Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Abstract Elementary Classes Abelian Groups

John T. Baldwin

University of Illinois at Chicago

October 4, 2006, CRM, Barcelona

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Topics

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

1 What are AEC?

2 AEC of Abelian Groups

3 Tameness

Two Goals

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

General

Can we extend the methods of first order stability theory to generalized logics – e.g. $L_{\omega_1,\omega}$?

Special

Can the model theory of infinitary logic solve 'mathematical problems' (as the model theory of first order logic has)?

Abelian Groups

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

- 1 Does the notion of AEC provide a general framework to describe some work in Abelian group theory?
- Certain AEC of abelian groups provide interesting previously unknown examples for the general study of AEC. Can this work be extended?

A background principle

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Fameness

Slogan

To study a structure A, study Th(A).

e.g.

The theory of algebraically closed fields to investigate $(C, +, \cdot)$. The theory of real closed fields to investigate $(R, +, \cdot)$.

DICTA

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

But there is no real necessity for the 'theory' to be complete.

DICTA

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

But there is no real necessity for the 'theory' to be complete.

Strong Slogan

Classes of structures are more interesting than singleton structures.

ABSTRACT ELEMENTARY CLASSES defined

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Definition

A class of *L*-structures, $(\mathbf{K}, \mathbf{\kappa})$, is said to be an <u>abstract</u> <u>elementary class: AEC</u> if both **K** and the binary relation $\mathbf{\kappa}$ are closed under isomorphism and satisfy the following conditions.

- A1. If $M \in N$ then $M \in N$.
- A2. κ is a partial order on K.

A3. If $A_i : i < \delta$ is **K**-increasing chain:

1
$$\bigcup_{i < \delta} A_i$$
 K;
2 for each $j < \delta$, A_j ${}_{\mathbf{K}} \bigcup_{i < \delta} A_i$
3 if each A_i ${}_{\mathbf{K}} M$ **K** then
 $\bigcup_{i < \delta} A_i$ ${}_{\mathbf{K}} M$.

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

- A4. If A, B, C K, $A \in C, B \in C$ and A = B then $A \in B$.
- A5. There is a Löwenheim-Skolem number LS(K) such that if A B K there is a A' K with A A' κ B and

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $|A'| < \mathrm{LS}(\mathbf{K}) + |\mathrm{A}|.$

Examples

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

- **1** First order complete theories with _K as elementary submodel.
- **2** Models of -first order theories with κ as substructure.
- 3 L^n -sentences with L^n -elementary submodel.
- Varieties and Universal Horn Classes with K as substructure.
- **5** Models of sentences of $L_{\kappa,\omega}$ with \mathbf{K} as: elementary in an appropriate fragment.
- 6 Models of sentences of $L_{\kappa,\omega}(Q)$ with κ carefully chosen.
- 7 Robinson Theories with Δ -submodel
- 8 'The Hrushovski Construction' with strong submodel

The group group

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

AlM meeting July 2006 J. Baldwin, W. Calvert, J. Goodrick, A. Villaveces, & A. Walczak-Typke, & Jouko Väänänen

Strong Submodel

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Notation

Consider various subclasses \mathbf{K}^{foo} of the class \mathbf{K}^{ab} of all abelian groups (e.g. foo = div, red(p), ...).

- 1 " " denotes subgroup.
- **2** *G* _{pure} *H* means *G* is a pure subgroup of *H*:
- 3 "G sum H" means that G is a direct summand of H;
- 4 "G foo H" means that G is a pure subgroup of H and H/G K^{foo}.

Connections

Abstract Elementary Classes Abelian Groups

AEC of Abelian Groups

Compare notion 4 with Eklof's notion of a C-filtration:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$G = \bigcup_i G_i$$

and $G/G_i \quad C$.

.

Examples

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Abbreviation	Subclass of abelian groups	Section
K ^{ab}	All abelian groups	??
Κ ^{div}	Divisible groups	??
\mathbf{K}^{p}	p-groups	
K ^{tor}	torsion groups	
K ^{tf}	torsion-free groups	
$K^{red(p)}$	reduced p-groups	??
$K^{sep(p)}$	separable p-groups	
K ^{rtf}	reduced torsion-free groups	
K ^{cyc}	direct sums of cyclic groups	??

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some Examples

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Lemma

The class \mathbf{K}^{ab} of all abelian groups forms an AEC with amalgamation and joint embedding under either or pure, with Löwenheim-Skoelm number $_0$. Moreover, under it is stable in all cardinals.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

But what does stable mean?

