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ABSTRACT. We give a complete and elementary proof of the following upward
categoricity theorem: L&€ be a local abstract elementary class with amalgama-
tion and joint embedding, arbitrarily large models, and countablednheim-
Skolem number. [IfC is categorical ink; then KC is categorical in every un-
countable cardinal. In particular, this provides a new proof of the upward part of
Morley’s theorem in first order logic without any use of prime models or heavy
stability theoretic machinery (dependence relations, Morley rank, etc.).

INTRODUCTION

Shelah’s categoricity conjecture asserts that for any abstract elementary
classiC, there is a cardinat such that ifKC is categorical in soma > x thenKC
is categorical in all larger cardinals. In general this question remains wide open.
But under the additional hypothesis tahas the amalgamation property, Shelah
proved an approximation [Sh394]: &f is categorical in cofinally many cardinals
then itis eventually categorical. He shows this by showing th&i# categorical in
some cardinak beyond an appropriate Hanf numliés (see [Ba2]), thelC is cat-
egorical in every cardinal betwed, and)\. This was a seminal paper. However
it was difficult to read, contained many gaps, a few inaccuracies, and much mate-
rial which was not needed for the most expeditious proof of the result. Shelah has
circulated a substantially revised version. This paper has sparked a flood of work
in the last few years ([Ba, Ba2, GrvD1, GrVD2, GrvVD3, GrVV, Hy, Le2, VD2)).
Baldwin clarified some of the role of Ehrenfeucht-Mostowski models in [Ba2] and
the more sophisticated uses in [Ba]. Grossberg and VanDieren [GrVD2], abstracted
the notion of tame from Shelah’s argument and proved thitig tame andC is
categorical im and\* with A > LS(K) thenK is categorical in all cardinals be-
yond A\ ™. Fix for the moment the following terminology; a Galois type S(M)
is extendibldf it has a nonalgebraic extension to evéYycontaining)M ; p is fully
minimalif there is at most one such nonalgebraic extension to @acbntaining
M. Now the moral we take from [GrVD2] is the following Theorem:Afis -
categorical and there is a fully minimal extendible typeSii/) (with |M| = \)
such that there is n¢p, \) Vaughtian pair, therC is categorical in all cardinals
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greater tham\. To get such & which is fully minimal and extendible depends

on tameness. There are several strategies to find spahita no Vaughtian pair
([Sh394, GrVD2, Ba, Le2]); each paper uses its own variant on the notions that
we dubbed ‘fully minimal’ and ‘extendible’ for this survey. We introduce another
variant here. The upwards categoricity result is improved to assume categoricity in
only a single cardinak™, with A > LS(K) = R in [Le2], and later\ > LS(K) in

[Ba, GrvD3, GrVV]. For\ > LS(K), the mostimportant tool for these extensions

is the result from [Sh394], fully expounded in [Ba]: below the categoricity cardinal:
chains ofy saturated models of length at meséare saturated. Whek= LS(KC),

one needs an analysis of limit models of cardinality(/C) (since saturation in
LS(K) is vacuous for AEC). We reprise here the analysisXox LS(K) = Ng

from [Le2]. ForA = LS(K) > Rg, consult the more sophisticated analysis of
[GrvV].

An important theme stemming from both [Sh394] and [GrVD1] is to study
abstract elementary classes with strong ‘compactness’ condition on Galois types.
The notion of docal abstract elementary class (AEC) is stronger tlaame we dis-
cuss the distinction in the text. With this strong locality assumption for countable
languages we prove in this paper upward categoricity transfer from categoricity in
N, for local AEC without any reliance on the unions of saturated models lemma. In
fact, the argument here is self-contained. The importing of ‘quasiminimality’ and
‘big’ from the study of atomic models to this more general context and the use of
superlimits is due to Lessmann. With these techniques we avoid any reference to
a notion of independence. This work and that of [HV] argue for the study of local
AEC. The recent work of [GrVV] considers the case< A = LS(K) by making
stronger ‘model theoretic’ hypotheses and employing much heavier machinery.

The paper is organized as follows. Section 0 contains some well-known
facts (most of them due to Shelah) about abstract elementary classes with amalga-
mation, whose often simplified and complete proofs can be found in [Ba]. Section 1
is devoted to some facts about big and quasiminimal types. Section 2 contains the
proof of the main theorem.

In addition to stimulating discussions with Grossberg, VanDieren, and
Villaveces, we would like to acknowledge Laskowski’s contributions to the for-
mulation of the work on coherent sequences of types in Section 0.

0. PRELIMINARIES

In this section, we recall some of the results of Shelah on abstract elemen-
tary classes. For more details and further context the readers are advised to consult
Baldwin’s online book [Ba], where all these facts and examples can be found, or
Grossberg’s expository paper [Gr].
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We assume throughout th@€, <) is anabstract elementary clag8EC)
in the languagd., namely,K is a class ofL-structures, equipped with a partial
ordering=<x on theL-structures in satisfying the following conditions:

(1) K is closed under isomorphism;

(2) If M,N € KandM <, N thenM C N i.e, M is anL-substructure of
N;

(3) There is a least cardinbS(K) such that for allv- € K andA C N there
is M <x N containingA of size at mostA| + LS(K).

(4) If M, N,M* € Kwith M C NandM, N <x M*thenM <x N,

(5) K is closed under Tarski-Vaught chains: LEW; : i < \) be a=<x-
increasing and continuous chain of modelskof ThenlJ,_, M; € K.
Also Mo <x ;<\ M; and further, ifM; <x N € K for eachi < A, then
Uica Mi <k N.

The cardinalLS(KC) in (3) is called theLdwenheim-Skolem numbewe
will assume throughout this paper tHafi(X) = Xy and that'C has no finite mod-
els, but neither of these requirements is necessary for the results in the first section.
Since we do not have formulas, we cannot phrase the Tarski-Vaught test; (4) and
(5) are the consequences we need from it. Notice that none of the conditions per-
mit us to construct models of large cardinality. We list a few examples, as well as
non-examples.

Examples 0.1. (1) The classC of models of a first order theor¥ in the lan-
guageL with M <, N if M is an elementary submodel o&f forms an
abstract elementary class Witl$(K) = |L| 4+ No.

