Variants on the Morley Analysis

> John T. Baldwir

Strategies

Infinitary analyis: typ spaces of countable models

Dowries

Variants on the Morley Analysis

John T. Baldwin

June 9, 2015

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Today's Topics

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

1 Strategies

2 Infinitary analyis: type spaces of countable models

▲□▶▲□▶▲□▶▲□▶ □ のQ@

3 Dowries

Acknowledgements

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

The work reported here comes primarily from the paper Almost Galois ω -stable classes (with Larson and Shelah)

and On a theorem on simultaneous omitting and realizing types and its applications by B.S. Baizhanov, T.S. Zambarnaya and WEAKLY AND ALMOST ORTHOGONALITY OF TYPES B.S.Baizhanov, A.D.Yershigeshova with further analysis and extensions by myself and Aida Alibek.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Strategies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Analyze the countable models

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Specific examples

2 the stability theory analysis: analyze the structure of models

Analyze the countable models

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Specific examples

- 2 the stability theory analysis: analyze the structure of models
- 3 Analyze countable isomorphism e.g. by descriptive set theory

Do uncountable models count?

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Two ways to approximate the countable by the uncountable

 Obtain more definable sets by expanding the logic: Morley

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

2 Use our better understanding of models in ℵ₁ to understand countable models.

Morley Analysis

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Morley's Analysis

Let *K* be the class of models of a sentence of $L_{\omega_1,\omega}$.

- **1** Let L_0^{K} be the set of first order τ -sentences.
- 2 Let L^K_{α+1} be the smallest fragment generated by L^K_α and the sentences of the form (∃**x**) ∧ p(**x**) where p is an L^K_α-type realized in a model in *K*.

(日) (日) (日) (日) (日) (日) (日)

3 For limit
$$\delta$$
, $L_{\delta}^{\mathbf{K}} = \bigcup_{\alpha < \delta} L_{\alpha}^{\mathbf{K}}$.

Morley Analysis

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Morley's Analysis

Let *K* be the class of models of a sentence of $L_{\omega_1,\omega}$.

- **1** Let L_0^{K} be the set of first order τ -sentences.
- 2 Let L^K_{α+1} be the smallest fragment generated by L^K_α and the sentences of the form (∃x) ∧ p(x) where p is an L^K_α-type realized in a model in K.

3 For limit
$$\delta$$
, $L_{\delta}^{\mathbf{K}} = \bigcup_{\alpha < \delta} L_{\alpha}^{\mathbf{K}}$.

Scattered

K (or ϕ if *K* = mod ϕ) is scattered if and only if for each $\alpha < \omega_1$, L_{α}^{K} is countable.

Locally Small Models

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Definition: Locally Small

- **1** A τ -structure *M* is <u>*L**-small</u> for *L** a countable fragment of $L_{\omega_1,\omega}(\tau)$ if *M* realizes only countably many *L**-types (i.e. only countably many *L**-*n*-types over \emptyset for each $n < \omega$).
- **2** A τ -structure *M* is called <u>locally τ -small</u> if for every countable fragment *L*^{*} of $L_{\omega_1,\omega}(\tau)$, *M* realizes only countably many *L*^{*}-types.

Of course, every model of a scattered sentence is locally small.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Large and Small models

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Definition: small

- **1** A τ -structure *M* is called <u>small</u> or <u> $L_{\omega_1,\omega}$ -small</u> if *M* realizes only countably many $L_{\omega_1,\omega}(\tau)$ -types.
- **2** Otherwise it is large (i.e. $L_{\omega_1,\omega}$ -large).

Scott's Theorem in the uncountable

A model of arbitrary cardinality has a Scott sentence if and only if it small.

 ϕ -scattered implies every model is locally small; converse fails (B-Hytinnen-Kesala).

(ロ) (同) (三) (三) (三) (○) (○)

Large Sentences

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Definition

A sentence σ of $L_{\omega_1,\omega}$ is <u>large</u> if it has uncountably many countable models.

A large sentence σ is <u>minimal</u> if for every sentence ϕ either $\sigma \land \phi$ or $\sigma \land \neg \phi$ is not large.