Model Homogeneity

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Definition

M is μ -model homogenous if for every *N* $_{\mathbf{K}}$ *M* and every *N'* $_{\mathbf{K}}$ with $/N'/ < \mu$ and *N* $_{\mathbf{K}}$ *N'* there is a **K**-embedding of *N'* into *M* over *N*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

To emphasize, this differs from the homogenous context because the N must be in **K**. It is easy to show:

Monster Model

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Lemma

(jep) If M_1 and M_2 are μ -model homogenous of cardinality $\mu > LS(\mathbf{K})$ then $M_1 \quad M_2$.

Theorem

If **K** has the amalgamation property and $\mu^{<\mu*} = \mu$ and $\mu^{-2LS(K)}$ then there is a model *M* of cardinality μ^{-1} which is μ^{-1} -model homogeneous.

GALOIS TYPES: General Form

Abstract Elementary Classes Abelian Groups

Define:

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

$$(M,a,N)=(M,a',N')$$

if there exists N'' and strong embeddings f, f' taking N, N' into N'' which agree on M and with

f(a)=f'(a').

GALOIS TYPES: General Form

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Define:

$$(M,a,N)=(M,a',N')$$

if there exists N'' and strong embeddings f, f' taking N, N' into N'' which agree on M and with

f(a)=f'(a').

'The Galois type of *a* over *M* in *N*' is the same as 'the Galois type of *a*' over *M* in *N*'' if (M, a, N) and (M, a', N') are in the same class of the equivalence relation generated by =.

GALOIS TYPES: Algebraic Form

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Suppose K has the amalgamation property.

Definition

Let $M \in K$, $M \in M$ and $a \in M$. The Galois type of a over M is the orbit of a under the automorphisms of M which fix M.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We say a Galois type p over M is realized in N with $M \underset{\mathsf{K}}{\mathsf{K}} N \underset{\mathsf{K}}{\mathsf{K}} M$ if $p \quad N = .$

Galois vrs Syntactic Types

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Syntactic types have certain natural locality properties.

locality Any increasing chain of types has at most one upper bound;

tameness two distinct types differ on a finite set;

compactness an increasing chain of types has a realization.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The translations of these conditions to Galois types do not hold in general.

Galois and Syntactic Types

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Work in $(\mathbf{K}^{ab},)$.

Lemma

Suppose that G_1 is a subgroup of both G_2 and G_3 ,

- a $G_2 G_1$, and b $G_3 G_1$. the following are equivalent:
 - **1** $ga-tp(a, G_1, G_2) = ga-tp(b, G_1, G_3);$
 - 2 There is a group isomorphism from G₁, a _{G₃} onto G₁, b _{G₃} that fixes G₁ pointwise;
 - $\exists \operatorname{tp}_{qf}(a/G_1) = \operatorname{tp}_{qf}(b/G_1).$

But this equivalence is far from true of all AEC's of Abelian groups.

Stability

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Corollary

The AEC of Abelian groups under subgroup is stable in all cardinals.

Compare with the first order notion where there are Abelian groups e.g. Z^{ω} that are stable in λ only when $\lambda^{\omega} = \lambda$.

Sums of torsion cyclic groups

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Definition

 \mathbf{K}^{cyc} is the class of all groups that are isomorphic to

$$\bigoplus_{p\in\Pi}\bigoplus_{k\in\Sigma_p} \left(\mathbb{Z}_{p^k}\right)^{\lambda_{p,k}},$$

for some subset Π of the prime numbers, subsets Σ_p of N, and cardinals $\lambda_{p,k}$ (which may be finite or infinite).

Sums of torsion cyclic groups - Non-AEC

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Fact

$$\mathbf{K}^{cyc},~~)$$
 and $(\mathbf{K}^{cyc},~~_{pure})$ are not AEC's.

An example shows the class (\mathbf{K}^{cyc} , $_{pure}$) is not closed under unions of chains, which serves as a counterexample for both classes.

Sums of torsion cyclic groups-AEC??

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Fact

(Follows from Kaplansky, Theorems 1 and 13) If $G \in \mathbf{K}^{cyc}$ and H = G, then $H = \mathbf{K}^{cyc}$.