(2) If n is at least the first stability cardinal of a first order the@rythen
the class ofu-saturated models of a superstable theory forms an abstract
elementary class with withS(K) = p.

(3) The class of models of a first order theory in the languagmmitting a
prescribed set of -types with elementary substructure forms an abstract
elementary class withS(K) = |L| + Ry.

(4) More generally, lety) € Ly, and consider a fragment of L, . con-
taining . Then the clas& of models ofy) with M < N if M is an
L 4-elementary substructure &f forms an abstract elementary class with
LS(K) = | A].

(5) Letn be an integer above the arity of any relation or function in the lan-
guageL. Then the class of.”-theories withl."-elementary submodel is
an abstract elementary class With(K) < |L| 4 No.

(6) The class of reducts th of models of a theor{f™ in an expanded language
T* underL-elementary substructudmes noform in abstract elementary
class in general, as (5) may fail. For example, the class of free groups in
the language of groups does not form an abstract elementary class under
L-elementary substructure (or even infinitary-elementary substructure). In
fact, a famous example of Silver shows that such classes may be categorical
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in a cofinal sequence of cardinals, and not categorical in another cofinal
sequence of cardinals.

(7) Any class of models closed under elementary equivalence with first order
elementary submodebes form an abstract elementary class.

(8) The class of models of ab, .,-theory with L, .,-substructureloes not
form an abstract elementary class in general: it may not hadevahheim-
Skolem number.

(9) The previous two examples have more concrete exemplars. The class of
Artinian (descending chain condition) commutative rings with unit be-
comes an AEC under elementary submodel. (See [Bal].) But the class of
Noetherian (ascending chain condition) commutative rings with unit can
never be an abstract elementary class. Hodges ([Ho] 11.5.5) shows such
rings are not &Cx class with omitting types and any AEC is such a class
by Shelah’s presentation theorem ([Sh88], [Ba]).

We say thatf : M — N is aK-embeddingf f is an embedding and
im(f) <k N.

Hypothesis 0.2.We assume that satisfies theamalgamation propertyAP): If
My <x My, Ms, there is a modeM * and K-embeddingf, : M, — M™* which
are the identity on\/,. And we assume also that joint embedding propertfor
K-embeddings, which is as AP except wittiy = (). We also assume th&t
hasarbitrarily large models These properties imply immediately thathas no
maximal models.

Let \ be a cardinal. By repeated use of AP and JEP, we can easily construct
a A-model homogeneousodel N i.e, if My <x Ms of size less than and there
is a K-embeddingf; : M; — N then there exists &-embeddingf, : My —
N extendingf;. We also ‘allow’ V; to be emptyi.e., any M of size less than
A K-embeds insidéV. We can further find a model which &rongly A-model
homogeneous i.gsatisfies in addition that any isomorphigim M; — Ms with
M, <x N of size less than extends to amutomorphisnof N.

Let us now consider the problem tfpes As we pointed out, we do not
have formulas and hence no adequate syntactic notion of types. We therefore deal
with a semantic notion; we consider a relatioron triples of the form(a, M, N),
whereM <y N anda an element ofV. We say that

(a1, My, Ny) ~ (az, My, Na)
if M, = M, and there exists a mod&f* amalgamatingV, and N, over M, via
K-embeddingg, : M, — M* fixing M; such that
g1(a1) = ga2(az).
Itis an exercise using AP to check thais an equivalence relation on such triples.

The equivalence class @i, M, N) is theGalois type of: over M (in N) and will
be denoted byp(a/M, N). Since we consider no other types, we will simply say
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‘type’ for ‘Galois type’ but we may choose to use the full phrase for emphasis.
We denote byS(M) the set of Galois types ovev/. We say thatN’ realizes
tp(a/M,N) if M <x N’ and there exista’ € N’ such thattp(a’/M,N') =
tp(a/M, N). We also writetp(a/M, N) | M’ for M’" < M for tp(a/M’, N).

We now examine these notions in some familiar classes of examples:

Examples 0.3. (1) The first order caseThe class of models of a complete
first order theoryl” with infinite models has AP, JEP, and arbitrarily large
models. Galois types correspond to the usual notion of types over models.

(2) The homogeneous cadeet T' be a complete first order theory and Iet
be a set of types over the empty sél.is goodif for arbitrarily large A,
there existA\-homogeneous models of size at leastealizing, over the
empty set, exactly those typesiih Then, the class of models omitting all
types outsideD under elementary submodel forms an abstract elementary
class with AP, JEP, and arbitrarily large models. Galois types over mod-
els correspond to the usual syntactic notion of types in this context. This
generalizes to logics other than first order with similar conclusions.

(3) n-variable logic with amalgamatianUnder amalgamation over sets [Dj]
(where it actually belongs to homogeneous model theory) we have AP and
JEP, and the syntactic™-types are the Galois types. In [BalLe], a special
kind of amalgamation is introduced (in addition to AP and JEP) precisely
so that Galois types and syntacfi€-type coincide.

(4) The excellent casd_et I be a class of models of a Scott senterce
L, ., underL 4-elementary equivalence with a chosen countable fragment
Aof L, ., containingy. If K is excellent(see [Sh87a], [Sh87b], or [Lel]
for the definition in the equivalent case of an atomic class), khéas AP,

JEP, and arbitrarily large models. Again Galois types correspond to the
syntactic notion of types over models there. Notice that excellence is the
crucial reason why this is so. This is also a motivating reason for intro-
ducing the general context of abstract elementary classes: even in concrete
cases, showing that Galois types are well-behaved is very difficult.

It is natural to make the following definition.

Definition 0.4. Let u > LS(K). We say thatV is u-saturatedif N realizes each
g € S(M) with M <x N of size less thap. We say thatV is saturatedif N is
| N'||-saturated.

Notice that, we only consider-saturation forw > LS(K); the notion of
LS(K)-saturation is problematic as there may not be any models of size less than
LS(K) in general. It is an easy observation thaf\if is u-model homogeneous,
thenM is u-saturated (the converse also holds, see below).

