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MAIN RESULT

Let µ(κ) be the Hanf number for omitting 2κ

types for a first order theory with vocabulary of

size κ.

We write µ(τ ) for µ(|τ |).
In [1] Shelah asserts the following result:

Theorem 1 If the AEC K has

1. ap

2. jep

3. is categorical in a regular cardinal λ and

λ > µ(µ(|τ |))
then K is categorical in every θ with

µ2 = µ(µ(|τ |)) ≤ θ ≤ λ.
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CONTEXT

Conjecture: The class of cardinals in which a

reasonably defined class is categorical and its com-

plement cannot both be cofinal.

(Note: So, PC-classes are not ‘reasonable’.)

We know this conjecture for first order theories.

I don’t know it for any broader class at all. So it is

reasonable to investigate if first with quite strong

hypotheses.

Of course, it is only interesting when K has arbi-

trarily large models – EM methods are applicable.
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Goals

1. Discuss weakenings of the hypotheses.

2. Outline this argument and expound some of

the main techniques.

3. Explain the suspect point in the argument.
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SOME REDUCTIONS

Theorem 2 Suppose (K,¹K) is an AEC that

is categorical in λ > Θ, has arbitrarily large

models, and that K<λ has the amalgamation

property. There is an AEC K′ such that

K≥λ = K′
≥λ and K′ has the jep and K′

<λ has

the amalgamation property.

Proof: Let K′′ be the submodels of the cate-

goricity model. Let K′ be the unique aec with

K′
≤λ = K′′. Then K′ is as required.

I will simplify the treatment of Galois types in

this talk by assuming full ap. But, with somewhat

more difficult arguments the results on Galois sta-

bility and saturation go through assuming only ap

below the categoricity cardinal.
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Some Notation

A class K of τ -structures is called PC if it is the

collection of reducts to τ of the models of a first

order theory T ′ in some τ ′ ⊇ τ .

A class K of τ -structures is called PCΓ if it the

collection of reducts to τ of the models of a first

order theory T ′ in some τ ′ ⊇ τ which omit all

types in a specified collection Γ of types in finitely

many variables over the empty set.

Theorem 3 If K is an AEC with Lowenheim

number LS(K) (in a vocabulary τ with |τ | ≤
LS(K)), there is a vocabulary τ ′, a first order

τ ′-theory T ′ and a set of 2LS(K) τ ′-types Γ such

that:

K = {M ′ ¹ L : M ′ |= T ′ and M ′ omits Γ}.
Moreover, if M ′ is an L′-substructure of N ′

where M ′, N ′ satisfy T ′ and omit Γ then

M ′ ¹ L ¹K N ′ ¹ L.
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EM models

Notation 4 1. For any linearly ordered set X ⊆
M where M is a τ -structure we write Dτ (X)

(diagram) for the set of τ -types of finite se-

quences (in the given order) from X.

2. Such a diagram of an order indiscernible

set, Dτ (X) = Φ, is called ‘proper for linear

orders’.

3. If X is a sequence of τ -indiscernibles with

diagram Φ = Dτ (X) and any τ model of Φ

has built in Skolem functions, then for any

linear ordering I, EM(I, Φ) denotes the τ -

hull of a sequence of order indiscernibles re-

alizing Φ.

4. If τ0 ⊂ τ , the reduct of EM(I, Φ) to τ0 is

denoted EMτ0(I, Φ).
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Morley’s Omitting Types Theorem

Lemma 5 If (X,<) is a sufficiently long lin-

early ordered subset of a τ -structure M , for

any τ ′ extending τ (the length needed for X

depends on |τ ′|) there is a countable set Y of

τ ′-indiscernibles (and hence one of arbitrary or-

der type) such that Dτ (Y) ⊆ Dτ (X). This im-

plies that the only (first order) τ -types realized

in EM(X, Dτ ′(Y)) were realized in M .

The easiest formulation of ‘sufficiently long’ is:

|X| greater than µ(|τ |).
χ(Φ) is essentially the smallest χ that can be

taken as ‘sufficiently long’ for Φ in some applica-

tion. χ(Φ) < µ(τ ). But since there are no tools

for evaluating χ(Φ), I stick with µ(τ ).
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EM models for AEC

Theorem 6 If K is an abstract elementary class

in the vocabulary τ , which is represented as a

PCΓ class witnessed by τ ′, T ′, Γ that has ar-

bitrarily large models, there is a τ ′-diagram Φ

such that for every linear order (I, <) there is

a τ ′-structure M = EM(I, Φ) such that:

1. M |= T ′.

2. The τ ′-structure M = EM(I, Φ) is the Skolem

hull of I.

3. I is a set of τ ′-indiscernibles in M .

4. M ¹ τ is in K.

5. If I ′ ⊂ I then EMτ (I
′, Φ) ¹K EMτ (I, Φ).
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Model Homogeneity

Definition 7 M is µ-model homogenous if for

every N ¹K M and every N ′ ∈ K with |N ′| <
µ and N ¹K N ′ there is a K-embedding of N ′

into M over N .

