Polyhedral
homotopies may be combined with linear-product start systems: for some polynomials we use a linear-product structure
and for the remaining polynomials a random coefficient start system is solved.
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4.5.4 Static Lifting

The static lifting as implemented in the code in the directory Stalift is so named in contrast with dynamic lift-
ing. Static lifting applies before the mixed volume computation. Both integer valued and floating-point valued lifting
functions are supported.

One particular lifting leads to the computation of the stable mixed volume. While the mixed volume often excludes
solutions with zero coordinates, the stable mixed volume is an upper bound for all isolated solutions, also for solutions
with zero coordinates.

4.5.5 Dynamic Lifting

Volumes are monotone increasing in the size of the polytopes: the more vertices in a polytope, the larger the volume.
One way to build a triangulation of a polytopes is by placing the points one after the other. The next point can be
lifted sufficiently high so that the existing simplices in the triangulation remain invariant. Applied in connection with
a polyhedral homotopy, one can solve polynomial systems monomial by monomial.

Dynamic lifting is applied to compute a triangulation of the Cayley embedding, which leads to the Minkowski poly-
nomial. Given a tuple of polytopes (𝑃1, 𝑃2, . . . , 𝑃𝑛), Minkowski showed that the volume of the linear combination
𝜆1𝑃1+𝜆2𝑃2+ · · ·+𝜆𝑛𝑃𝑛 is a homogeneous polynomial of degree 𝑛 in the variables 𝜆1, 𝜆2, and 𝜆𝑛. The coefficients
of this homogeneous polynomial are mixed volumes of the polytopes in the tuple.

4.5.6 Exploitation of Permutation Symmetry

In a polynomial homotopy where every system, for every value of the parameter, has the same permutation symmetry,
it suffices to track only the generating solution paths. The directory Symmetry provides support to construct symmetric
start systems, given the generators of the permutation group.

4.5.7 MixedVol to Compute Mixed Volumes Fast

The directory MixedVol contains an Ada translation of the MixedVol algorithm, archived by ACM TOMS as Algorithm
846, developed by Tangan Gao, T. Y. Li and Mengnien Wu.

The C version of the code (written by Yan Zhuang) is contained for comparison and correctness verification.

The code is restricted for randomly generated lifting values.

4.5.8 DEMiCs applies dynamic enumeration to compute mixed cells

The code in the directory DEMiCs was developed by Tomohiko Mizutani, Akiko Takeda, and Masakazu Kojima. The
directory contains the original code with a basic interface and a second interface that calls the code modified with
callback functions.

The pace at which the mixed cells are computed is faster than MixedVol which is beneficial for pipelined polyhedral
homotopies.
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4.5.9 The Newton-Puiseux Method

The directory Puiseux contains an implementation of the Newton-Puiseux method to compute power series expansions
for all solution curves of a regular polynomial system. In this context, a polynomial system is regular if its coefficients
are sufficiently generic, so its initial form systems have no singular solutions.

The code in this directory applies the integer lifting applied to compute the mixed volume of a tuple of Newton poly-
topes. The key is to use as values of the lifting the powers of the variable of the parameter in the series. Newton’s
method on power series provides the series expansion for the solution curves.

4.6 Determinantal Systems and Schubert Problems

A Schubert problem gives rise to a so-called determinantal system, a system where the polynomials are obtained via
minor expansions of a matrix. That matrix then represents the intersection condition of a given plane with an unknown
plane. In a general Schubert problem we require that a k-dimensional plane intersects a sequence of spaces nontrivially
in particular dimensions.

The directory Schubert consists in three parts, described briefly in the sections below.

4.6.1 SAGBI Homotopies to Solve Pieri Problems

SAGBI stands for Subalgebra Analogue to Groebner Basis for Ideals. The directory SAGBI provides packages to define
SAGBI homotopies to compute all k-planes which meet as many as 𝑚 × 𝑝 general m-planes in a space of dimension
𝑚+𝑝. The SAGBI homotopies were applied to investigate a conjecture concerning particular input m-planes for which
all solution k-planes are real.

Packages are available to manipulate brackets. Brackets represent intersection conditions and encode selection of
columns in minor expansions. A particular application is the symbolic encoding of the Laplace expansion to compute
the determinant of a matrix. The straightening law for brackets leads to a Groebner basis for the Grassmannian. This
Groebner basis defines a flat deformation which defines the SAGBI homotopy. The start system in the SAGBI homotopy
is solved by a polynomial homotopy.