Examples 0.5.1f K is first order then a modéY is u-saturated in the above sense
if and only if I is u-saturated in the usual sense. In the homogeneous case, when
K is the class of models of a good diagrdm then aD-model N is p-saturated
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if and only if it is (D, u)-homogeneous (see [Sh3] for definition). AndKifis an
excellent class of models of a Scott sentenck.in,,, thenN € K is p-saturated if
and only if N is u-full (for u > Ng). For the notion ofu-full see [Lel] or [Sh87b].

From now until the rest of this paper, we fix a suitably big cardinahd
a model€ which is stronglyr-model homogeneous. We will ugeas amonster
model Every model of size less thanis isomorphic to a<,-submodel o and
every typep € S(M) with M < € of size less thar is realized in¢, as¢ is
R-saturated.

Furthermore, types over such smilsubmodels correspond twbits of
the automorphism group o i.e, if tp(a/M, &) = tp(b/M, ) there exists an
automorphisiy of ¢ fixing M such thatf(a) = b. We denote bydut(€/M) the
group of automorphisms af fixing M pointwise.

We work inside€ and only consider models, sets, and types of size less
thank. Since anyN < €, all typestp(a/M, N) are of the formp(a/M, €), so
we will simply write tp(a/M). Observe that given E-embeddingf : M — N
and a typep € S(M), the typef(p) is well-defined: Letu, € € realisep and let
fe € Aut(€) extendingf, for ¢ = 1,2. Then,f; 'ofa € Aut(¢/M), which we can
apply totp(a1 /M) = tp(az/M), sotp(ai /M) = tp(f; o fa(az)/ fi ' o f2(M)),
from which we obtain

tp(f1(a1)/f(M)) = tp(fa(az)/f(M)),
sincefa(M) = f(M) = f1(M). We denote byf (p) this common value.

The monster model point of view allows us to dispense with amalgamation
diagrams in favour of more familiar first order monster model arguments but is
entirely equivalent.

As Baldwin showed in [Ba, Baz2], this simplifies some arguments consid-
erably. As an example, we leave the next proposition as an exercise. The ftrivial
implication of (1) was already pointed out. The left to right is now easy using the
monster model (see Proposition 0.12 for a hint). (2) is simply a back and forth
construction using (1).

Proposition 0.6. (1) N is p-saturated if and only ifV is u-model homoge-
neous.
(2) Two saturated models @¥;, N, containingM such that| Ny || = || V2| >
|| M || are isomorphic oved/.

The main goal of this paper is to extend Morley’s theorem on the transfer
of categoricity

Definition 0.7. Let A be a cardinal. We say th#t is A-categorical(or categorical
in A) if all models of K of size A are isomorphic.
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As in the first order case, the key to understand categoricgiatsility.

Definition 0.8. Let A be a cardinal. We say thét is A-stable(or stable in)\) if
|S(M)| < XforeachM € K of size\.

The first consequence of categoricity is stability. Shelah’s presentation the-
orem [Sh88, Ba, Gr] asserts than any abstract elementary class can be represented
as the class of reducts o of models of a first order theory in an expanded lan-
guageL* of size LS(K) omitting a set of first ordef*-types. This implies that
the Hanf number for abstract elementary classes is at B@@m)+ ([Sh] vi).

The next fact is proved using Ehrenfeucht-Mostowski models in a similar way to
the first order case. The argument takes several pages and involves a number of el-
ements. First, Shelah’s presentation theorem allows the representation of the AEC
K as an pseudo-elementary class with omitting types. Second, Sies arbi-

trarily large modeldC has Ehrenfeucht-Mostowski models. Now a careful choice

of a sufficiently homogeneous linear order as skeleigrj, which realizes only
countably many cuts over countable subsets, allows one to conchsdibility;

this is the only fact quoted in the entire paper that doesn’t appear in various model
theory texts. A complete proof of the lemma can be found in Baldwin’s online
book [Ba]. Recall we work under Hypothesis 0.2.

Fact 0.9. If K is N;-categorical theriC is Ny-stable.

We can now prove the existence of saturated modets.in

Proposition 0.10. If K is Ry-stable, then there exists a saturated model of 8ize

Proof. Construct an<x-increasing and continuous chdif/; : i < X;) of count-
able modeld\/; such thatV/;  ; realizes every Galois type ovéf;. This is possible
by Ro-stability. The regularity oR; implies that J, _,, M; is saturated. O

Definition 0.11. We say thatV is universal overM if M <y N and for each\/’
with M < M’ and||M’|| < |N||, there is aC-embeddingf : M’ — N which is
the identity on)/.

By Proposition 0.6, ifNV is saturated and/ <x N with | M| < [|N]|,
thenN is universal ove/ (and in particular, if there is a saturated model of gize
then any model of sizg extends to a saturated model). The existence of universal
models of the same size follows from stability. We will iterate the idea of the next
proof a number of times, to build limit models from universal ones, and superlimits
from limits. This is why we give a complete proof.

Proposition 0.12. Let K be u-stable. For eachVf of sizep there is a universal
modelM’ over M of sizep.

Proof. Let (M; : i < p) be an increasing and continuous sequence of models
of sizeu, with My = M, such that)M/;, realizes every type it¥(M;). This is
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possible byu-stability. LetM’ = Ui<, Mi. We claim that)’ is universal over
M. Let N be of model of size, with M <, N. We will find f' : N — M’,
which is the identity on\/ as follows. WriteN = M U{a; : i < u}. We construct
an increasing and continuous chain of modé¥§ : i < p) and an increasing
and continuous chain of-embeddingsf; : N; = M;, with f; | M = idyy,
such thata; € N;,1. (Note that we do not require thaf; <x N.) Fori = 0,
simply let Ny = M and fy = idys, and at limits, take unions. Now having
constructedf; : N; = M;, considerp; = tp(a;/N;). Then f;(p;) is a type over
M;, hence realized iM; 1 by construction, say by. Choose an automorphism of
¢ extendingf; sendinga; to b. Let N;i1 = h™'(M;,1). ThenN; <x N;y1 and
a; € N;y1. Furthermoref;i 1 = h [ Njpq1 @ Nijy1 = M,y is as desired. This is
enough: TheC-embeddingf : Ui@ fi is an isomorphism betweé\lji@ N; and
M’ which is the identity on\/. SinceN C (J,_,, V; (and henceV < U, ., Vi),
thenf' = f | N: N — M’ is the desired-embedding. O

Now let us return to types. Lete S(M) andg € S(N), with M <, N.
We say thay extends if some (equivalently any) realization gfrealizesp. We
will write p C ¢ if g extend9, in spite of the fact that types are not sets of formulas.