Lemma

Suppose that $G_1, G_2, G_3 \quad \mathbf{K}^{cyc}$ and $G_1 \quad sum G_2, G_1 \quad sum G_3$, and a $G_2 - G_1$, b $G_3 - G_1$. Then, working within \mathbf{K}^{cyc} , the following are equivalent: 1. ga-tp $(a, G_1, G_2) =$ ga-tp (b, G_1, G_3) ; 2. There are n, k ω and g G_1 such that $ht_{G_2}(a) = k = ht_{G_3}(b)$, na = g = nb, and for any m < n, neither ma nor mb are in G_1 .

Properties of (K^{cyc}, sum)

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Fact

Abbreviating (\mathbf{K}^{cyc}, sum) as \mathbf{K}^{cyc} , we ought to be able to prove the following:

- **K**^{cyc} is not an elementary class.
- K^{cyc} is a tame AEC with amalgamation and Löwenheim-Skolem number ₀.
- K^{cyc} is not categorical.
- \mathbf{K}^{cyc} has a universal model at every infinite cardinal λ .

• K^{cyc} is (galois-)stable at every cardinal.

$$I(\mathbf{K}^{cyc}, d) = |d + \omega|^{\omega}.$$

Still not an AEC

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What an AEC?

AEC of Abelian Groups

Fameness

Let $G = \prod_i Z/2^i$.

Let
$$A = \sum_i Z/2^i$$
; $A_j = \sum_{i < j} Z/2^i$

Let b_i be the sequence in G consisting of i 0's followed by $1, 2, 4, 8 \dots$

Let *B* the subgroup of *G* generated by the b_i .

Now $\bigcup_j A_j = A$ is a not a direct summand of B although each A_j is.

Reflection

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Why do we want A.3.3?

THE PRESENTATION THEOREM

Every AEC is a PC

More precisely,

Theorem

If K is an AEC with Lowenheim number LS(K) (in a vocabulary τ with $|\tau| = LS(K)$), there is a vocabulary τ' , a first order τ' -theory T' and a set of $2^{LS(K)} \tau'$ -types Γ such that:

$$\mathbf{K} = \{ M' \upharpoonright L : M' \models T' \text{ and } M' \text{ omits } \Gamma \}.$$

Moreover, if M' is an L'-substructure of N' where M', N' satisfy T' and omit Γ then $M' \upharpoonright L_{-\kappa} N' \upharpoonright L$.

Still a PCF

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

 (\mathbf{K}^{cyc}, sum) is a PCT class by adding a predicate for a basis and using omitting types to translate $L_{\omega_1,\omega}$ -axioms.

Andrew Coppola introduces the notion of a *Q*-AEC which generalizes the notion and still allows the presentation theorem to hold. This notion might be relevant here although the motivation was very different - equicardinality quantifiers.

Questions

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

This is a toy example.

Are there natural classes of Abelian groups that form AEC under an appropriate notion of substructure?

Why should it matter?

PCC-classes have models generated by sequences of indiscernibles - EM-models. This is a powerful tool for studying categoricity.

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Grossberg and VanDieren focused on the idea of studying 'tame' abstract elementary classes:

Definition

We say **K** is (χ, μ) -<u>tame</u> if for any N **K** with $/N / = \mu$ if p, q, S(N) and for every N_0 N with $/N_0 / \chi$, $p \upharpoonright N_0 = q \upharpoonright N_0$ then q = p.

Tameness-Algebraic form

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Suppose \mathbf{K} has the amalgamation property.

K is (χ, μ) -tame if for any model *M* of cardinality μ and any *a*, *b M*:

Tameness-Algebraic form

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Suppose ${\bf K}$ has the amalgamation property.

K is (χ, μ) -tame if for any model *M* of cardinality μ and any *a*, *b M*:

If for every $N \in M$ with $|N| \propto \chi$ there exists $\alpha = \operatorname{aut}_{N}(M)$ with $\alpha(a) = b$,

then there exists $\alpha = \operatorname{aut}_{\mathrm{M}}(\mathcal{M})$ with $\alpha(\mathbf{a}) = \mathbf{b}$.

Consequences of Tameness

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Suppose ${\bf K}$ has arbitrarily large models and amalgamation.

Theorem (Grossberg-Vandieren)

If **K** is λ^+ -categorical and $(< \lambda,)$ -tame then **K** is categorical in all $\theta = \lambda^+$.

Theorem (Lessmann)

If K is $\ _1\text{-}categorical$ and ($\ _0, \)\text{-}tame$ then K is categorical in all uncountable cardinals

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Fact

In studying categoricity of short exact sequences, Zilber has proved equivalences between categoricity in uncountable cardinals and 'arithmetic properties' of algebraic groups. These are not proved in ZFC but an independent proof of tameness would put them in ZFC.