4.6.2 Pieri Homotopies

The directory Pieri offers a more generic solution to solve Pieri problems. Pieri homotopies are capable to solve
more general Pieri problems. For all these Pieri problems, there is a combinatorial root count which quickly gives the
number of solutions to a generic Pieri problem.

4.6.3 Littlewood-Richardson Homotopies

General Schubert problems can be solved by a geometric Littlewood-Richardson rule, as implemented by the code in
the directory Induction.

A general Schubert problem is given by a sequence of flags and a sequence of intersection conditions that must be
satisfied by the k-plane solutions of the Schubert problem. The geometric Littlewood-Richardson rule to count the
number of solutions is implemented by a checker board game. The stages in the game correspond to specific moves of
the solutions with respect to the moving flag.
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4.7 Positive Dimensional Solution Sets

This section describes the specific code to compute a numerical irreducible decomposition of a polynomial system.
The directory Components have six subdirectors, which are briefly described in the next sections.

4.7.1 Witness Sets, Extrinsic and Intrinsic Trackers

The subdirectory Samplers contains the definition of the data structures to represent positive dimensional solution
sets, the so-called witness set. A witness set contains the polynomial equations, as many random linear equations as
the dimension of the set, and as many generic points (which satisfy the original polynomial equations and the random
linear equations) as the degree of the solution set.

The extrinsic way to represent a witness set is formulated in the given equations, in the given variables. For a high
dimensional solution set, the number of equations and variables almost doubles. For example, for a hypersurface, a
solution set of dimension 𝑛− 1, the extrinsic representation requires 2𝑛− 1 equations and variables. This doubling of
the dimension leads to an overhead of a factor of eight on the linear algebra operations when computing new points on
the positive solution set.

The intrinsic way to represent a witness set computes a basis for the linear space spanned by the random linear equations.
This basis consists of an offset point and as many directions as the dimension of the linear space. Then the number
of intrisic variables equals the dimension of the linear space. For a random line to intersect a hyperface, the intrisic
representation reduces to one variable and computing new generic points on a hypersurface is reduced to computing
new solutions of a polynomial equation in one variable.

Unfortunately, the use of intrinsic coordinates, while reducing the number of equations and variables, increases the
condition numbers of the witness points. To remedy the numerical conditioning of the intrinsic representation, tools to
work with local coordinates are implemented. In local intrinsic coordinates, the offset point is the origin.

4.7.2 Equations for Solution Components

Once we have enough generic points on the positive dimensional solution components, we can compute equations
for the components with the application of interpolation. Code for the interpolation is provided in the subdirectory
Interpolators.

Three approaches have been implemented. The first direct approach solves a linear system, either with row reduction
or in the least squares sense. The second technique applies a recursive bootstrapping method with generalized divided
differences. Thirdly, the trace form leads to Newton interpolation.

Another application of interpolation is the computation of the linear span of a solution set. We know for instance that
every quadratic space curve lies in a plane. With the linear equations that define this plane, an accurate representation
for a quadratic space curve is obtained. With the linear span of a component, the cost to compute new generic points
on a solution set is reduced.

4.7.3 Absolute Factorization into Irreducible Components

The problem considered in the Factorization directory takes a pure dimensional solution set on input, given as a
witness set, and computes a witness set for every irreducible component. The absolute in the title of this section refers
to the factorization over the complex numbers.

Three methods are implemented to decompose a pure dimensional solution set into irreducible components. The first
method applies incremental interpolation at generic points, using polynomials of increasing degrees. Multiprecision
becomes necessary when the degrees increase. The second method is more robust and can handle higher degree
components without multiprecision. This method runs loops exploiting the monodromy, using the linear trace as the
stop test. The third method enumerates all factorizations and prunes the enumeration tree with linear traces.
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A particular case is the factorization of a multivariate polynomial, which is directly accessible from the blackbox solver.

4.7.4 Cascades of Homotopies and Diagonal Homotopies

The code in Decomposition aims to produce generic points on all pure dimensional components of the solution set
of a polynomial system.

The first top down method applies cascades of homotopies, starting at the top dimensional solution set. With every
added linear equation there is a slack variable. For solutions on the component intersected by the linear equations, all
slack variables are zero. Solutions with zero slack variables are generic points on the positive dimensional solution
set. Solutions with nonzero slack variables are regular and serve as start solutions in a homotopy to compute generic
points on the lower dimensional solution sets. Every step in the cascade removes one linear equation. At the end of the
cascade we have computed all isolated solutions.

The result of running a cascade of homotopies is list of candidate generic points, as some of the paths may have ended
to higher dimensional solution sets. To filter those points, a homotopy membership test starts at a witness set and moves
to another set of linear equations that pass through the test point. If the test point is among the new generic points, then
the test point belongs to the solution set represented by the witness set.