Consider ari-increasing chain of type; : ¢ < ¢), say withp; € S(M;).
The first questiondxistenceis whether there is € € such thaw realizesp;, for
eachi < ¢ (unions of types are really intersections of orbits). The second question
(uniquenesksis whether whemi, b € ¢ such that, b realizep; for eachi < ¢ and
Ms = ;s M; do we necessarily have

tp(a/M;) = tp(b/M;)?

The answer to both questions e in general; concrete examples are provided
in [BaSh]. In order to deal with the first question, we introduce the following
definition.

Definition 0.13. An C-increasing chain of Galois typdg; : ¢ < §) with p; €
S(M;) is coherentif there exist elements; € ¢ and f;; € Aut(€/M;), for
i < j < 4, such that:

(1) pi = tp(ai/M;);
(2) fm'(aj) =a;fori<j<é.
() fij = fixo fr,foranyi <k < j <4.

The next proposition implies that the union of a coherent chain of Galois
types is realized.

Proposition 0.14. Let(p; : i < §) be a coherent chain of types, withe S(M1;).
Then there existss € S(Ms), with Ms = (J, 5 M;, such that(p; : i < 6 + 1) is
a coherent chain of types.
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Proof. Leta; |= p; andf; ; € Aut(C/M;), fori < j < ¢, witness the coherence of
(pi 1 < 0). Let M5 = |J, 5 M;. We need to findi; so that forp; = tp(as/Ms)
there aref; 5 for i < 6 demonstrating thaip; : i < § + 1) is coherent.

Letg; = foi | M; : M; — €. Notice that the sequendg; : i < §)
of C-embeddings is increasing and continuous. Hence we caryfindAut (<)
extendingJ; s gi- Letas = g~*(ao) and definef;5 = f; o g. Thenf; s fixes
M; sinceg extendsfy; [ M; and sendsis to a;. Furthermore,f; ; o f;s =
figofy)0og="foiog= fis. O

Remark 0.15. Since anyC-increasing chain of Galois typés; : i < w) is coher-

ent, the previous proposition shows that its union is realized. Since any countable
ordinal is either a successor or has cofinalityve derive easily from this that the
union of any countable chain of types is realized. Without further assumptions, this
may fail for longer chains in general.

We now consider tameness. We will then consider a strengthening which
is related to uniqgueness. Baldwin [Ba] introduces two parameter versions of both
notions. These will be needed in any attempt to extend the results here without
making the ‘global tameness’ assumptions that we use here.

Definition 0.16. Let x be an infinite cardinal. We say thitis y-tame, if whenever
p# q € S(N), there exists\/ <x N of sizey suchthap [ M # q [ M. We will
say thatlC is tameif K is Ny-tame.

In Remark 1.9 of [Sh394], Shelah refers to the question as to whether
categoricity implies tameness as ‘the main difficulty’.

Remark 0.17. (1) If K is first order, homogeneouk]" with amalgamation or
excellent theriC is x-tame fory = LS(K).

(2) Itfollows from Shelah’s resultin [Sh394] that/f is categorical in arbitrar-
ily large cardinals, thelC is y-tame for some less than the Hanf number.
There is no argument deriving locality from a categoricity hypothesis.

(3) Itis not clear at this stage, how strong tameness is. In the interesting partic-
ular cases considered by Zilber and Gavrilovich, tameness is established by
proving ‘excellence’, though sometimes only an excellence-like condition,
as the context is not strictly,,, ... The advantage of excellence is that it is
a condition involving only countable models, whereas tameness involves
uncountable models also. The disadvantage is that it is far more compli-
cated. Also, it follows from our upward categoricity theorem and Shelah’s
results on categorical sentenceslip, ., [Sh48] that it is consistent with
ZFC that any locaL,,, .,-class with AP and arbitrarily large models that is
categorical iy, is excellent.

And now the strengthening:
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Definition 0.18. We say that is local if wheneverp # ¢ € S(N) andN =
Ui<, Ni, for @ cardinal, then there is< p such thap [ N; # g [ N;.

Notice that if € is first order, homogeneous, or excellent in the sense of
[Sh87b] thenk is local. The last of these examples has been extended to a more
general notion of excellence in [GrKo]. Baldwin calls this propéity, co)-local
in [Ba].

Proposition 0.19. If K is local then/C is tame.

Proof. We prove by induction op, that iftp(a/M) # tp(b/M), for M of sizep,
then there is a countable’ <, M such thatp(a/M’) # tp(b/M’).

For i = N, there is nothing to show. Now assume that X,. Let M be
given. Choos¢M; : i < p) increasing and continuous such that; || = |i| + N
and{J,., M; = M. If tp(a/M) # tp(b/M), then there is < p such that
tp(a/M;) # tp(b/M;), sincek is local. But by induction hypothesis, there is
M’ <x M, countable such thap(a/M’) # tp(b/M’). So, we are done since
M’ <x N. a

We now show that the answer to both the existence and uniqueness ques-
tions is positive wheliC is local:

Proposition 0.20. Assume thak is local. Let(); : ¢ < ¢) be an increasing and
continuous sequence of models, dpg € S(M;) : i < §) be anC-increasing
sequence of types. Then there is a unigueS(M;) extending each < 6.

Proof. Uniqueness follows easily: If is a successor, there is nothing to show, so
we may assume thatis a limit. By taking a cofinal subsequence if necessary, we
may assume thatis a cardinal, so uniqueness follows immediately from the fact
that is local.

