Fine Classification of Strongly minimal sets Logic Colloquium 2021 Poznan

John T. Baldwin University of Illinois at Chicago

July x, 2021

John T. Baldwin University of Illinois at ChFine Classsification of Strongly minimal se

July x, 2021 1 / 22

Joint work with Vitkor Verbovskiy Thanks to Joel Berman, Gianluca Paolini, Omer Mermelstein, and Viktor Verbovskiy.

Strongly Minimal Theories

(日) (四) (日) (日) (日)

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition

a is in the algebraic closure of *B* ($a \in acl(B)$) if for some $\phi(x, \mathbf{b})$: $\models \phi(a, \mathbf{b})$ with $\mathbf{b} \in B$ and $\phi(x, \mathbf{b})$ has only finitely many solutions.

Theorem

If T is strongly minimal algebraic closure defines matroid/combinatorial geometry.

・ 同 ト ・ ヨ ト ・ ヨ

The trichotomy

Zilber Conjecture

The acl-geometry of every model of a strongly minimal first order theory is

- disintegrated (lattice of subspaces distributive)
- vector space-like (lattice of subspaces modular)
- 'bi-interpretable' with an algebraically closed field (non-locally modular)

Hrushovski's example showed there are non-locally modular examples which are far from being fields; the examples don't even admit a group structure.

A 35 A 4

The diversity of flat strongly minimal sets

The 'Hrushovski construction' actually has 5 parameters:

Describing Hrushovski constructions

- σ : vocabulary
- **2** L_0 : A $\forall \exists$ collection of finite σ -structures
- **③** ϵ : A submodular (hence flat) function from L_0^* to \mathbb{Z} .
- $L_0: L_0^*$ defined using ϵ .
- *μ*: a function bounding the number of 0-primitive extensions of an
 A ∈ *L*₀ are in *L*_μ.

To organize the classification of the theories each choice of a class **U** of μ yields a collection of T_{μ} with similar properties.

→ Ξ →

Hrushovki's basic construction

Example

- σ has a single ternary relation R;
- **2** L_0^* : All finite σ -structures
- $\epsilon(A)$ is |A| r(A), where r(A) is the number of tuples realizing R.
- $A \in L_0^*$ if $\epsilon(B) \ge 0$ for all $B \subseteq A$.
- **5 U** is those μ with $\mu(A/B) \ge \epsilon(B)$.

Group Action and Definable Closure

Fix *I* as two independent points in the generic model *M* of T_{μ} .

2 groups

Let $G_{\{I\}}$ be the set of automorphisms of M that fix I setwise and G_I be the set of automorphisms of M that fix I pointwise.

Definition

- $dcl^*(I)$ consists of those elements that are fixed by G_I but not by G_X for any $X \subsetneq I$.
- 2 The symmetric definable closure of *I*, sdcl*(I), consists of those elements that are fixed by *G*_{{*I*}} but not by *G*_{{*X*}} for any *X* ⊆ *I*.

 $sdcl^*(I) = \emptyset$ implies T does not admit elimination of imaginaries.

The main result: Classifying dcl [BV21]

Theorem

Let T_{μ} be a strongly minimal theory as in Hrushovski's original paper. I.e. $\mu \in \mathcal{U} = \{\mu : \mu(A/B) \ge \delta(B\})$. Let $I = \{a_1, \ldots, a_v\}$ be a tuple of independent points with $v \ge 2$.

 G_l If T_{μ} triples then dcl^{*}(l) = \emptyset dcl(l) = $\bigcup_{a \in I}$ dcl(a) and every definable function is essentially unary (Definition 15).

$$\begin{aligned} G_{\{l\}} & \text{ In any case } \mathrm{sdcl}^*(I) = \emptyset \\ & \mathrm{sdcl}(I) = \bigcup_{a \in I} \mathrm{sdcl}(a) \\ & \text{ and there are no } \emptyset \text{-definable symmetric (value does not depend on order of the arguments) truly } \nu \text{-ary function.} \end{aligned}$$

Consequently, in both cases T_{μ} does not admit elimination of imaginaries. Nevertheless the algebraic closure geometry is not disintegrated.

< 🗇 > < 🖻 > <

The General Construction

(日) (四) (日) (日) (日)

Amalgamation and Generic model

We study classes K_0 of finite structures Awith $\delta(A') \ge 0$, for every $A' \subset A$. $d_M(A/B) = \min\{\delta(A'/B) : A \subseteq A' \subset M\}.$

 $A \le M$ if $\delta(A) = d(A)$. When (\mathbf{K}_0, \le) has joint embedding and amalgamation there is unique countable generic. Primitive Extensions and Good Pairs

Definition

- Let $A, B, C \in \mathbf{K}_0$.
- **(D**) C is a 0-primitive extension of A if C is minimal with $\delta(C/A) = 0$.

② C is good over $B \subseteq A$ if B is minimal contained in A such that C is a 0-primitive extension of B. We call such a B a base.

α is the isomorphism type of ({*a*, *b*}, {*c*}),

Overview of construction

Realization of good pairs

- A good pair C/B well-placed by A in a model M, if $B \subseteq A \leq M$ and C is 0-primitive over X.
- 2 For any good pair (C/B), $\chi_M(C/B)$ is the maximal number of disjoint copies of *C* over *B* appearing in *M*.
- So For $\mu \in \mathcal{U}$, K_{μ} is the collection of $M \in K_0$ such that $\chi_M(C/B) \leq \mu(C/B)$ for every good pair (C/B).