Minimal counterexamples and large models

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Lemma [Harnik-Makkai]

For every counterexample σ to Vaught's conjecture, there is a minimal counterexample ϕ such that $\phi \models \sigma$.

Lemma [Harnik-Makkai]

Every (minimal) counterexample σ to Vaught's conjecture has a large uncountable model.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Shelah Analysis of Model

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Fix a scattered $L_{\omega_1,\omega}$ sentence σ and $M \models \sigma$ with universe ω_1 . Add a binary relation <, interpreted as the usual order on

 ω_1 .

Define a continuous increasing chain of countable fragments L_{α} for $\alpha < \aleph_1$ such that

- for each (first order) *n*-type over the empty set realized in *M*, the conjunction of the type is in *L*₀, and
- the conjunction of each type in L_α that is realized in M is a formula in L_{α+1}.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Shelah Analysis cont.

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Extend the similarity type to τ' by adding new (2n + 1)-ary predicates $E_n(x, \mathbf{y}, \mathbf{z})$.

Let *M* satisfy $E_n(\alpha, \mathbf{a}, \mathbf{b})$ if and only if \mathbf{a} and \mathbf{b} realize the same L_{α} -type.

By Lopez-Escobar, there is an infinite <-decreasing sequence d_i

Define:

 $E_n^+(\mathbf{x}, \mathbf{y})$ iff for some i $E_n(d_i, \mathbf{x}, \mathbf{y})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Locally small implies There Exists small

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

With this apparatus using only Lopez-Escobar Shelah showed: Induction on qf ranks shows: $E_n^+(\mathbf{x}, \mathbf{y})$ implies $\mathbf{a} \equiv_{\omega_1, \omega} \mathbf{b}$. For any n, $E_n(d_0, \mathbf{x}, \mathbf{y})$ refines $E_n^+(\mathbf{x}, \mathbf{y})$ and has only countably many classes is a single $L_{\omega_1, \omega}$ -formula that implies $L_{\omega_1, \omega}$ -equivalence.

Theorem

Suppose $M \models \phi$ has cardinality \aleph_1 and is <u>locally τ -small</u>, then ϕ has a $L_{\omega_1,\omega}(\tau)$ -small model N of cardinality \aleph_1 .

(ロ) (同) (三) (三) (三) (三) (○) (○)

This shows every ce to VC has a small model in \aleph_1 .

Nice countable models of a ce to VC

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Definition

We say a countable structure is <u>extendible</u> if it has an $L_{\omega_1,\omega}$ -elementary extension to an uncountable model.

Refining the Shelah Analysis

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Theorem (B-Larson-Shelah)

Suppose that *K* is the class of models of $\phi \in L_{\omega_1,\omega}(\tau)$. If some uncountable $M \in K$ is locally τ -small but is not $L_{\omega_1,\omega}(\tau)$ -small then

- 1 There are at least \aleph_1 pairwise-inequivalent complete sentences of $L_{\omega_1,\omega}(\tau)$ which are satisfied by uncountable models in K;
- **2** *K* has uncountably many small models in \aleph_1 that satisfy distinct complete sentences of $L_{\omega_1,\omega}(\tau)$;
- **3 K** has uncountably many extendible models in \aleph_0 .

Proof I

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Let $|\mathbf{M}| = \aleph_1$ be locally τ -small but not $L_{\omega_1,\omega}(\tau)$ -small. Construct models of ϕ , $\{N_{\alpha} : \alpha < \omega_1\}$, $|N_{\alpha}| = \aleph_1$, countable fragments $\{L'_{\alpha} : \alpha < \omega_1\}$ of $L_{\omega_1,\omega}(\tau)$ and sentences χ_{α} :

- 1 $L'_0(\tau)$ is first order logic on τ ;
- 2 $\forall \alpha < \omega_1, N_{\alpha} \text{ is } L_{\omega_1,\omega}\text{-small; but } N_{\alpha} \equiv_{L'_{\alpha}(\tau)} M.$
- **3** χ_{α} is the Scott sentence of N_{α} ;
- 4 $L'_{\alpha+1}(\tau)$ is the smallest fragment of $L_{\omega_1,\omega}$ containing $L'_{\alpha} \cup \{\neg \chi_{\alpha}\};$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

5 For limit δ , $L'_{\delta}(\tau) = \bigcup_{\alpha < \delta} L'_{\alpha}(\tau)$;

Proof II

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Working by recursion, suppose that we have constructed N_{α} for all $\alpha < \beta$, for some countable ordinal β .