To emphasize, this differs from the homogenous

context because the N must be in K. It is easy to

show:

Lemma 8 (jep) If M1 and M2 are µ-model ho-

mogenous of cardinality µ > LS(K) then

M1 ≈ M2.

Theorem 9 If K has the amalgamation prop-

erty and µ∗<µ∗ = µ∗ and µ∗ ≥ 2LS(K) then there

is a model M of cardinality µ∗ which is µ∗-
model homogeneous.
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GALOIS TYPES

Definition 10 Let M ∈ K, M ¹K M and a ∈
M. The Galois type of a over M is the orbit

of a under the automorphisms of M which fix

M .

Definition 11 The set of Galois types over M

is denoted ga− S(M).

We say a Galois type p over M is realized in N

with M ¹K N ¹K M if p ∩N 6= ∅.
Definition 12 The model M is µ-Galois satu-

rated if for every N ¹K M with |N | < µ and

every Galois type p over N , p is realized in M .

Again, a priori this notion depend on the em-

bedding of M into M; but with amalgamation it

is well-defined.
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MORLEY’S METHOD FOR GALOIS TYPES

Now we prove ‘Morley’s method’ for Galois types.

Lemma 13 [II.1.5 of Sh394] If M0 ≤ M and

M is substantial with respect to |M0|, we can

find an EM-set Φ such that the following hold.

1. The τ -reduct of the Skolem closure of the

empty set is M0.

2. For every I, M0 ≤ EM(I, Φ).

3. If I is finite, EMτ (I, Φ) can be embedded in

M .

4. EMτ (I, Φ) omits every galois type over N

which is omitted in M .

Proof. Let τ1 be the Skolem language given by

the presentation theorem and consider M as the

reduct of τ1 structure M 1. Add constants for M0

to form τ ′1. Now apply Lemma 5 to find an EM-

diagram Φ (in τ ′1) with all τ -types of finite subsets

of the indiscernible sequence realized in M .
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Now 1) and 2) and 3) are easy (using clause 5) of

Theorem 6 since we chose Φ so all finite subsets of

the indiscernible set (and so their Skolem closures)

are realized in M .

The omission of Galois types is more tricky. Con-

sider both M and N = EMτ (I, Φ) embedded in

M. Let N 1 denote the τ ′1-structure EM(I, Φ).

We need to show that if a ∈ N , p = ga−tp(a/M0)

is realized in M . For some e ∈ I , a is in the τ1-

Skolem hull Ne of e. (Recall the notation from

the presentation theorem.) By 3) there is an em-

bedding α of Ne into M 1 over M0. α is also an

isomorphism of Ne ¹ τ into M . Now, by the model

homogeneity, α extends to an automorphism ofM
fixing M0 and α(a) ∈ M realizes p. 213
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Homogeneity and Saturation

Theorem 14 For λ > LS(K), The model M is

λ-Galois saturated if and only if it is λ-model

homogeneous.

We sketch the ap proof; it isn’t that much harder

with no amalgamation assumption whatsoever.

Proof. It is obvious that λ-model homogeneous

implies λ-Galois saturated. Let M ¹K M be λ-

saturated. We want to show M is λ-model homo-

geneous. So fix M0 ¹K M and N with

M0 ¹K N ¹K M.

Say, |N | = µ < λ. We must construct an em-

bedding of N into M . Enumerate N − M as

〈ai : i < µ〉. We will define fi for i < µ an

increasing continuous sequence of maps with do-

main Ni and range Mi so that M0 ¹K Ni ¹K M,

M0 ¹K Mi ¹K M and ai ∈ Ni+1.

The restriction of
⋃

i<µ fi to N is required em-

bedding.
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Let N0 = M0 and f0 the identity. Suppose fi

has been defined. Choose the least j such that

aj ∈ N − Ni. By the model homogeneity of M,

fi extends to an automorphism f̂i of M. Using

the saturation, let bj ∈ M realize the Galois type

of f̂i(aj) over Mi. So there is an α ∈ autM which

fixes Mi and takes bj to f̂i(aj).

Choose Mi+1 ¹K M with cardinality µ and con-

taining Mibj. Now f̂−1
i ◦ α maps Mi to Ni and bj

to aj.

Let Ni+1 = f̂−1
i ◦ α(Mi+1) and define fi+1 as

the restriction of α−1 ◦ f̂i to Ni+1. Then fi+1 is as

required. 214
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Functors Between AEC’s

We really have three AEC’s:

(LO,⊂),

(K,¹K)

and the representing first order:

K′ which is Mod(T ′) with submodel as τ ′-closed

subset

We are describing the properties of the EM-functor

between (LO,⊂) and K′ or K.
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UNIVERSALITY

Definition 15 M2 is σ-universal over M1 in N

if M1 ≤ M2 ≤ N and whenever M1 ≤ M ′
2 ≤

N , with |M1| ≤ |M ′
2| ≤ σ, there is a (partial

isomorphism) fixing M1 and taking M ′
2 into M2.

Definition 16 M is brimful if for every σ <

|N |, and every M1 ≤ M with |M1| = σ, there

is an M2 ≤ N with cardinality σ that is σ-

universal over M1 in M .
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BRIMFUL ORDERINGS AND MODELS I

Claim 17 (Lemma 3.7 of [2]) The linear or-

der I = λ<ω is brimful.