If C/B is well-placed by $\mathcal{A} \leq M$, $\chi_M(C/B) = \mu(C/B)$

The structure of acl(X)

Finite Coding

Definition

A finite set $F = \{\overline{a}_1, \dots, \overline{a}_k\}$ of tuples from M is said to be coded by $S = \{s_1, \dots, s_n\} \subset M$ over A if

 $\sigma(F) = F \Leftrightarrow \sigma | S = \mathrm{id}_S \text{ for any } \sigma \in \mathrm{aut}(M/A).$

We say T = Th(M) has the finite set property if every finite set of tuples F is coded by some set S over \emptyset .

If $dcl^*(I) = \emptyset$, *T* does not have the finite set property.

・ 同 ト ・ ヨ ト ・ ヨ ト

dcl* and elimination of imaginaries

Fact: Elimination of imaginaries

A theory *T* admits *elimination of imaginaries* if its models are closed under definable quotients.

ACF: yes; locally modular: no

Fact

If T admits weak elimination of imaginaries then T satisfies the finite set property if and only T admits elimination of imaginaries.

Since every strongly minimal theory weak elimination of imaginaries.

If a strongly minimal T has only essentially unary definable binary functions it does not admit elimination of imaginaries.

 $dcl^*(I) = \emptyset$ implies no elimination of imaginaries:

Lemma

Let $I = \{a_0, a_1\}$ be an independent set with $I \le M$ and M is a generic model of a strongly minimal theory.

- If $sdcl^*(I) = \emptyset$ then I is not finitely coded.
- If dcl*(I) = Ø then I is not finitely coded and there is no parameter free definable binary function.

'Non-trivial definable functions'

Definition

Let *T* be a strongly minimal theory. function $f(x_0 \dots x_{n-1})$ is called *essentially unary* if there is an \emptyset -definable function g(u) such that for some *i*, for all but a finite number of $c \in M$, and all but a set of Morley rank < n of tuples $\mathbf{b} \in M^n$, $f(b_0 \dots b_{i-1}, c, b_i \dots b_{n-1}) = g(c)$.

G-decomposable sets

Definition $\mathcal{A} \subseteq M$ is G-decomposable if $\bigcirc \mathcal{A} \leq M$ $\bigcirc \mathcal{A}$ is G-invariant $\bigcirc \mathcal{A} \subset_{<\omega} \operatorname{acl}(I).$

Fact

There are *G*-decomposable sets. Namely for any finite *U* with d(U/I) = 0,

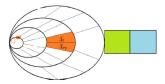
$$\mathcal{A} = \operatorname{icl}(I \cup G(U))$$

★ ∃ → < ∃</p>

Constructing a *G*-decomposition Linear Decomposition

Constructing a *G*-decomposition Linear Decomposition

Tree Decomposition



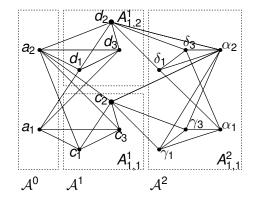
Prove by induction on levels that $dcl^*(I) = \emptyset$. $(sdcl^*(I) = \emptyset)$

John T. Baldwin University of Illinois at Ch Fine Classsification of Strongly minimal se

July x, 2021 17 / 22

A non-trivial definable binary function

In the diagrams, we represent a triple satisfying R by a triangle.



Conclusion

Strongly minimal theories with non-locally modular algebraic closure

- Diversity
 - **1** 2^{\aleph_0} theories of strongly minimal Steiner systems (*M*, *R*) with no Ø-definable binary function
 - 2 $\mathbb{2}^{\aleph_0}$ theories of strongly minimal quasigroups (M, R, *) + an example of Hrushovski
 - Non-Desarguesian projective planes definably coordinatized by ternary fields [Bal95]
 - 2-ample but not 3-ample sm sets (not flat) [MT19]
 - strongly minimal eliminates imaginaries (flat) INFINITE vocabulary) (Verbovskiv)

Conclusion

Strongly minimal theories with non-locally modular algebraic closure

- Diversity
 - **1** 2^{\aleph_0} theories of strongly minimal Steiner systems (*M*, *R*) with no Ø-definable binary function
 - 2 $\mathbb{2}^{\aleph_0}$ theories of strongly minimal quasigroups (M, R, *) + an example of Hrushovski
 - Non-Desarguesian projective planes definably coordinatized by ternary fields [Bal95]
 - 2-ample but not 3-ample sm sets (not flat) [MT19]
 - strongly minimal eliminates imaginaries (flat) INFINITE vocabulary) (Verbovskiv)
- Classifying
 - discrete
 - 2 non-trivial but no binary function
 - on non-trivial but no commutative binary function
 - Non-Desarguesian projective planes definably coordinatized by ternary fields [Bal95]

Combinatorial connections

Unlike many construction in infinite combinatorics these methods give a family of infinite structures with similar properties. Among the properties investigated are:

- cycle graphs in 3-Steiner systems [CW12] generalized to paths in Steiner k-system; Omitting or demanding finite cycles.
- Preventing or demanding 2-transitivity
- controlling the lengths of chains.
- sparse Steiner systems: forbidding specific configurations [CGGW10]

References I

John T. Baldwin.

Some projective planes of Lenz Barlotti class I. *Proceedings of the A.M.S.*, 123:251–256, 1995.

John T. Baldwin and V. Verbovskiy. Towards a finer classification of strongly minimal sets.

preprint: Math Arxiv:2106.15567, 2021.

K. M. Chicot, M. J. Grannell, T. S. Griggs, and B. S. Webb. On sparse countably infinite Steiner triple systems. *J. Combin. Des.*, 18(2):115–122, 2010.

P. J. Cameron and B. S. Webb. Perfect countably infinite Steiner triple systems. *Australas. J. Combin.*, 54:273–278, 2012.

References II

I. Muller and K. Tent. Building-like geometries of finite morley rank. *J. Eur. Math. Soc.*, 21:3739–3757, 2019. DOI: 10.4171/JEMS/912.