This determines each χ_{α} ($\alpha < \beta$) as the Scott sentence of N_{α} and also determines $L'_{\beta}(\tau)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Since *M* is not small, $M \models \neg \chi_{\alpha}$ for each $\alpha < \beta$.

Proof III

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

By the previous theorem there is an L'_{β} -elementarily equivalent to *M* that is small; call it N_{β} .

The N_{α} are pairwise non-isomorphic since each satisfies a distinct complete sentence χ_{α} of $L_{\omega_{1},\omega}(\tau)$, so conclusions 1) and 2) are satisfied. And each N_{α} has a countable elementary submodel with respect to $L'_{\alpha+1}(\tau)$, so there are at least \aleph_{1} non-isomorphic extendible models in \aleph_{0} as well.

Large models are $L_{\omega_1,\omega}$ -equivalent.

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Corollary

If ϕ is a minimal counterexample to Vaught's conjecture then ϕ has a large model in \aleph_1 , and all large models of ϕ in \aleph_1 are $L_{\omega_1,\omega}$ -elementarily equivalent.

Proof. We saw that ϕ has a large model *N*. Suppose that $\psi \in L_{\omega_1,\omega}$ holds in *N*.

By 3) $\phi \wedge \psi$ has uncountably many models in \aleph_0 .

By minimality, $\phi \wedge \neg \psi$ has only countably many models in \aleph_0 .

By the contrapositive of hyp implies 3) all uncountable models of $\phi \land \neg \psi$ are small.

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Dowries

Finite Diagrams renamed

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Fix a countable vocabulary τ and a small τ -theory T in a countable fragment \mathcal{F} of $L_{\omega_1,\omega}$.

 $S(T) = S_{\mathcal{F}}(T)$ is the collection of types of any arity over \emptyset .

- 1 The dowry of *M*. $\mathcal{D}(M)$ is the collection of $p \in S(T)$ that are realized in *M*.
- 2 A dowry Δ is big if uncountably many non-isomorphic M satisfy $\mathcal{D}(M) = \Delta$.

A big dowry gives rise to a new ce to VC.

3 Let E_D denoted \sim_D be the equivalence relation on the logic space.

 $M \sim_D N$ if and only if $\mathcal{D}(M) = \mathcal{D}(N)$

Shelah 1973 calls this notion the finite diagram. We wanted to keep the D but not confuse with the diagram of a model

Big Dowries exist

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Observation

 E_D is a Borel equivalence relation.

By Silver's theorem:

Theorem: Baizhanov-Zambarnaya

If *T* is counterexample to Vaught's conjecture there exist an family of \aleph_1 models of *T* with the same dowry.

Note then that a minimal counterexample ϕ will specify that all models of ϕ realize the same F-diagram for some fragment F slightly bigger than the one generated by ϕ .

Big Dowries exist

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Observation

 E_D is a Borel equivalence relation.

By Silver's theorem:

Theorem: Baizhanov-Zambarnaya

If *T* is counterexample to Vaught's conjecture there exist an family of \aleph_1 models of *T* with the same dowry.

Note then that a minimal counterexample ϕ will specify that all models of ϕ realize the same F-diagram for some fragment F slightly bigger than the one generated by ϕ .

Marker uses E_D and Silver to prove Morley's theorem: ϕ is not scattered implies ϕ has perfect set of models.

'Siberian model theory'

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

The 'elementary' study of small theories

Sudoplatov, Baizhanov et al

- 1 study types over finite sets
- 2 $p(x) \perp^w q(y)$ if $\{p(x)\} \cup \{q(y)\}$ is complete
- 3 $p \leq_{RK} q$ if p is realized in the prime model over a realization of q.
- **4** Unfortunately, they use the notation $p \not\perp^a q$ for $q \leq_{RK} p$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some theorems

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Theorem: (Sudoplatov

Every model of a compete theory with only finitely many models is either prime over a finite set or $M = \bigcup_{i < \omega} M_i$ where each M_i is prime over a realization of the same type p.

