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Strongly Minimal Theories
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STRONGLY MINIMAL

Definition
T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition
a is in the algebraic closure of B (a ∈ acl(B)) if for some φ(x ,b):
|= φ(a,b) with b ∈ B and φ(x ,b) has only finitely many solutions.

Theorem
If T is strongly minimal algebraic closure defines matroid/combinatorial
geometry.
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The trichotomy

Zilber Conjecture
The acl-geometry of every model of a strongly minimal first order
theory is

1 disintegrated (lattice of subspaces distributive)
2 vector space-like (lattice of subspaces modular)
3 ‘bi-interpretable’ with an algebraically closed field (non-locally

modular)

Hrushovski’s example showed there are non-locally modular examples
which are far from being fields; the examples don’t even admit a group
structure.
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The diversity of flat strongly minimal sets

The ‘Hrushovski construction’ actually has 5 parameters:

Describing Hrushovski constructions
1 σ: vocabulary
2 L0: A ∀∃ collection of finite σ-structures
3 ε: A submodular (hence flat) function from L∗0 to Z.
4 L0: L∗0 defined using ε.
5 µ: a function bounding the number of 0-primitive extensions of an

A ∈ L0 are in Lµ.

To organize the classification of the theories each choice of a class U
of µ yields a collection of Tµ with similar properties.
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Hrushovki’s basic construction

Example
1 σ has a single ternary relation R;
2 L∗0: All finite σ-structures
3 ε(A) is |A| − r(A), where r(A) is the number of tuples realizing R.
4 A ∈ L∗0 if ε(B) ≥ 0 for all B ⊆ A.
5 U is those µ with µ(A/B) ≥ ε(B).
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Group Action and Definable Closure

Fix I as two independent points in the generic model M of Tµ.

2 groups
Let G{I} be the set of automorphisms of M that fix I setwise and GI be
the set of automorphisms of M that fix I pointwise.

Definition
1 dcl∗(I) consists of those elements that are fixed by GI but not by

GX for any X ( I.
2 The symmetric definable closure of I, sdcl∗(I), consists of those

elements that are fixed by G{I} but not by G{X} for any X ( I.

sdcl∗(I) = ∅ implies T does not admit elimination of imaginaries.

John T. Baldwin University of Illinois at ChicagoFine Classsification of Strongly minimal sets Logic Colloquium 2021 PoznanJuly x, 2021 7 / 22



The main result: Classifying dcl [BV21]

Theorem
Let Tµ be a strongly minimal theory as in Hrushovski’s original paper.
I.e. µ ∈ U = {µ : µ(A/B) ≥ δ(B}). Let I = {a1, . . . ,av} be a tuple of
independent points with v ≥ 2.
GI If Tµ triples then dcl∗(I) = ∅

dcl(I) =
⋃

a∈I dcl(a)
and every definable function is essentially unary (Definition 15).

G{I} In any case sdcl∗(I) = ∅
sdcl(I) =

⋃
a∈I sdcl(a)

and there are no ∅-definable symmetric (value does not depend
on order of the arguments) truly v -ary function.

Consequently, in both cases Tµ does not admit elimination of
imaginaries. Nevertheless the algebraic closure geometry is not
disintegrated.
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The General Construction
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Amalgamation and Generic model

We study classes K 0 of finite structures A
with δ(A′) ≥ 0, for every A′ ⊂ A.
dM(A/B) = min{δ(A′/B) : A ⊆ A′ ⊂ M}.

A ≤ M if δ(A) = d(A).
When (K 0,≤) has joint embedding and amalgamation there is unique
countable generic.
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Primitive Extensions and Good Pairs

Definition

Let A,B,C ∈ K0.
(1) C is a 0-primitive extension of A if C is minimal with δ(C/A) = 0.

(2) C is good over B ⊆ A if B is minimal contained in A such that C is
a 0-primitive extension of B. We call such a B a base.

α is the isomorphism type of ({a,b}, {c}),
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Overview of construction

Realization of good pairs
1 A good pair C/B well-placed by A in a model M, if B ⊆ A ≤ M and

C is 0-primitive over X .
2 For any good pair (C/B), χM(C/B) is the maximal number of

disjoint copies of C over B appearing in M.
3 For µ ∈ U , Kµ is the collection of M ∈ K 0 such that
χM(C/B) ≤ µ(C/B) for every good pair (C/B).