The second bottom up method applies diagonal homotopies. A diagonal homotopy takes on input two witness sets and
produces on output generic points on all parts of the intersection of the solution sets represented by the two witness
sets. Two versions of the diagonal homotopy are implemented, once in extrinsic coordinates, and once in intrinsic
coordinates.

4.7.5 An Equation-by-Equation Solver

Diagonal homotopies can be applied to solve polynomial systems incrementally, adding one equation after the other,
and updating the data for the solution sets. An equation-by-equation solver is implemented in the directory Solver.

4.7.6 Tropicalization of Witness Sets

The asymptotics of witness sets lead to tropical geometry and generalizations of polyhedral methods from isolated
solutions to positive dimensional solution sets.

The code in the directory Tropical collects a preliminary standalone implementation of a method to compute the
tropical prevariety for low dimensional problems.

4.8 Organization of the C and C++ code

C code can be called from within Ada, as is the case with the realization of the feedback laws in the output placement
problem, as defined in the Feedback directory. A C (or C++) function may call Ada code, as was done in the message
passing code in the MPI directory.

Via the options of the main executable phc the user navigates through menus and the data is stored on files. The C
interface defines a state machine with persistent objects. As an example for the state machine metaphor, consider a
vending machine for snacks. The user deposits coins, makes a selection, and then retrieves the snacks. The solution of
a polynomial system via the C library happens in the same manner. The user enters the polynomials, either from file or
via their string representations, selects some algorithms, and then retrieves the solutions, either from file, or in strings.
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4.8.1 The Main Gateway Function

The directory Lib defines the C interface libraries. In analogy with the single main executable phc, there is only one
interface function which serves at the main gateway exporting the Ada functionality to the C and C++ programmers.

The header files in the definitions of the prototypes of the library functions typically start with the following declara-
tions:

#ifdef compilewgpp
extern "C" void adainit( void );
extern "C" int _ada_use_c2phc ( int task, int *a, int *b, double *c );
extern "C" void adafinal( void );
#else
extern void adainit( void );
extern int _ada_use_c2phc ( int task, int *a, int *b, double *c );
extern void adafinal( void );
#endif

The adainit and adafinal are generated by the binder of the gnu-ada compiler, see the section on Calling Ada from
C. They are required when the main program is not written in Ada. Before the first call of the Ada code, adainitmust
be executed and adafinal is required after the last call, before termination of the program.

4.8.2 Persistent Objects

The C (or C++) can pass data via files or strings. The definition of the data structures for the polynomials and solution
lists should not be duplicated in C (or C++). Unless an explicit deallocation job is performed, the objects remain in
memory after a call to the Ada code.

The blackbox solver is exported by the C program phc_solve. The version which prompts the user for input and output
files starts as follows:

int input_output_on_files ( int precision )
{
int fail,rc,nbtasks;

if(precision == 0)
{
fail = syscon_read_standard_system();
printf("\nThe system in the container : \n");
fail = syscon_write_standard_system();
printf("\nGive the number of tasks : "); scanf("%d",&nbtasks);
fail = solve_system(&rc,nbtasks);
printf("\nThe root count : %d\n",rc);
printf("\nThe solutions :\n");
fail = solcon_write_standard_solutions();

}

The precision equal to zero is the default standard double precision. Other precisions that are supported are double
double and quad double precision. If the number of tasks in nbtasks is a positive integer, then the shared multicore
version of the path trackers is executed. The code below illustrates the use of persistent objects: after the call to
solve_system, the solutions remain in main memory even though only the value of the root count is returned in rc.
The solutions are printed with the call to solcon_write_standard_solutions().
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4.8.3 The Library libPHCpack

The C interface is availlable via the file libPHCpack (with the extension .so on Linux, .dll on Windows, and .dylib
on Mac OS X), made with

gprbuild phclib.gpr

where phclib.gpr is in the folder Main of the Ada source code.

The code below illustrates the linking of a C program welcome.c with the shared object libPHCpack.