Since every L′-substructure of EM(I, Φ) has the

form EM(I0, Φ) for some subset I0 of I , we have

immediately:

Claim 18 If I is brimful as a linear order, EM(I, Φ)

is brimful as an L′-structure.
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BRIMFUL ORDERINGS AND MODELS II

Claim 19 If I is brimful as a linear order, EMτ (I, Φ)

is brimful as a member of K.

Proof. Let M = EM(I, Φ); we must show M ¹ τ

is brimful as a member of K. Suppose M1 ¹K

M ¹ τ with |M1| = σ < |M |. Then there is N1 =

EM(I ′, Φ) with |I ′| = σ and M1 ⊆ N1 ≤ M . By

Lemma 6.5, N1 ¹ τ ¹K M ¹ τ . So M1 ¹K N1 ¹ τ

by the coherence axiom. Let N3 be the σ-universal

τ ′-structure containing N1 which is guaranteed by

Claim 18.

Let M2 have cardinality σ and M1 ¹K M2 ¹K

M ¹ τ . Choose a τ ′-substructure N2 of M with

cardinality σ containing N1 and M2. Now, N2 can

be embedded by a map f into N3. But f (N2) ¹

τ ¹K N3 ¹ τ by the coherence axiom so N3 ¹ τ is

the required K-universal extension of M1. 219
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GALOIS STABILITY

Definition 20 1. Let N ⊂M. N is λ-Galois-

stable if for every M ⊂ N with cardinality

λ, only λ Galois types over M are realized

in N .

2. K is λ-Galois-stable ifM is. That is autM(M)

has only λ orbits for every M ⊂ M with

cardinality λ.

Since each Galois type over M0 realized in M is

represented by an M1 with M0 ¹K M1 ¹K M ,

M = EM(I, φ) is brimful, and |M1| = |M0|,
Claim 19 implies immediately:

Claim 21 If K is λ-categorical, the model M

with |M | = λ is σ-Galois stable for every σ < λ.
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CATEGORICITY IMPLIES STABILITY

Theorem 22 If K is categorical in λ, then K

is σ-Galois-stable for every σ < λ.

Proof. Suppose K is not σ-stable for some σ <

λ. Then by Löwenheim-Skolem, there is a model

N of cardinality σ+ which is not σ-stable. Let

M be the σ-stable model with cardinality λ con-

structed in Claim 21. Categoricity and joint em-

bedding imply N can be embedded in M . The

resulting contradiction proves the result. 222
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STABILITY YIELDS SATURATION

Corollary 23 Suppose K is categorical in λ and

λ is regular. The model of power λ is saturated

and so model homogeneous.

Proof. Choose in Mi ¹K M using < λ-stability

and Löwenheim-Skolem, for i < λ so that each Mi

has cardinality < λ and Mi+1 realizes all types

over Mi. By regularity, it is easy to check that Mλ

is saturated. 223

Corollary 24 Suppose K is an AEC with vo-

cabulary τ that is categorical in λ and λ is reg-

ular. Then for every µ, LS(K) < µ < λ there is

a model Mµ = EMτ (µ
<ω, Φ) which is µ-model

homogeneous.

We haven’t mentioned splitting. Saturation in

singular cardinals follows (rather abstractly) from

a reasonable notion of independence and calcula-

tions of κ(T ). But Shelah doesn’t claim it in this

context in [1].
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TOWARDS DOWNWARD CATEGORICITY I

Theorem 25 Suppose M ∈ K omits a Galois

type p over a submodel M0 with |M | ≥ µ(|M0|).
Then there is no regular cardinal λ ≥ |M | in

which K is categorical.

Proof. By Lemma 13, there is a model N ∈ K

with cardinality λ which omits p. But by Lemma 23,

the unique model of power λ is saturated. 225
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TOWARDS DOWNWARD CATEGORICITY II

In [1] Shelah asserts the following result:

Theorem 26 If K is categorical in a regular

cardinal λ and λ > µ(µ(|τ |)) then K is categor-

ical in every θ with µ2 = µ(µ(|τ |)) < θ ≤ λ.

Here is a sketch of the argument. We have shown

that there are saturated models of power θ for

every θ < λ. The obstacle to deducing down-

ward categoricity is that Theorem 13 only allows

us to transfer the omission of types when the model

omitting the type is much bigger than the domain

of the type.

Definition 27 We say K is (χ, µ)-tame if for

any saturated N ∈ K with |N | = µ < λ if

p, q,∈ ga − S(N) and for every N0 ≤ N with

|N0| ≤ χ, p ¹ N0 = q ¹ N0 then q = p.

Theorem 28 Suppose K is λ-categorical for λ ≥
µ(τ ) and λ is regular. Then K is (χ, χ1)-tame

for some χ < µ(τ ) and any χ1 with χ < χ1 ≤ λ.
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NEXT STEPS

A. Prove Theorem 28.

B. Assuming Theorem 28 prove and extend the

categoricity theorem.

I will discuss A in the workshop sessions. Gross-

berg and VanDieren will discuss B.
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