Two Examples that are not tame

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

1 'Hiding the zero'

For each $k < \omega$ a class which is (k, \dots) -tame but not $(k+1, \dots, k+2)$ -tame. Baldwin-Kolesnikov (building on Hart-Shelah)

2 Coding EXT

A class that is not (0, 1)-tame. A class that is not (0, 1)-tame but is $(2^{\aleph_0}, 0)$ -tame. (Baldwin-Shelah)

Categoricity does not imply tameness

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Theorem For each $k < \omega$ there is an $L_{\omega_1,\omega}$ sentence ϕ_k such that:

- **1** ϕ_k is categorical in μ if μ_{k-2} ;
- **2** ϕ_k is not $_{k-2}$ -Galois stable;
- **3** ϕ_k is not categorical in any μ with $\mu > k-2$;
- 4 ϕ_k has the disjoint amalgamation property;
- **5** ϕ_k is (0, k-3)-tame; indeed, syntactic types determine Galois types over models of cardinality at most k-3;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

6 ϕ_k is not $\begin{pmatrix} k-3, k-2 \end{pmatrix}$ -tame.

Locality and Tameness

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Definition

K has (κ, λ) -local galois types if for every continuous increasing chain $M = \bigcup_{i < \kappa} M_i$ of members of **K** with $|M| = \lambda$ and for any p, q S(M): if $p \upharpoonright M_i = q \upharpoonright M_i$ for every *i* then p = q.

Lemma

If $\lambda \quad \kappa \text{ and } cf(\kappa) > \chi$, then (χ, λ) -tame implies (κ, λ) -local. If particular, (0, 1)-tame implies (1, 1)-local.

Whitehead Groups

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Definition

We say A is a Whitehead group if Ext(A, Z) = 0. That is, every short exact sequence

 $0 \quad Z \quad H \quad A \quad 0,$

splits or in still another formulation, H is the direct sum of A and Z.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Key Example

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Shelah constructed (page 228 of Eklof-Mekler, first edition) of a group with the following properties.

Fact

There is $_1$ -free group G of cardinality $_1$ which is not Whitehead. Moreover, there is a countable subgroup R of G such that G/R is p-divisible for each prime p.

THE AEC EXAMPLE

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Let **K** be the class of structures M = G, Z, I, H, where each of the listed sets is the solution set of one of the unary predicates (**G**, **Z**, **I**, **H**).

G is a torsion-free Abelian Group. Z is a copy of (Z, +). I is an index set and H is a family of infinite groups.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Each model in ${\bf K}$ consists of

1 a torsion free group G,

2 a copy of Z

3 and a family of extensions of Z by G.

Each of those extensions is coded by single element of the model so the Galois type of a point of this kind represents a specific extension. The projection and embedding maps from the short exact sequence are also there.

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

$M_0 \quad \kappa M_1$ if

 M_0 is a substructure of M,

but
$$\mathbf{Z}^{M_0} = \mathbf{Z}^M$$

and \mathbf{G}^{M_0} is a pure subgroup of \mathbf{G}^{M_1} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FACTS

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Definition

We say the AEC $(\mathbf{K}, \mathbf{\kappa})$ admits closures if for every $X \quad M \quad \mathbf{K}$, there is a minimal closure of X in M. That is, $M \upharpoonright \bigcap \{N : X \quad N \quad \mathbf{\kappa} \ M\} = \operatorname{cl}_M(X) \quad \mathbf{\kappa} \ M$.

The class $(\mathbf{K}, \mathbf{\kappa})$ is an abstract elementary class that admits closures and has the amalgamation property.

NOT LOCAL

Lemma

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

 $(\mathbf{K}, \mathbf{\kappa})$ is not (1, 1)-local. That is, there is an $M^0 \mathbf{K}$ of cardinality 1 and a continuous increasing chain of models M_i^0 for i < 1 and two distinct types $p, q S(M^0)$ with $p \upharpoonright M_i^0 = q \upharpoonright M_i$ for each i.

Let G be an Abelian group of cardinality $_1$ which is $_1$ -free but not a Whitehead group. There is an H such that,

0 Z H G 0

is exact but does not split.