For existence, assume that : i < ¢) is given. We show by induction on
i < ¢ that(p; : j < i) is coherent. Foi = 0 or a successor, this is easy. Assume
thati is a limit and that(p; : j < i) is coherent. Then by Proposition 0.14, there
existsp; € S(M;) such that(p;, p, : j < i) is coherent. Bup, [ M; = p; | M;
for eachj < i by definition. Hence by uniqueness, we must hglve- p;, which
shows thatp; : j < i) is coherent. Thugp; : i < §) is coherent, and so there exist
p € S(My) extending eacl; by another application of Proposition 0.14. [

1. BIG AND QUASIMINIMAL TYPES

In this section, we assume thfitis an abstract elementary class with AP,
JEP, and arbitrarily large models. We assume furtherltBak’) = Ry and thatC
is Np-stable.
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With amalgamation, any type has an extension, but a non-algebraic type
may have a bounded number of solutions and thus no non-algebraic extension to a
model that contains all of them. The next definition is a strengthening of nonalge-
braicity to avoid these types.

Definition 1.1. Letp € S(M). We say thap is big if p has a nonalgebraic
extension to any/’ with M <, M’ and|| M| = || M’|.

Notice that ifp € S(N) is big andM <x N thenp | M is big. We begin
by discussing only countable models. The next proposition will allow us to find
big types.

Proposition 1.2. Letp € S(M) and M countable. The following conditions are
equivalent:

(1) pis big;
(2) p has a nonalgebraic extension to so# universal overM;
(3) pis realised uncountably many timesdn

Proof. (1) implies (2) by definition, since there exists a countable universal model
M’ over M by Proposition 0.12. (2) implies (3): Lét’ be a universal model over

M and letp’ € S(M') be a nonalgebraic extension af Suppose thatt C € is

a countable set of realizations pf Let N be countable containing U M. By
universality of M’ over M, we may assume thaf <, M’. Sincep is realised
outsideN (any realization of’), then A does not contain all the realizationsof

in &, sop must be realised uncountably many timegirFinally (3) implies (1) is
clear, ap must be realised outside any countable model contaiiing O

We now show that big types exist.

Proposition 1.3. There exists a big type e S(M), for each countablé/. More-
over, ifp € S(M) is big and M’ is countable containind/, then there is a big
p € S(M') extendingp.

Proof. Let M be given. Choosé&V countable universal ovev/. Then any nonal-
gebraicq € S(N) is such thay | M € S(M) is big by the previous proposition.
Moreover, ifp € S(M) is big andM’ is countable containing/, we can choose
N countable universal ovel/’. Sincep is big, p has a nonalgebraic extension
q € S(N); againg [ M’ is big by the previous proposition. O

We now consider the simplest big types.

Definition 1.4. A typep € S(M) is quasiminimalif p is big and has exactly one
big extension inS(M") for any M < M’ with ||M|| = || M.
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The key use of our strong locality assumption is to deduce in Proposi-
tion 2.1 (based on Proposition 1.10) that under our strong locality assumptions
(and categoricity) replacing ‘exactly one big’ by ‘exactly one nonalgebraic’ in the
definition of quasiminimal yields an equivalent notion. In the more general situa-
tion considered in [Le2] these concepts are distinct.

We will primarily be interested in quasiminimal types over countable mod-
els. The name quasiminimal is consistent with Zilber’s usage, since each quasimin-
imal type is realised uncountably many times but has at most one extension which
is realised uncountably many times. We can now show that quasiminimal types
exist by using the usual tree argument:

Proposition 1.5. There exists a quasiminimal type over some countable model.
Moreover, ifp € S(M) is big andM is countable, then there is a countahlé¢’
extendingM and a quasiminimab’ € S(M') extendingp.

Proof. Since big types exist by the previous proposition, it is enough to show the
second sentence. Lptc S(M) be big and suppose, for a contradiction, thags

no quasiminimal extension over a countable model. Sinbas a big extension
over any model by the previous proposition, this means that each big extension
of p has at least two big extensions. We can therefore construct a tree of types
(py : n € “~2) with p, € S(M,) and M, countable, such that

(l) M<> =M andp<> =Dp;

(2) (pyn - n < £(n)) is C-increasing;
(3) py is big;

(4) MnAO = MnAl bUtpnAO 7é Pn1-

But this contradict$ty-stability: Letn € “2. Since(p,, : n < w) is countable
and increasing, there js, extending each,,;,, by Remark 0.15. LefV be count-
able containingj776 w>o M. Eachp, for n € “2 has an extension i§(V), so

there ar@™ types overV, a contradiction. O

We finish this section with a result on uniqueness of nonalgebraic exten-
sions over certain countable modelsnit modelsand over saturated models of
cardinalityX;.

Definition 1.6. Let M be a countable model. Let < w; be a limit ordinal. A
countable modeNV is ana-limit model over)M if there exists an increasing and
continuous chairiM; : ¢ < «) such thatV, = M, eachM; is universal over
M;, andN = J; ., M;. We say thatM; : i < «) is ana-tower for N over M.
Observe that ifN is an a-limit over M, then N is anw-limit over M:
If (M; : i < «) is ana-tower for N over M, choose(a,, : n < w) a cofinal
sequence forv with & = 0. Then(M,,, : n < w) is anw-tower for N over M



UPWARD CATEGORICITY 13

asM,,,, is universal ovenV/,,,. Observe also that for any countaldlé and any
limit ordinal o < wy, there exists an-limit N over M by repeated applications of

Proposition 0.12.

We now prove two facts about limit models, which are adapted from She-
lah’'s Lemma 2.2 in [Sh394]; they are stated and proved in [Sh88]. Analogous
arguments for uncountable cardinalities are much more difficult; compare [VD1,
GrvV].

Proposition 1.7. Letaj,as < wip be limit ordinals. LetM be countable and
assume thalv, is anay-limit over M. ThenN; =,; Ns.

Proof. Without loss of generality, we may assume that = w = as. Let
(M! . n < w) be anw-tower for N¢ over M, for £ = 1,2. Proving the iso-
morphism betweedv; and N, is now a standard back-and-forth construction us-
ing the universality ofMﬁ+1 over M‘: We construct an increasing sequence of
K-embeddings,, such thatdom( f2,,) containsM,} andim( fa,,+1) containsM?2,
with fo = idy. This is possible, since eadl? , is universal overM/!, for

¢ = 1,2, and is enough, as the union of tlfieis an isomorphism betwee¥,; and

N> which is the identity on\/. O

Since the value of the ordinal is immaterial, we will simply say thav
is alimit over M, whenN is ana-limit over M. The next proposition is simply
proved by pasting the towers witnessing the limits together.