#include <stdlib.h>
#include <stdio.h>

extern int _ada_use_c2phc ( int job, int *a, int *b, double *c, int v );

int main ( int argc, char* argv[] )
{
int *a;
int *b;
double *c;

// writes the welcome banner to PHC

int fail = _ada_use_c2phc(0, a, b, c, 1);

int len;
int name[30];

// retrieves the version string of PHCpack

fail = _ada_use_c2phc(999, &len, name, c, 1);

char *version = calloc(30, sizeof(char));

for(int i=0; i<30; i++) version[i] = (char) name[i];

printf("%s\n", version);

return 0;
}

The executable welcome is made executing the statement

gcc -o welcome welcome.c ../lib/libPHCpack.so

where the shared object libPHCpack is present in the folder ../lib. On windows and mac, the .so extension needs
to be replaced respectively with .dll and .dylib.
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4.9 Message Passing

The shared memory parallelism is based on the tasking mechanism defined by the Ada language and implemented by
the gnu-ada compiler. This section describes the distributed memory parallelism with message passing, using the MPI
library.

The tracking of all solution paths is a pleasingly parallel computation as the paths can be tracked independently from
each other. Some paths are more difficult to track than others and may require more time, so dynamic load balancing
in a manager/worker paradigm often gives close to optimal speedups. The setup suggested by Fig. 4.1 is one wherein
the manager solves the start system and then distributes the start solutions to the worker nodes.

Fig. 4.1: A homotopy solver first solves the start system and then tracks all paths from start to target.

The setup in Fig. 4.1 leads to a top down control in which the manager dictates the actions of the workers. A more
flexible setup is suggested in Fig. 4.2: start solutions are computed or retrieved when needed by the workers.

Fig. 4.2: The path tracker in a homotopy solver calls for the next solution of the start system.
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The advantage of the inverted control in Fig. 4.2 over the more conventional setup in Fig. 4.1 is the immediate availability
of solutions of the target system. Moreover, the inverted control in Fig. 4.2 does not require to store all start solutions.
For large polynomial systems, the number of start solutions may be too large to store in the main memory of one node.

4.10 GPU Acceleration

The acceleration with Graphics Processing Units (GPUs) is coded with the NVIDIA compiler. GPUs are designed for
data parallel applications. Their execution model is single instruction multiple data: the same instruction is executed on
many different data elements. Unlike shared memory parallelism with threads on multicore processors, to fully occupy
a GPU, one must launch ten thousands of threads.

Polynomial homotopy continuation methods can take advantage of GPUs by the evaluation and differentiation of poly-
nomials as required in the frequent application of Newton’s method. The reverse mode of algorithmic differentiation
applied to the monomials with appear with a nonzero coefficient in the polynomials provides sufficient parallelism and a
granularity fine enough for the data parallel execution model. The same arithmetic circuits to evaluate and differentiate
monomials are applied to different solutions when tracking many solution paths. For the tracking of one path in large
enough dimension, different threads collaborate in the evaluation and differentiation algorithms.

To introduce the evaluation and differentiation algorithms consider Fig. 4.3 and Fig. 4.4 to compute the product of four
variables and its gradient. Observe that results from the evaluation can be recycled in the computation of all partial
derivatives.

Fig. 4.3: An arithmetic circuit to evaluate the product of four variables 𝑥1, 𝑥2, 𝑥3, and 𝑥4.

The computation of the gradient of 𝑥1𝑥2 · · ·𝑥8 is illustrated in Fig. 4.5.

GPU acceleration capable of teraflop performance can compensate the cost overhead of quad double arithmetic. An-
other overhead is caused by running Newton’s method to compute Taylor series developments of the solution curves
defined by polynomial homotopies.
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Fig. 4.4: An arithmetic circuit to compute the gradient of the product 𝑥1𝑥2𝑥3𝑥4.

Fig. 4.5: An arithmetic circuit to compute the gradient of the product of eight variables 𝑥1, 𝑥2, . . ., and 𝑥8.
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4.11 The Web Interface

The directory cgi in the source code contains the Python CGI scripts to define a basic web interface.

The interface is entirely constructed in Python, the index.html directs the user to the login.py script in the cgi-bin
directory. Images, the logo, and demonstration screenshots are contained in the imag directory. The directory style
collects the style files. Data from users is in the directory users.

4.12 The Python Package phcpy

The package phcpy provides a scripting interface. For its functionality phcpy depends mainly on the C interface and
that was done on purpose: as the Python package grows, so does the C interface.

There are several other scripting interfaces to PHCpack: to the computer algebra system Maple (PHCmaple), PHClab
for MATLAB and Octave, and for Macaulay2: PHCpack.m2. These other interfaces rely only on the executable version
of the program.

Another major difference between phcpy and other scripting interface is the scope of exported functionality. The main
goal of phcpy is to export all functionality of phc to the Python programmer. The development of phcpy can be viewed
as a modernization of the PHCpack code, bringing it into Python’s growing computational ecosystem.

The scripting interface to PHCpack has its own documentation.
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