If C/B is well-placed by A ≤ M, χM(C/B) = µ(C/B)
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The structure of acl(X )
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Finite Coding

Definition

A finite set F = {a1, . . . ,ak} of tuples from M is said to be coded by
S = {s1, . . . , sn} ⊂ M over A if

σ(F ) = F ⇔ σ|S = idS for any σ ∈ aut(M/A).

We say T = Th(M) has the finite set property if every finite set of tuples F is
coded by some set S over ∅.

If dcl∗(I) = ∅, T does not have the finite set property.
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dcl∗ and elimination of imaginaries

Fact: Elimination of imaginaries
A theory T admits elimination of imaginaries if its models are closed
under definable quotients.

ACF: yes; locally modular: no

Fact

If T admits weak elimination of imaginaries then T satisfies the finite
set property if and only T admits elimination of imaginaries.

Since every strongly minimal theory weak elimination of imaginaries.

If a strongly minimal T has only essentially unary definable binary
functions it does not admit elimination of imaginaries.
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dcl∗(I) = ∅ implies no elimination of imaginaries:

Lemma

Let I = {a0,a1} be an independent set with I ≤ M and M is a generic
model of a strongly minimal theory.

1 If sdcl∗(I) = ∅ then I is not finitely coded.
2 If dcl∗(I) = ∅ then I is not finitely coded and there is no parameter

free definable binary function.
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‘Non-trivial definable functions’

Definition

Let T be a strongly minimal theory. function f (x0 . . . xn−1) is called
essentially unary if there is an ∅-definable function g(u) such that for
some i , for all but a finite number of c ∈ M, and all but a set of Morley
rank < n of tuples b ∈ Mn, f (b0 . . . bi−1, c,bi . . . bn−1) = g(c).
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G-decomposable sets

Definition
A ⊆ M is G-decomposable if

1 A ≤ M
2 A is G-invariant
3 A ⊂<ω acl(I).

Fact
There are G-decomposable sets.
Namely for any finite U with d(U/I) = 0,

A = icl(I ∪ G(U))
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Constructing a G-decomposition
Linear Decomposition

Tree Decomposition

Prove by induction on levels that dcl∗(I) = ∅. (sdcl∗(I) = ∅)
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A non-trivial definable binary function

In the diagrams, we represent a triple satisfying R by a triangle.

a1

a2

r

r

A0

A1
1,2

rd1
rd3

sd2

A1
1,1
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Conclusion
Strongly minimal theories with non-locally modular algebraic
closure

1 Diversity
1 2ℵ0 theories of strongly minimal Steiner systems (M,R) with no
∅-definable binary function

2 2ℵ0 theories of strongly minimal quasigroups (M,R, ∗) + an
example of Hrushovski

3 Non-Desarguesian projective planes definably coordinatized by
ternary fields [Bal95]

4 2-ample but not 3-ample sm sets (not flat) [MT19]
5 strongly minimal eliminates imaginaries (flat) INFINITE vocabulary)

(Verbovskiy)

2 Classifying
1 discrete
2 non-trivial but no binary function
3 non-trivial but no commutative binary function
4 Non-Desarguesian projective planes definably coordinatized by

ternary fields [Bal95]

John T. Baldwin University of Illinois at ChicagoFine Classsification of Strongly minimal sets Logic Colloquium 2021 PoznanJuly x, 2021 19 / 22



Conclusion
Strongly minimal theories with non-locally modular algebraic
closure

1 Diversity
1 2ℵ0 theories of strongly minimal Steiner systems (M,R) with no
∅-definable binary function

2 2ℵ0 theories of strongly minimal quasigroups (M,R, ∗) + an
example of Hrushovski

3 Non-Desarguesian projective planes definably coordinatized by
ternary fields [Bal95]

4 2-ample but not 3-ample sm sets (not flat) [MT19]
5 strongly minimal eliminates imaginaries (flat) INFINITE vocabulary)

(Verbovskiy)
2 Classifying

1 discrete
2 non-trivial but no binary function
3 non-trivial but no commutative binary function
4 Non-Desarguesian projective planes definably coordinatized by

ternary fields [Bal95]
John T. Baldwin University of Illinois at ChicagoFine Classsification of Strongly minimal sets Logic Colloquium 2021 PoznanJuly x, 2021 19 / 22



Combinatorial connections

Unlike many construction in infinite combinatorics these methods give
a family of infinite structures with similar properties. Among the
properties investigated are:

1 cycle graphs in 3-Steiner systems [CW12] generalized to paths in
Steiner k -system; Omitting or demanding finite cycles.

2 preventing or demanding 2-transitivity
3 controlling the lengths of chains.
4 sparse Steiner systems: forbidding specific configurations

[CGGW10]
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