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Let $M_0 = G, Z, a, G = Z$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Let $M_0 = G, Z, a, G Z$ $M_1 = G, Z, \{a, t_1\}, \{G Z, H\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Let $M_0 = G, Z, a, G Z$ $M_1 = G, Z, \{a, t_1\}, \{G Z, H\}$ $M_2 = G, Z, \{a, t_2\}, \{G Z, G Z\}$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Let $M_0 = G, Z, a, G Z$ $M_1 = G, Z, \{a, t_1\}, \{G Z, H\}$ $M_2 = G, Z, \{a, t_2\}, \{G Z, G Z\}$ Let $p = \operatorname{tp}(t_1/M^0, M^1)$ and $q = \operatorname{tp}(t_2/M^0, M^2)$. Since the exact sequence for \mathbf{H}^{M^2} splits and that for \mathbf{H}^{M^1} does not, p = q.

NOT 1-LOCAL

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

But for any countable M'_0 κ M_0 , $p \upharpoonright M'_0 = q \upharpoonright M'_0$, as

 $0 \quad Z \quad H'_i \quad G' \quad 0. \tag{1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

splits.

 $G' = \mathbf{G}(M'_0), \ H' = \pi^{-1}(t_i, G').$

NOT 0-TAME

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What ar AEC?

AEC of Abelian Groups

Tameness

It is easy to see that if $(\mathbf{K}, \mathbf{\kappa})$ is (0, 0)-tame then it is (1, 1)-local, so $(\mathbf{K}, \mathbf{\kappa})$ is not (0, 0)-tame. So in fact, $(\mathbf{K}, \mathbf{\kappa})$ is not $(\chi, 0)$ -tame for any χ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

NOT κ -TAME

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

With some use of diamonds, for each successor cardinal κ , there is a κ -free but not free group of cardinality κ which is not Whitehead. This shows that, consistently, For arbitrarily large κ ,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $(\mathbf{K}, \mathbf{\kappa})$ is not (κ, κ^+) -tame for any κ .

Question

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Could this example be formulated more naturally as $\{Ext(G, Z) : Gis \text{ torsion-free }\}$ (with projection and injection maps?

Incompactness

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Theorem

Assume $2^{\aleph_0} = {}_1$, and ${}_{\aleph_1}$, ${}_{S_1^2}$ where

$$S_1^2 = \{ \delta < _2 : cf(\delta) = _1 \}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Then, the last example fails either $\begin{pmatrix} 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 2 & 2 \end{pmatrix}$ -compactness.

BECOMING TAME ??

Abstract Elementary Classes Abelian Groups

John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Grossberg and Van Dieren asked for $(\mathbf{K}, \mathbf{\kappa})$, and $\mu_1 < \mu_2$ so that $(\mathbf{K}, \mathbf{\kappa})$ is not $(\mu_1, \mathbf{\kappa})$ -tame but is $(\mu_2, \mathbf{\kappa})$ -tame.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Tameness gained

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Theorem

There is an AEC with the closure property in a countable language with Lowenheim-Skolem number $_0$ which is not (0, 1)-tame but is $(2^{\aleph_0},)$ -tame.

Proof Sketch: Repeat the previous example but instead of letting the quotient be any torsion free group

1 insist that the quotient is an 1-free group;

add a predicate R for the group R G/R is divisible by every prime p where G is Shelah's example of a non-Whitehead group.

This forces $|G| = 2^{\aleph_0}$ and then we get $(2^{\aleph_0}, \cdot)$ -tame. But 1-free groups fail amalgamation ?? Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Lemma

For any AEC (\mathbf{K}, \mathbf{K}) which admits closures there is an associated AEC $(\mathbf{K}', \mathbf{K})$ with the same (non) locality properties that has the amalgamation property.

Theorem

There is an AEC with the amalgamation property in a countable language with Lowenheim-Skolem number $_0$ which is not $(_0, _1)$ -tame but is $(2^{\aleph_0}, _0)$ -tame.

Summary

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What ar AEC?

AEC of Abelian Groups

Tameness

The true significance of first order stability theory became clear when one found a wide variety of mathematically interesting theories at various places in the stability hierarchy. We are trying to find analogous examples of AEC.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

References

Abstract Elementary Classes Abelian Groups

> John T. Baldwin

What are AEC?

AEC of Abelian Groups

Tameness

Much is on the web at www.math.uic.edu/jbaldwin including:

1 Categoricity: a 200 page monograph introducing AEC,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 2 Some examples of Non-locality (with Shelah)
- 3 Categoricity, amalgamation and Tameness (with Kolesnikov)
- 4 And see Grossberg, VanDieren, Shelah

jbaldwin@uic.edu in Barcelona until December.