Proposition 1.8. Leta < w; be an ordinal, not necessarily a limit. Assume that
(M; : 1 < «) is increasing and continuous such thef_; is a limit over M, for
i < a. Then(J,_,, M; is alimit overM.

We now consider nonalgebraic extensions of quasiminimal types. At this
point we need locality/tameness hypotheses.

Proposition 1.9. SupposeC is local. Letp € S(M) be quasiminimal, with\/
countable, and letV be a limit overM. Then there is a unique nonalgebraic
extension op in S(NV).

Proof. Let (V,, : n < w) be anw-tower for N over M. Letq € S(NN) be the
unique big type extending in S(M). Thengq is nonalgebraic, which proves
existence. Now assume thgt € S(N) be a nonalgebraic extension pf Let
n < w. Thenq | N, andq¢’ | N,, are two big extension af; the first by restric-
tion, and the second by Proposition 1.2. Hence, by quasiminimalipy wé have
q | N, = ¢ | N,. Since this holds for any < w, we have thay = ¢/, sincek is
local. O

We can extend the Proposition 1.9 to the saturated model oRsi@gehich
exists by Proposition 0.10).
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Proposition 1.10. Suppose is local. Letp € S(M) be quasiminimal, with\/
countable. There is a unique nonalgebraic extensiop tof any saturated model
N of sizeX; containingM.

Proof. First, there can be at most one nonalgebraic extensipowér the saturated
model of sizeX;, since it is saturated: lf; # ¢ € S(N), with N of size¥;
both extendp, then, since locality implies tameness, theré4$ countable, with
M <y M' <x N, suchthaty; | M’ # ¢ [ M'. SinceN is saturated, it is
universal overM’, and hence;; | M’ andge | M’ are big, by Proposition 1.2.
This contradicts the quasiminimality pf

We now turn to existence and notice that by Proposition 0.6, it is enough
to prove it for some saturated model of sitg Consider an increasing and con-
tinuous chain of countable mod€l8/; : i < N;), such thatMy = M, andM; 4+,
is universal ovetM;. This is possible by Proposition 0.12. Notice that eA¢h ;
realizes every type oveV/; by universality. Hence the modél = Ui<N1 M; is
saturated, and by Proposition 1.8, eddhis a limit over M. Letpy = p. By
Proposition 1.9, there is a unique nonalgebmaice S(M;) extendingpy. By
unigueness, the sequenge : i < N;) is C-increasing, and so theregsc S(V)
extending eachh < w; by Proposition 0.20. Theny is clearly nonalgebraic, as
eachp; is. O

2. UPWARD CATEGORICITY. GOING UP INDUCTIVELY

In this section, we assume thfétis a local abstract elementary class, with
AP, JEP, and arbitrarily large models. We assume H#iC) = X, and thatC
is categorical inY;. Notice thatC is tame by Proposition 0.19 ant)-stable by
Fact 0.9, so the results of the previous section apply.

The idea is to prove by induction gn> R; that every model of sizg is
saturated. This implies categoricityirby Proposition 0.6. This is the reason why
the assumption that all the uncountable models of size at jnast saturated will
appear as an assumption in two of the following propositions.

We first show that we can extend quasiminimal types to larger models,
provided all the intermediate models are saturated:

Proposition 2.1. Letp € S(M) be quasiminimal, witi/ countable. Lef, > X,
and assume that every model of sizis saturated, withY; < x < u. Thenp has
a unique nonalgebraic extension to any model of gize

Proof. We prove inductively that there exists a unique nonalgebraic extensjon of
in S(N) by induction onu = | N|| > ®;. Forpu = ¥y this is Proposition 1.10.
Now assume that > X;. By assumption, we can findV; : ¢ < u) an increasing
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and continuous chain of saturated models of $i2g|| = |i| + ¥;. By induc-
tion hypothesis, there exists a unique nonalgelwaie S(N;) extendingp. By
uniqueness, the sequenge : ¢ < u) is C-increasing, so there exisgse S(IV)
extending eaclp; by Proposition 0.20. Now the uniqueness;aé as in Proposi-
tion 1.10, sinceV is saturated. O

We now introduce Vaughtian pairs:

Definition 2.2. Let p € S(M) be quasiminimal, withM/ countable. A(p, u)-
Vaughtian pairis a pair of modelsVy, Ny of size u with M <x N; < No,
N; # Ny, such that there is a nonalgebraic extensiop of S(/V;) which is not
realised inVs.

Let p € S(M) be quasiminimal with\/ countable. The goal is to prove
that there are nép, u)-Vaughtian pairs for any uncountahle In order to extend
the traditional Vaught argument, we will need to find a countable substitute for the
notion: N is saturated oved/. In the excellent case [Lel], one can use countable
full models overdM: Two countable full models ovet/ are isomorphic oveid/
and the union of any countable chain of full models o¥éiis full over M. Here,
the key will be to use certain kinds of limits, introduced in [Sh88],shperlimits
which have good unigueness properties (Proposition 2.5), and will behave well
under unions (Proposition 2.6).

Definition 2.3. Let o < wy be a limit ordinal. LetM be a countable model. A
countable modelV is an a-superlimit overM if there exists an increasing and
continuous chaifN; : i < «) such thatVy = M, N;4, is a limit over N;, and
Uica Ni = N. We call(N; : i < o) as above an-supertower forV over M.

Clearly, a superlimit is a limit, since i4; 1 is a limit over M; then ;1
is universal overl/;. But ana-superlimit is also anjw - «)-limit, by unravelling
the definitions. So, we clearly have the unigueness property, but we also have
a stronger one. First, let us use a convenient piece of notation: Givan a-
superlimit overM, we denote byV somea-supertower N; : i < «) for N over
M.

The next proposition shows that it is enough to understassdperlimits.

Proposition 2.4. Let « < w; be a limit ordinal. LetM be countable. Every
a-superlimit overM is anw-superlimit overM.

Proof. As « is a countable limit ordinal, there igv, : n < w) cofinal in «,
with ag = 0. Then if (N; : i < «) is ana-supertower forN over M, then
(Na, : n < w) is clearly anu-supertower fotV over M, asN,,,. , is a limit over
N,,, by Proposition 1.8. 0

So we focus om-superlimits. The proof of the next proposition is simply
an iteration of Proposition 1.7.
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Proposition 2.5. Let N, N’ be w-superlimits overM. ThenN 2, N'. Fur-
thermore, if(N,, : n < w) and (N}, : n < w) are w-supertowers forV and N’
(respectively) ovei!, then there exists an isomorphisin N =,, N’ such that

f I Ny:N, =N/, foreachn <w.

We write f : N = N’ for an isomorphism between the two supertowers of
two superlimitslV and N’ as in the previous proposition.

We will show that countable unions efsuperlimits ares-superlimits un-
der the right circumstances. We will need to consider sequences of superigwers
so it is natural to order them. The most natural choice is to consider the following
partial order< betweenw-supertowers:

(Np:n<w) < (N} :n<w),

if for eachn < w, NV}, is a limit over V,,. Unfortunately, this is too strong for our
purposes, so we consider the weakenitigwhere the' serves, as usual, to denote
eventuadomination: We say that

(N, :n<w) <" (N, :n<w),

if for eachn < w, there existsn > n such thatV), is a limit over V,,. Notice
thatN,g is a limit 9ver]\[n for ea_lchk >m by Proposition 1.8. Itis clear that* is
transitive, and ifV < N’ thenN <* N’.

The proof that there are no Vaughtian pairs requires the analysis of arbi-
trary sequences of models, where unlike towers there is no guarantee that each
model is universal over its predecessor. For this, we consider unions of superlim-
its. The notation is a bit cumbersome, but the proof is a straightforward diagonal
argument.

Proposition 2.6. Leta < w; be a limit ordinal. Let(N’ : i < a) be an<x-
increasing and continuous chain ©fsuperlimits ove/ with w-supertowersv?,
fori < «. Suppose, in addition, that

Ni<* N/, fori<j<a.
ThenlJ,_,, N is anw-superlimit overM. Moreover, there existeNg : n < w)
anw-supertower fot J,_, N* over M such that

N'<* (N%:n<w), foreachi< a.

Proof. It is enough to prove the last sentence. In addition, by choosing a cofinal
sequencéa, : n < w) for a with oy = 0, and using the transitivity of*, we may
assume that: = w. So we consider ag*-increasing sequendeV’ : i < w) of
w-supertowersV? for N* over M. We will construct a strictly increasing function

f :w — wsuch thatf(0) = 0 and for each integet > 0

N]’}(n) is alimit overNy, for eachi, k < n.
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This is enough: LetVy := Niiny for eachn < w, Then(NY : n < w) is an
w-supertower fot J;,_, N’ over M sinceNy = M andN¥,, is a limit over N¥
by the definitions. Furthermore,

Ni<* (N¥:n<w), foreachi<uw:
Leti, k < w be given and consider := max(i, k) + 1. ThenN¥ (= th‘(n)) isa
limit over N} by definition.

It remains to show that such ghcan be found. By definition o£*, for
eachi < w there exists a strictly increasing functign: w — w such that

N}t}z) is a limit overN',  for eachn < w.

We definef(n) by induction om. Let f(0) = 0. Having constructed(n), we
definef(n + 1) by taking the maximum of the following three numbers:

fa(f(n),  frno facio--0 fo(n), f(n)+1.

Then f(n + 1) is as required: The fact thgt{n + 1) is at least the first number

ensures thaN}l(;il) is a limit over N} for i < n andk < n. Thatf(n + 1) is at

least the second number ensures m?(t;il) is a limit over eacwvg, for: < n,
since

fnofn—lo"'ofO(n) > fnofn—lo“'ofi(n)'
And finally, f(n + 1) > f(n) since f(n + 1) is at least the third number. This
finishes the proof. O

We prove a simple result which will be used in the proof that there are no
Vaughtian pairs:

Proposition 2.7. Suppose thab/y, M; are countable and4 is a countable set.
There exists a countabl¥ containingM, U M7 U A which is a limit over bothl{,
and M.

Proof. Itis enough to find a countable modglwhich is universal ovet/y and M
and containsA. But this is clear: Choose firé{’ containingA which is universal
over My. Now chooseV” containingN’ U M; which is universal ovei/;. Since
N’ < N” andN' is universal oven\/,, then so isN". O

We now prove that there are no Vaughtian pairs. We will use one simple
fact.

Fact 2.8. If there is a(p, \)-Vaughtian pair, then for any with | domp| < p < A
there is a(p, 11)-Vaughtian pair.

Proof. If (M, N) is (p, A)-Vaughtian pair, alternately choosd; < M
andN; < N with domp C M, and withp(N;11) D p(M;) for u steps. Then
(M, N,)is a(p, n)-Vaughtian pair. g
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Proposition 2.9. Letp € S(M) be quasiminimal with\/ countable. Then there
are no(p, u)-Vaughtian pairs, with: > ;.

Proof. Suppose thatVy <x N; is a (p, u)-Vaughtian pair, foru > ¥;. By
Lemma 2.8, we may assume that= R, and hence thav, and V; are satu-
rated by Proposition 0.10.

We now construct ép, Ry )-Vaughtian paitN® < N'! such thatV* is an
w-superlimit overM, with w-supertoweV'*, for ¢ = 0, 1, and such that

NY <* NL.

Let N = M for ¢ = 0,1. Choose a limitNY over M such thatNy <x Np
(this is possible sincéy is saturated). Now choosE] < N; a limit over N}
containing an element € N; \ Nyg. Now having constructedV? <x Ny and
N} <x Ni countable withN, a limit over N}, chooseN;, , <x Ny a limit
over N? containing all the realizations itv,} of the unique big extension gfto
ND. To show the existence df?_ ,, note first thap, is not realized inV,} — No.
For, if b were such a realizatiom; = tp(b/Ny), andp, the unique big extension
of p; to Ny are distinct non-algebraic extensionspofo Ny (p is omitted in NV}
by the definition of Vaughtian pair). But this contradicts Lemma 1.10. So the
set of realizations op; in N} is a countable subset &, and so we can choose
NP, . Now choose countabl®;}, ; < N; a limit over bothN;} andN?. ; (this

is possible by Proposition Z.WAH can be chosen insid®; by the saturation
of Ny). Let N* = (J,., Nt for ¢ = 0,1. ThenN* is anw-superlimit over
M with w-supertowerN*¢ such thatN? <* N! (evenN® < N'). Furthermore,
NO < N'forms a(p, Rg)-Vaughtian pair. Lep, be the unique big type extending
pin S(N°), which exists by countability oV® and quasiminimality op.

To contradict categoricity il¥1, we construct an increasing and continuous
chain (N* : i < ¥y) of w-superlimits overM, such thatN! # N*! with a
big extensiorp; € S(N?) of p which is not realised inVi*!, and such that the
sequence of limit§ N? : i < w;) is <*-increasing: We do this by induction on
i < wy. Fori = 0, this is given. At limiti < wq, let N* = Uj<z.Nj with
w-supertowerN* over M as in Proposition 2.6. Now having constructed the
superlimit modelV? with w-supertoweV? over M, for i limit or successor, choose
an isomorphismf; : N° = N’ as in Proposition 2.5. Thefi; extends to an
automorphisnmy; € Aut(¢/M) and we letp; = g;(po), N*t! = g;(N1), and
N+l = g(N?1). Thenp; € S(IV;) is a big extension op which is not realised
in N“t1, and N* <* N*t! sinceg; is an automorphism respecting levels and
NO <* N1,

Let N* = U;.,, N'. ThenN* has sizew; but omitspy: Otherwise,
there isa € N* realizingpy. Sincea ¢ NY, there isi < w; such thata €

N1\ N'. Thentp(a/N") is nonalgebraic and extenglsHence tp(a/N*) = p;
by Proposition 1.9 sinc&V’ is a (super)limit overM, but this is a contradiction
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sincea € Nt andp; is not realised inVi*!. So,p, is not realised inV*, which
implies that/V* is not saturated, contradicting Proposition 0.10. O

The key to carry out the induction in the main theorem is the successor
case. We use the absence of Vaughtian pairs to show this. This argument is inspired
by the final argument in [Sh394] and Theorem 4.1 of [GrvVD3].

Proposition 2.10. Letp > N;. Assume that all models of sizeare saturated,
with X; < x < p. Then all models of size™ are saturated.

Proof. Fix p € S(M) be quasiminimal and/ countable, by Proposition 1.5. Let
N be amodel of siza™, with 1 > R;. Since every model of sizeis saturatedV

is u-saturated, so we may assume that<,c N. Observe that since there are no
(p, n)-Vaughtian pairs by Proposition 2.9, every nonalgebraic extensiprtof
submodel ofV' < N of size must be realised ifV. Otherwise by choosing any
N" of sizeu, with N’ < N” < N, andN’ # N”, we have gp, 11)-Vaughtian
pair. We now prove:

Claim. Let M <x M’', with M’ of sizey; fix a K-embeddingf : M’ — N which
is the identity onM. Leta € € realisep. Then there exisi/” of size u, with
M' < M" anda € M”, and aK-embedding; : M"” — N extendingy.

Proof. If a is already inM’, there is nothing to do. Otherwise the type =
tp(a/M’) is a nonalgebraic extension pfso f(p’) is a nonalgebraic extension of
p over a submodel oV of sizeu. Thusf(p') must be realised by sondec N, by
the observation of the first paragraph. Choose an automorphisih® extending
f sendingz to b, and choos&V’ < N of sizeu containingb such thatf (M') <
N'. LetM” = h~}(N')andg = h | M". Theng : M" — N extendsf andM”
containsz and extend$/’, as desired. O

We now show thalV is saturated. Fid/y, <x N of sizep andg € S(M).
We will show thaty is realised inV. First, we may assume thaf <x My, since
M is saturated (and > X;). We construct two increasing chains of models

(M,, : n <w)and(M], : n < w), with M,, < M},

such that each model is of size M, is as given above)|, realizesq, every
realization ofp in M/ is in M, 1. We also construct an increasing chainkof
embeddings

fn : My, — N, such thatf,, | My = idyy,.
This is easy to do: Let/, be as above, and choo3# of sizey extending)/, and
realizingq. Let fo = idyg @ Mo — N. Now having constructed,, : M,, — N
andM,, <x M), there are at mogt realizations of in M \ M,,, so by applying
the previous clainu-times, we can find/,, .1 of sizeu extendingM,, containing
every realization of in M/, as well as aC-embeddingf,,+1 : M,+1 — N,
extendingf,,. Choose\/], . ; any model of sizg. containing)M,, 1 U M},.
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This is enough: LetM, = U, , M, and M/ = U, M). Then
M, <x M/ are models of size.. By Proposition 2.1 there is a nonalgebraic
extension ofp in S(M,,), and by construction, this nonalgebraic extension is not
realised inM/, \ M,,. Since there are n@, 1)-Vaughtian pairs by Proposition 2.9,
this implies that\M,, = M/,. Hence|J, ., f» is aK-embedding from\Z/, into N
fixing My, and so sends a realization @fn M/, to a realization of; in N. This
shows that; is realised inV. O

We can now prove upward categoricity frain.

Theorem 2.11. LetK be a local abstract elementary class with AP, JEP, arbitrar-
ily large models, and.S(K) = Xy. Assume thak is categorical inX;. ThenkC is
categorical in every uncountable cardinal.

Proof. We prove that uncountable models are saturated, which shows categoricity
in every uncountable cardinal by Proposition 0.6. Suppose, for a contradiction,
that there isy > X; and a model of size which is not saturated. Choose
minimal with this property. Thery > R; (by Proposition 0.10) and cannot be a
limit cardinal. Hencey = p, for someu > R;. By minimality of , every model

of sizex, with¥; < k < pu < u* = ¥y, is saturated. Hence, by Proposition 2.10,
every model of size.™ is saturated. This contradicts the choiceyof O
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