Constructing more big Dowries

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Theorem: Baizhanov-Yershegeshova (B-Alibek)

Let *M* be a countable model of a small theory T and suppose $M \prec N$, an ω_1 -saturated model. Then there exists a countable elementary extension $M_{\overline{c}}$ with $M \prec M_{\overline{c}} \prec N$ and a sequence of finite tuples \overline{a}_i from *M* such that

$$M_{\overline{c}} = \bigcup_{i < \omega} M[\overline{a}_i, \overline{c}]$$

(日) (日) (日) (日) (日) (日) (日)

where $M[\overline{a}_i, \overline{c}]$ denotes the prime model over $\overline{a}_i, \overline{c}$.

Properties of M_c

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Theorem

Let *M* be a countable, non-homogeneous model of a small theory T, and $p \in S(T)$ be a non-isolated type such that

- **1** for any non-isolated $r \in D(M)$, $r \not\leq_{RK} p$ and
- 2 for any $q(x, \overline{y}) \in D(M)$, such that there exists $\overline{\alpha} \in M$, $q(N, \overline{\alpha}) \cap M = \emptyset$ we have for any $p' \in S(\overline{\alpha})$, such that $p \subset p'$, $q(x, \alpha) \not\leq_{RK} p'$.

If M_c is constructed as above then if $\alpha \in M$ and $q(x, \overline{\alpha})$ is not realized in M, then $q(x, \overline{\alpha})$ is not realized in M_c ; Thus, M_c is not homogeneous.

Conjectures

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Write $p \perp^{w} M$ if $p \perp^{w} r$ for each r realized in M. $M \in \text{mod}(\Delta)$ if $\mathcal{D}(M) = \Delta$.

Baizhanov's conjectures

Suppose $\mathcal{D}(M) = \mathcal{D}(N) = \Delta$, $p \perp^w N$ and c, d realize p. Then

1
$$\mathcal{D}(M_c) = \mathcal{D}(N_d) = \Delta$$

2 The map $M \to M_c$ is 1 - 1 from $mod(\Delta)$ to $mod(\Delta')$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $mod(\Delta) = \{N : \mathcal{D}(N) = \Delta\}$

Questions/Speculations

Variants on the Morley Analysis

John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

- 1 in first order or any reasonable fragment
 - Are there ℵ₁ weakly saturated models of a ce?
 in first order: Are there ℵ₁ universal models of a ce?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- **2** Are there a pair of models in \aleph_1 with $M \prec N$?
- What about amalgamation? 3 amalgamation

The importance of Vaught's Conjecturef

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

"Some people think this [Vaught's conjecture] is the most important question in model theory as its solution will give us an understanding of countable models which is the most important kind of models. We disagree with all those three statements."

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Saharon Shelah, Classification Theory, Chapter Zero

The importance of Vaught's Conjecturef

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

"Some people think this [Vaught's conjecture] is the most important question in model theory as its solution will give us an understanding of countable models which is the most important kind of models. We disagree with all those three statements."

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Saharon Shelah, Classification Theory, Chapter Zero

I agree with 5/6 of what Shelah says.

The importance of Vaught's Conjecturef

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

"Some people think this [Vaught's conjecture] is the most important question in model theory as its solution will give us an understanding of countable models which is the most important kind of models. We disagree with all those three statements."

Saharon Shelah, Classification Theory, Chapter Zero

I agree with 5/6 of what Shelah says.

VC may be a good test question for our understanding of countable models.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Why VC is an important question

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Model theory, recursion theory, set theory

Why VC is an important question

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

Model theory, recursion theory, set theory $\ensuremath{\mathsf{LOGIC}}$

A criteria for recognizing the subject of VC

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

If yes, then the methods used in the solution will indicate the area.

A criteria for recognizing the subject of VC

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

If yes, then the methods used in the solution will indicate the area.

if no, model theory will provide an analysis of which theories satisfy the conjecture.

THANKS

Variants on the Morley Analysis

> John T. Baldwin

Strategies

Infinitary analyis: type spaces of countable models

Dowries

THANKS TO THE ORGANIZERS

FOR AN IMMENSELY STIMULATING AND ENJOYABLE CONFERENCE

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの