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In this paper we discuss two theorems whose proofs depend on extensions of the Fraı̈ssé method. We
prove here the Hanf number for the property that every model of cardinality κ is extendible1 of a (complete)
sentence of Lω1,ω is (modulo some mild set theoretic hypotheses that we expect to remove in a later paper)
the first measurable cardinal. And we outline the description of an explicit Lω1,ω-sentence φn characterizing
ℵn for each n. We provide some context for these developments as outlined in the lectures at IPM.

The phrase ‘Fraı̈ssé construction’ has taken many meanings in the over 60 years since the notion was
born [Fra54] (and earlier in an unpublished thesis). There are two major streams. We focus here on variants
in the original construction, which usually use the standard notion of substructure. We don’t deal here
directly with ‘Hrushovski constructions’ where a specialized notion of strong submodel varying with the
case plays a central role. An annotated bibliography of developments of the Hrushovski variant until 2009
appears at [Bal].

The first variant we want to consider is the vocabulary. Fraı̈ssé worked with a finite, relational vocabu-
lary. While model theory routinely translates between functions and their graphs and there is usually little
distinction between finite and countable vocabularies; in the infinite vocabulary case such extensions yield
weaker but still very useful consequences. The second is a distinction in goal: the construction of com-
plete sentences of Lω1,ω (equivalently studying the atomic models of a complete first order theory) rather
than constructing ℵ0-categorical theories. This second shift raises new questions about the cardinality of
the resulting models. The second result here pins down more precisely the existence spectra for complete
sentences of Lω1,ω . The first expresses the role of large cardinal axioms in more algebraic terms. Rephrased,
it says that, consistently with the existence of a measurable cardinal, there is a nicely defined (by a com-
plete sentence of Lω1,ω) class of models that has non-extendible (maximal) models cofinally below the first
measurable. The previous upper bound for such behavior was ℵω1

.
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1We say K is universally extendible in κ if M ∈K with |M | = κ has a proper ≺K -extension in the class. Here, this means has
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1 Hanf numbers and Spectrum functions in infinitary logic
Recent years have brought a number of investigations of the spectrum (cardinals in which the phenomenon
occurs) for various phenomena and various sorts of infinitary definable classes. Some of the relevant phe-
nomena are existence, amalgamation, joint embedding, maximal models etc. The class might be might be
defined as an abstract elementary class, the models of a (complete) sentence of Lω1,ω , etc.

Hanf observed [Han60] that for any property P (K, λ), where K ranges over a set of classes of models,
there is a cardinal κ = H(P ) such that κ is the least cardinal satisfying: if P (K, λ) holds for some λ ≥ κ
then P (K, λ) holds for arbitrarily large λ. H(P ) is called the Hanf number of P . e.g. P (K, λ) might be
the property that K has a model of power λ.

Morley [Mor65] showed for an arbitrary sentence of Lω1,ω(τ) the Hanf number for existence is iω1

when τ is countable (more generally, it is i(2|τ|)+ [She78]); the situation for complete sentences is much
more complicated. Knight [Kni77] found the first complete sentence characterizing ω1 (i.e. has a model in
ω1 but no larger) by building on the construction of many non-isomorphic ℵ1-like linear orderings. Hjorth
found, by a procedure generalizing the Fraı̈ssé -construction, for each α < ω1, a set Sα (finite for finite α) of
complete Lω1,ω-sentences2 such that some φα ∈ Sα characterizes ℵα. It is conjectured [Sou13] that it may
be impossible to decide in ZFC which sentence works. Baldwin, Koerwien, and Laskowski [BKL16] show
a modification of the Laskowski-Shelah example (see [LS93, BFKL16]) gives a family of Lω1,ω-sentences
φr, which characterize ℵr for r < ω. In Section 4 we sketch the new notion of n-disjoint amalgamation that
plays a central role in [BKL16].

Further results by [BKS09, KLH16, BKS16], where the hypothesis are weakened to allow incomplete
sentences of Lω1,ω or even AEC (Abstract Elementary Classes (K,≤) where the properties of strong sub-
structure, ≤ are defined axiomatically) are placed in context in [BB17]. Analogous results were proved ear-
lier for incomplete sentences by [BKS16] who code certain bipartite graphs in way that determine specific
inequalities between the cardinalities of the two parts of the graph; in this case all models have cardinality
less than iω1

.
All the exotica mentioned here and described in more detail in [BB17] occurs below ℵω1

. Baldwin
and Boney [BB17] have shown that the Hanf number for amalgamation is no more than the first strongly
compact cardinal. This immense gap motivated the current paper. We show that for the case of univerally
extendable (every model has a proper extension) such a gap does not exist. There is a complete sentence
of Lω1,ω which has a maximal model in cardinals cofinal in the first measurable (if such exists), but no
larger maximal model. Is the same true of amalgamation? That is, can amalgamation eventually behave
very differently than it does in small cardinalities? At the end of this paper we point to the only known
example where amalgamation (for a complete Lω1,ω-sentence) holds on an initial segment then fails, then
holds again; then there are no larger models.

2 Disjoint Amalgamation

2.1 Classes determined by finitely generated structures
The original Fraı̈ssé construction took place in a finite relational vocabulary and the resulting infinite struc-
ture was ℵ0-categorical for a first order theory. We explore here several ways to construct a countable atomic
model for a first order theory and thus a complete sentence in Lω1,ω .

2Inductively, Hjorth shows at each α and each member φ of Sα one of two sentences, χφ, χ′φ, works as φα+1 for ℵα+1.
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Recall (e.g. chapter 7 of [Bal09]) that the models of a complete sentence of Lω1,ω(τ) are the reducts to
τ of the atomic (every finite sequence realizes a principal type) models of a complete first order theory in a
vocabulary τ ′ extending τ . We discuss classes determined by a countable set of finitely generated models.
In Sections 3 and 4, we describe the examples of such classes used to prove our main results.

Definition 2.1.1. Fix a countable vocabulary τ (possibly with function symbols). Let (K0,⊆) denote a
countable collection of finite τ -structures and let (K̂,⊆) denote the abstract elementary class containing
all structures M such that every finitely generated substructure of M is in K0.

These classes have syntactic characterizations.

Lemma 2.1.2. 1. K̂ is defined by an Lω1,ω-sentence φ.

2. If K0 is closed under substructure then φ may be taken universal [Mal69].

3. (K0,⊂) satisfies the axioms for AEC (except for unions under chains.)

While traditional Fraı̈ssé classes are closed under substructure and produce ℵ0-categorical first order
structures, which are uniformly locally finite, the search for atomic models creates [Hjo07, BFKL16, BKL16,
BS15] does always not require closure under substructure and produces structures a generic which is locally
finite but not uniformly so. In Section 3, we expand the subject further by using countable collections of
finitely generated structures as the ‘Fraı̈ssé class’.

Definition 2.1.3. Fix a countable vocabulary τ (possibly with function symbols). Let (K0,≤) denote a
countable collection of finite τ -structures with (K̂,≤) as in Definition 2.1.1.

1. A model M ∈ K̂ is rich or K0-homogeneous if for all A and B in K0 with A ≤ B, every embedding
f : A→M extends to an embedding g : B →M . We denote the class of rich models in K̂ as R.

2. The model M ∈ K̂ is generic if M is rich and M is an increasing union of a countable chain of
finitely generated substructures, each of which is in K0.

3. We let R denote the subclass of K̂ consisting of rich models.

In the examples considered here the generic models will always be countable.

Definition 2.1.4. An AEC (K,≤) has (< λ, 2)-disjoint amalgamation if for any A,B,C ∈ K with cardi-
nality < λ and A strongly embedded in B,C, there is a D and strong embedding of B,C into D that agree
on A and such that the intersection of their ranges is their image of A.

K has 2-amalgamation if the ranges of the embedding are allowed to intersect non-trivially.
K has the joint embedding property (JEP) if any two models can be embedded in some larger D.

Fraı̈ssé ’s theorem asserted that if a class of finite models in a finite relational language is closed under
substructure and satisfies AP and JEP then there is a generic model whose theory is ℵ0-categorical and
quantifier eliminable. The following extension of Fraı̈ssé’s theorem is well-known [Hod93] and the proof is
essentially the same.

Lemma 2.1.5. Suppose τ is countable and K0 is a countable class of finite or countable τ -structures that
satisfies 2- amalgamation, in particular (≤ ℵ0, 2)-disjoint amalgamation, and JEP, then

1. A K0-generic (and so rich) τ -structure M exists.
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2. if K0 is closed under substructure, the generic is ultra-homogeneous (every isomorphism between
arbitrary finitely generated substructures extends to an automorphism).

A key distinction from the Fraı̈ssé situation is that in the first order case K̂ doesn’t really play a role
while in the infinitary case it is an important immedidary between the finitely generated structures and R.
Fraı̈ssé passes to the first order theory of the generic since it is ℵ0-categorical in first order logic. In our more
general situation the generic may be ℵ0-categorical only in Lω1,ω . The Scott sentence of the rich model gives
the Lω1,ω sentence we study. As noted at the beginning of this section we may regard the models as reducts
of atomic models of a first order theory. Thus K̂ may have arbitrarily large models while R does not; this
holds of some examples in [Hjo07, BFKL16, BKL16].

Corollary 2.1.6. Suppose (K0,≤) satisfies the hypotheses of Lemma 2.1.5. Fix λ ≥ ℵ0. If K̂ has (≤
λ, 2)-amalgamation and has at most countably many isomorphism types of countable structures, then every
M ∈ K̂ of power λ can be extended to a rich model N ∈ K̂, which is also of power λ.

Proof. Given M ∈ K̂ of power λ, construct a continuous chain 〈Mi : i < λ〉 of elements of K̂, each
of size λ. At a given stage i < λ, focus on a specific finite substructure A ⊆ Mi and a particular finite
extension B ∈ K̂ of A. If there is an embedding of B into Mi over A, Mi+1 = Mi. If not, we may assume
B ∩Mi = A. Let Mi+1 be the disjoint amalgamation of Mi and B over A. As there are only λ-possible
extensions, we can, by iterating, organize this construction so that N =

⋃
{Mi : i < λ} is rich. 2.1.6

Crucially, in Section 3.2.23 the class K̂ under consideration will not satisfy two amalgamation even with
finite models; but there will be amalgamation of free structures with finite.

2.2 Atomic Models of First order theories
We discuss here classes generated by finite (not finitely generated) structures. Suppose a generic τ -model
M exists. When is M an atomic model of its first-order τ -theory? As remarked in Section 2 of [BKL16]
this second condition has nothing to do with the choice of embeddings on the class K0, but rather with the
choice of vocabulary. The following condition is needed when, for some values of n, K0 has infinitely many
isomorphism types of structures of size n

We denote the class of atomic models of a complete first order theory by At.

Definition 2.2.1. A class K0 of finite structures in a countable vocabulary is separable if, for each A ∈K0

and enumeration a of A, there is a quantifier-free first order formula φa(x) such that:

• A |= φa(a) and

• for all B ∈ K0 and all tuples b from B, B |= φA(b) if and only if b enumerates a substructure B′

of B and the map a 7→ b is an isomorphism.

In practice, we will apply the observation that if for each A ∈ K0 and enumeration a of A, there is a
quantifier-free formula φ′a(x) such that there are only finitely many B ∈K0 with cardinality |A| that under
some enumeration b satisfy φ′a(b), then K0 is separable.

Lemma 2.2.2. [BKL16] Suppose τ is countable and K0 is a class of finite τ -structures that is closed under
substructure, satisfies amalgamation, and JEP, then a K0-generic (and so rich) model M exists. Moreover,
if K0 is separable, M is an atomic model of Th(M). Further, R = At, i.e., every rich model N is an
atomic model of Th(M).
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Proof: Since the class K0 of finite structures is separable it has countably many isomorphism types,
and thus a K0-generic M exists by the usual Fraı̈ssé construction. To show that M is an atomic model of
Th(M), it suffices to show that any finite tuple a from M can be extended to a larger finite tuple b whose
type is isolated by a complete formula. Coupled with the fact that M is K0-locally finite, we need only
show that for any finite substructure A ≤M , any enumeration a of A realizes an isolated type. Since every
isomorphism of finite substructures of M extends to an automorphism of M , the formula φa(x) isolates
tp(a) in M .

The final sentence follows since any two rich models are L∞,ω-equivalent. 2.2.2

3 Hanf number for All Models Extendible
We say an abstract elementary class (the models of a complete sentence in Lω1,ω) is universally extendible in
κ if every model of cardinality κ has a proper strong extension (L∞,ω-elementary extension). In this section
we prove the following theorem.

Theorem 3.0.1. There is a complete sentence φ of Lω1,ω that has arbitrarily large models. But under
reasonable set theoretic conditions (specified below), we show that for arbitrarily large λ < µ, where µ is
the first measurable cardinal, and unboundedly many λ if there is no measurable, φ has a maximal (with
respect to substructure, which in this case means ≺∞,ω) model with cardinality between λ and 2λ.

We expect to remove the set theoretic hypotheses by use of a black box as in [She1x] but that work is in
progress.

If |M | is at least the first measurable µ, then for any ℵ1-complete non-principal ultrafilterD on µ,Mµ/D
is a proper extension of M . This holds because we can find an f ∈ Mµ which hits each element a ∈ M
at most once. Thus the equivalence class of f cannot be that of any constant map on M (since D is non-
principal). On the other hand, by the Łos theorem for Lω1,ω , since D is ℵ1-complete, the ultrapower is an
Lω1,ω-elementary extension of M . Thus, we have shown the Hanf number for non-maximality is at most µ:

Lemma 3.0.2. If µ is measurable, for any φ ∈ Lµ,µ, in particular in Lω1,ω , no model of cardinality ≥ µ is
maximal.

The proof of the converse (Theorem 3.0.1) fills the remainder of this section. If we only demand the
result for an arbitrary sentence of Lω1,ω there are easy examples. An example in terms of ω-models (which
is easily reinterpreted into Lω1,ω) appears in [Mag16].

Example 3.0.3. Here is a sketch of such an example. Consider a class K of 3-sorted structures where: P0

is a set, P1 is a boolean algebra of subsets of P1 (given by an extensional binary E) and P2 is just a set;
{Fn : n < ω} is a family of unary functions which assigns to each c ∈ P2, a sequence Fn(c) ∈ P1. Demand:
i)
∧
Fn(c) =

∧
Fn(d) implies d = c and ii) if a sequence Fn(c) for a fixed c ∈ P3 has the finite intersection

property then the intersection is non-empty. Let ψ ∈ Lω1,ω axiomatize K. Now M is a maximal model of
K = mod (ψ) with cardinality λ if λ < first measurable and λω = λ; |PM0 | = λ, PM1 = P(PM0 ), and
PM2 codes ω(PM1 ) via the Fn.

M can only be extended by adding an element a∗ to PM0 . But then {b ∈ PM1 : E(a∗, b)} is a non-
principal ℵ1-complete ultrafilter on λ. But the witness to incompleteness must be encoded as FMn (c) since
there is a unique c encoding each countable sequence from PM1 and then the final axiom guarantees the
intersection is realized in M .

However, ψ is not complete. There are 2ℵ0 2-types over empty set given byX ⊂ ω via (c, d) realizes pX
iff X = {n : Fn(c) ∩ Fn(d) 6= ∅} for X ⊆ ω. This precludes completeness since a minor variant of Scott’s
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characterization of countable models shows that a sentence ψ is complete if and only if only countably
many Lω1,ω-types over ∅ are realized in models of ψ. In Section 3.2.23 we modify this example to obtain a
complete sentence.

3.1 Some preliminaries on Boolean Algebras
There are a number of slightly different jargons among set theorists, model theorists, category theorists, and
Boolean algebraists. In this section we will spell some of them out, indicate some translations, specify our
notation, and prove some properties of Boolean algebras that will be used in the proof.

An ultrafilter of a Boolean algebra B is a maximal filter (i.e. a subset of B that is closed up, under
intersection and contains either a or a− – the complement of a). An ultrafilter on a set X is a subset of its
power set P(X) and so is an ultrafilter of that Boolean algebra.

We begin with some basic properties of independence in Boolean algebras. A key fact is an equivalence
of two notions of independence on countably infinite Boolean algebras that disappears in the uncountable.
That is, a countable Boolean algebra is ℵ0-categorical if and only if is free on countably many generators in
the sense of 3.1.1 if and only if it generated by an independent set in the sense of 3.1.2. But this fails in the
uncountable.

Definition 3.1.1. 1. For X ⊆ B and B a Boolean algebra, X = XB = 〈X〉B be the subalgebra of B
generated by X .

2. A set Y is independent (or free) from X over an ideal = in a Boolean algebra B if and only if for
any Boolean-polynomial p(v0, . . . , vk) (that is not identically 0), and any a ∈ 〈X〉B −=, and distinct
yi ∈ Y , p(y0, . . . , yk) ∧ a 6∈ =.

3. Such an independent Y is called a basis for 〈X ∪ Y ∪ I〉 over 〈X ∪ I〉.

There is no requirement that = be contained in X . Observe the following:

Observation 3.1.2. 1. If = is the 0 ideal, (read Y is independent from X), the condition becomes: for
any a ∈ 〈X〉B − {0}, B |= p(y0, . . . , yk) ∧ a > 0. That is, every finite Boolean combination of
elements of Y meets each non-zero a ∈ 〈X〉B .

2. Let π map B to B/=. If ‘Y is independent from X over =’ then the image of Y is free from the image
of X (over ∅) in B/=. Conversely, if π(Y ) is independent over π(X) in B/=, for any Y ′ mapping by
π to π(Y ), Y ′ is independent from X over =.

So, if X is empty, the condition ‘Y is independent over =’ implies the image of Y is an independent
subset of B/=.

3. If a set Y is independent (or free) from X over an ideal = in a Boolean algebra B and Y0 is a subset
of Y , then Y − Y0 is independent (or free) from X ∪ Y0 (〈X ∪ Y0〉B) over the ideal = in the Boolean
algebra B.

From left to right in item 2) note that if for any nontrivial term σ(v), and any y ∈ Y there is an a with
σ(y)∧a 6∈ I then π(σ(y)∧a) is not 0 inB/I . Conversely, if some σ(π(y)) 6= 0 then if y′ isc in π−1(π(y)),
then σ(y′) 6∈ I .

The notion of independence above does not satisfy the axioms for a matroid (combinatorial geometry);
exchange fails. It is an independence system (the empty set can be considered independent and subsets of
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independent sets are independent. But given X and Y independent with |Y | > |X|, in general there is no
guarantee that some element of Y −X can be added toX and maintain independence. But, see Lemma 3.1.9.

The contrast between the notion of independence above and the following is crucial for the construction
here.

Definition 3.1.3. Let X,Y be sets of elements from a Boolean algebra of sets. X is independent (free) over
Y if for any infinite A that is a non-trivial finite Boolean combination of elements of X and any B which is
a non-empty finite Boolean combination of elements of Y , A ∩B and Ac ∩B are infinite.

Both kinds of independence will occur in the models in Section 3.2.23. In K0, there is a homomorphism
from PM1 into P(PM0 ) that does not transfer from ‘independence in the boolean algebra sense’ to ’set inde-
pendence’. In K2, there is an isomorphism from PM2 into P(PM1 ) that correctly transfers ‘independence’.

Definition 3.1.4. A pushout consists of an object P along with two morphisms i1 : X → P and i2 : Y → P
which complete a commutative square with the two given morphisms f and g mapping an object Z to X and
Y respectively such that any morphisms j1, j2 from X and Y to a Q must factor through P .

In [FG90], it is shown by a category theoretic argument that for distributive lattices the abstract embed-
dings into the pushout (Notation 3.1.6) are 1-1 and if A is a Boolean algebra, the images of the embedding
intersect in image of A. Thus the variety of Boolean algebras has disjoint3 amalgamation.

We connect this notion with our version of independence in Definition 3.1.1.

Lemma 3.1.5. Let D = A ⊗C B be the Boolean algebra obtained as the pushout (Definition 3.1.4) of A
and B over C. Suppose = is an ideal of D and I2 ⊂ A−C such that 〈I2〉D ∩= = ∅ and B −= 6= ∅. Then
I2 is independent from B over =.

Proof. Fix a Boolean-polynomial p(v0, . . . , vk) (that is not identically 0), and suppose for contradiction
there is a d ∈ B −= and distinct yi ∈ I2 with p(y0, . . . , yk) ∧ d ∈ =. Any morphisms f1, f2 from
A,B to any D′ must factor through D. In particular, we can extend = ∩ A and = ∩ B to maximal ideals
omitting p(y0, . . . yk) ∈ A and d ∈ B; the resulting map from D that commutes with the induced fi to the
2-element algebra sends all of = and so p(y0, . . . , yk) ∧ d, but not d or p(y0, . . . yk) to 0. But there is no
such homomorphism. 3.1.5

However, there are several sets of confusing terminology arising from various perspectives in the study of
Boolean algebra and misleading analogies with, for example, the study of groups For example, consider the
notion of the product of two Boolean algebras, A, B. That is, the structure on the Cartesian (direct) product
of A and B, obtained by defining the operations coordinate-wise. Note that, while there are isomorphic
copies of A and B in the product, the natural injections into A × {0}, {0} × {B}, map to ideals not sub-
Boolean algebras.

A generalization of the dual of the direct product operation is often called the ‘free product with amal-
gamation’; we will call the free amalgamation of Boolean algebras B and A over C the one that is obtained
by the pushout/free product construction of Notation 3.1.6; it is the coproduct in the category-theoretic
language.

Notation 3.1.6. Let C ⊆ A,B be Boolean algebras. The disjoint amalgamation D = A ⊗C B is the
Boolean algebra obtained as the pushout [AB11] of A and B over C. It is characterized internally by the
following condition. For a ∈ A− C, b ∈ B − C: a ≤ b in D if and only if there is a c ∈ C with a < c < b
(and symmetrically). D is generated as a Boolean algebra by A ∪ B where A and B are sub-Boolean
algebras of D.

3Called strong in [FG90].
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We will distinguish certain subsets of our models in terms of atoms.

Notation 3.1.7. An atom is an element a of a Boolean algebra such that for every c either c ∧ a = a or
c ∧ a = 0. For any Boolean algebra B, At(B) denotes the set of atoms of B.

We work in a Boolean algebra PM1 and use PM4,1 for At(PM
1 ). We will denote by PM4 the set of finite

joins of atoms and PM4,n for those elements that are the join of exactly n atoms. PM4 is always an ideal of
PM1 but it is only a Boolean algebra if it is finite, and even then it will be a sub-Boolean algebra. A Boolean
algebra is atomic, alternatively4, atomistic if every element is an arbitrary join of atoms5.

For M in the class of finitely generated structures K0, below, the ideal PM4 will be atomistic when
viewed as a Boolean algebra (with b∗ = 1) and the maximal such. For M in the class K2 the entire Boolean
algebra PM1 will be atomistic but this will be false for all M in K0 and for some M in K1 (beyond those in
K0). We will use the next remark in proving Lemma 3.2.13.

Lemma 3.1.8. Let B0 ⊆ B1 ⊆ B2 be Boolean algebras. Suppose Ii for i < 3 are sequence of ideals in the
respective Bi with I1 ∩B0 = I0 and I2 ∩B1 = I1. If, for i = 0, 1, Ji ⊂ Bi+1 is independent from Bi over
Ii in Bi+1, then J = J0 ∪ J1 is independent from B0 over the ideal I2.

Proof. Let b be a finite sequence of distinct elements from J . Suppose σ(y) is a non-zero term in the
same number of variables as the length of b. For any d ∈ B0 − I2, we must show σ(b)∧ d 6∈ I2. Writing σ
in disjunctive normal form it suffices to show some disjunct τ (which is just a conjunction of literals yi and
y−i ) satisfies τ(b) ∧ d 6∈ I2. Decompose τ(b) as τ0(b0) ∧ τ1(b1) where bi ∈ Ji. Since J0 is independent
from B0 over I1, τ0(b0) ∧ d 6∈ I1 and clearly it is some d1 ∈ B1. Similarly, since J1 is independent from
B1 over I2, τ1(b1) ∧ d1 6∈ I2. So τ(b) ∧ d1 = τ0(b0) ∧ τ1(b1) ∧ d 6∈ I2 as required. 3.1.8

Although our notion of independence does not satisfy exchange, we are able to show that under certain
conditions each suitable element is a member of a basis.

Lemma 3.1.9. If B is a countable atomless Boolean algebra, then for any b 6= 0, 1 ∈ B, there is a basis J
of B that contains b.

Proof. Observe that by quantifier elimination all non-constant elements of B realize the same 1-type.
But then if A = 〈ai : i < ω〉 is a basis for B, the automorphism α of B (guaranteed by ℵ0-categoricity)
which takes a1 to b takes A to α(A) which is a basis containing b. 3.1.9.

The next result is used in step 2 of the proof of Claim 3.3.6.

Lemma 3.1.10. Let B1 ⊆ B2 be Boolean algebras and suppose I2 is an ideal of B2 and J1 is a countable
subset of B2 such that J1 is independent from B1 over I2. If b is also independent from B1 over I2 and
b ∈ 〈J1 ∪ I2〉B2

, then there is a J ′1 such that b ∈ J ′1, J ′1 is independent from B1 over I2 and each of J1 and
J ′1 generates (with I2) the same subalgebra of B2.

Proof. Let b∗ be the image of b when π projects B2 onto B2/I2 and B3 denote the image of π(〈J1 ∪
I2〉B2). By Lemma 3.1.9, there is a J ′′1 ⊂ B2/I2 with b∗ ∈ J∗1 that freely generates B3. Now choose J ′1 by
choosing a preimage for each element of J ′′1 and the result follows by Observation 3.1.2.2. 3.1.10

4The conditions are not equivalent on an arbitrary distributive lattice.
5Equivalently, if every non-zero element is above at least one atom.
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3.2 Defining the Complete Sentence
In this subsection we construct in an extension of ZFC a complete Lω1,ω-sentence, essentially the
‘existential-completion’ of Example 3.0.3, that we show in the next subsections has maximal models in
λ for arbitrarily large λ less than the first measurable cardinal.

On a first approximation, each model is a member of the class K of Example 3.0.3. This section is
devoted to the construction of a countable generic structure; the details of the construction will be essential
for the main argument in the next section. But we can describe the generic model, which is countable. The
unary predicate PM1 is the domain of a Boolean algebra with an ideal PM4 consisting of the finite joins of
atoms. PM1 /PM4 is an atomless Boolean algebra with a basis {FMn (c) : c ∈ PM2 }. Further, there is a set
PM0 in 1-1 correspondence with the infinitely many atoms making up PM4,1 ⊂ PM1 and a relation R such
that for b ∈ PM1 , R(M, b) is a subset of PM0 and the map b 7→ R(M, b) is an isomorphism from PM1 into
the Boolean algebra of subsets of PM0 . A concrete example of this situation is to take PM1 as an elementary
submodel of the natural Boolean algebra on P(ω), PM4 as the distributive sublattice of finite sets, PM0 and
RM as coding subsets of ω.

Our goal is to build this structure as a Fraı̈ssé-style limit of finitely generated structures; in each of these
structures PM0 and PM4 will be finite.

Definition 3.2.1. τ is a vocabulary with unary predicates P0, P1, P2, P4, binaryR, E, ∧,∨, unary functions
−, G1, constants 0,1 and unary (partial) functions Fn, for n < ω.

We introduce the properties of K0, the collection of finitely generated models of our class, in two stages
simply to allow the reader to absorb the definition more slowly.

Definition 3.2.2. M ∈K−1 is the class of structures M satisfying.

1. PM0 , PM1 , PM2 partition M .

2. (PM1 , 0, 1,∧,∨, <,− ) is a Boolean algebra (− is complement).

3. R ⊂ PM0 × PM1 with R(M, b) = {a : RM (a, b)} and the set of {R(M, b) : b ∈ PM1 } is a Boolean
algebra. fM : PM1 7→ P(PM0 ) by fM (b) = R(M, b) is a Boolean algebra homomorphism into
P(PM0 ).

Note that f is not6 in τ ; it is simply a convenient abbreviation for the relation between the Boolean
algebra PM1 and the set algebra on P0 by the map b 7→ R(M, b).

4. PM4,n is the set containing each join of n distinct atoms from M ; PM4 is the union of the PM4,n. That is,
PM4 is the set of all finite joins of atoms.

5. If b1 6= b2 are in PM4 then R(M, b1) 6= R(M, b2).

6. GM1 is a bijection from PM0 onto PM4,1 such that R(M,GM1 (a)) = {a}.

7. If c ∈ PM2 , the Fn(c) for n < ω are pairwise distinct.

8. If a ∈ PM0 and c ∈ PM2 then for large enough n, a 6∈ R(M,Fn(c)). Equivalently
⋂
n F

M
n (c) = ∅.

6The subsets of PM0 are not elements of M .
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Condition 3 of Definition 3.2.2 implies for any M ∈ K−1, any a ∈ PM0 , b ∈ PM1 , M |= R(a, b) ∨
R(a, b−).

We now define the class K0 of finitely generated structures; it will generate via direct limits a class
K1 = K̂ and from it we will derive the rich class K2 = R. Note that we allow P0 and P4 to be empty but
require P2 (and hence P1) to have elements.

Definition 3.2.3. M is in the class of structures K0 if M ∈ K−1 and there is a witness 〈n∗,B, b∗〉 such
that:

1. b∗ ∈ PM1 is the supremum of the finite joins of atoms in PM1 . Further, for some k,
⋃
j≤k P

M
4,j = {c :

c ≤ b∗} and for all n > k, PM4,n = ∅.

2. B = 〈Bn : n ≥ n∗〉 is an increasing sequence of finite Boolean subalgebras of PM1 .

3. Bn∗ ) {c ∈ PM1 : c ≤ b∗} = PM4 ; it is generated by the subset PM4 ∪ {FMn (c) : n < n∗, c ∈ PM2 }.
Moreover, the Boolean algebra Bn∗ is free over the ideal PM4 (equivalently, Bn∗/P

M
4 is a free

Boolean algebra7).

4.
⋃
n≥n∗ Bn = PM1 .

5. PM2 is finite and not empty. Further, for each c ∈ PM2 the FMn (c) for n < ω are independent over
{0}.

6. The set {Fm(c) : m ≥ n∗, c ∈ PM2 } (the enumeration is without repetition) is free from Bn∗ over8

{0}. Bn∗ ) PM4 and Fm(c) ∧ b∗ = 0 for m ≥ n∗. (In this definition, 0 = 0P
M
1 .)

In detail, let σ(. . . xci . . .) be a Boolean algebra term in the variables xci (where the ci are in PM2
which is not identically 0. Then, for finitely many ni ≥ n∗ and a finite sequence of ci ∈ PM2 :

σ(. . . Fn(ci) . . .) > 0

and some n < ω. Further, for any non-zero d ∈ Bn∗ with d ∧ b∗ = 0, (i.e. d ∈ Bn − P 4
M ),

σ(. . . Fn(c) . . .) ∧ d > 0.

7. For every n ≥ n∗, Bn, is generated by Bn∗ ∪ {Fm(c) : n > m ≥ n∗, c ∈ PM2 }. Thus PM1 and so M
is generated by Bn∗ ∪ PM2 .

Remark 3.2.4. The first part of Condition 6 of Definition 3.2.3 implies condition 8 of Definition 3.2.2. The
second part implies, in particular, that if b ∈ PM1 − PM4 , there are infinitely many elements below b in PM1 .

Note that if 〈n∗,B, b∗〉 witnesses M ∈K0 then for any m ≥ n∗, so does 〈m,B, b∗〉.

For the following example it will help to recall that the free Boolean algebra with n generators has 2n

atoms, and 22
n

elements.
7A further equivalence: |Atom(Bn∗ )| − |PM4,1| is a power of two.
8As in Definition 3.1.1.2 with X = ∅.
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Example 3.2.5. Here is a very basic example illustrating Definition 3.2.3. Let PM1 be the direct product
of the free algebra on one generator, a, F1 = {0, a, b, 1} and the atomless Boolean algebra F∞ on gener-
ators 〈g0, . . . gn . . .〉. Then PM4 is F1 × {0} and has four elements. The Boolean subalgebra B∗ of PM1
generated by the ideal PM4 has universe9 F1 × {1} ∪ PM4 and so eight elements. B∗ has three atoms:
(〈a, 0〉, 〈b, 0〉, 〈0, 1〉) and so is not free; note the last is not an atom of PM1 . However B∗ could serve as
a Bn∗ (with n∗ = 0) to witness membership in K0; it satisfies condition 3.2.3.3 since B∗/PM4 has two
elements and is free on 0 generators (andB∗ has 20 new atoms). However, with n∗ = 1, settingB1 as the 16
element Boolean subalgebra10 of PM1 generated by PM4 ∪ {〈0, g0〉} provides a more typical example of that
definition. Note that B1/P

M
4 is free on one generator and has B1 has two ‘new’ atoms, 〈0, g0〉 and 〈1, g−0 〉;

neither is an atom of PM1 .
Note that PM1 has two distinct representations. It was presented as the direct (Cartesian) product of

the Boolean algebra11 PM4 (taking b∗ as 〈1, 0〉) with F∞. And it is also the free product12 of B1 with the
sub-Boolean algebra generated by the {Fn(c) : n ≥ n∗ = 1}.

In extending this Boolean algebra PM1 to a model in K0; there are several further choices. We can
choose any finite number as the cardinality of PM2 ; our enumeration of the generators in the current example
corresponds to PM2 = {c} and gi = FMi (c). We must set PM0 to have two elements thatG1 maps bijectively
to PM4,1 = {〈a, 0〉, 〈b, 0〉}. But no Fn(c) is above an atom. However, we could take FM0 (c) as 〈a, g0〉, n∗ = 1

and B1 generated by PM4 ∪ {〈a, g0〉}.

Lemma 3.2.6. Each structure in K0 is finitely generated as a τ -structure.

Proof. Let M ∈K0, witnessed by 〈n∗,B, b∗〉. Then M is generated by PM0 ∪ PM2 . 3.2.6

Lemma 3.2.7. K0 is countable.

Proof. Let M be in K0, witnessed by 〈n∗,B, b∗〉. The isomorphism type of M is determined by the
structure on PM4 induced by the Fn(ci) and ci ∈ PM2 . If m ≥ n∗, Fm(ci) ∧ b∗ = 0 so they leave no trace
on PM4 . Since this tail, {Fm(ci) : m ≥ n∗} is just an atomless boolean algebra in the sense of PM1 , it is ℵ0
categorical. But there can be only countably many structures induced on the finite PM4 by the countable set
Fn(ci) through the formulas x < Fn(ci) which determine the values of R on PM4 since only the Fm(ci) for
m < n∗ are non-empty and PM2 is finite. 3.2.7

The following lemma shows the prototypical models in K0 in fact exhaust the class.

Lemma 3.2.8. For any M ∈ K0, PM1 has a natural decomposition as a product of an atomic and an
atomless Boolean algebra.

Proof. Let M ∈K0, witnessed by 〈n∗,B, b∗〉. Then the atomic part, PM4 , is the collection of elements
of PM1 that are ≤ b∗. And the independent generation by the FMn (ci) for n ≥ n∗ and ci ∈ PM2 shows the
quotient PM1 /PM4 is atomless. 3.2.8

Definition 3.2.9. The class K1 = K̂ is the collection of all direct limits of models in K0.

Recall that members of K0 must have P2 6= ∅ but P0 may be empty.

Lemma 3.2.10. There is a minimal model Mmin of K0, that can be embedded in any model of K0.
9The sub-boolean algebra of PM1 generated by 〈a, 0〉 has elements {〈a, 0〉, 〈b, 1〉, 〈1, 1〉〈0, 0〉}.

10Freely generated by 〈a, 0〉 and 〈0, g0〉.
11PM4 is an ideal but not sub-Boolean algebra of PM1 .
12Bn∗ is sub-Boolean algebra but not an ideal of PM1 .
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Proof. Let PMmin
0 be empty and so PMmin

4 = {0}, PMmin
2 contain a single element c, and let the

FMmin
n (c) be independent generators of PMmin

1 . Since M ∈ K0 implies PM2 6= ∅, for the embedding we
can map c to any element of PM2 and FMmin

n (c) to FMn (c) by Definition 3.2.3.5.

Lemma 3.2.11. If M0 ⊆ M1 are both in K0, witnessed by 〈ni∗,B
i, bi∗〉, then for sufficiently large n,

B0
n = B1

n ∩ P
M0
1 .

Proof. Recall Bi = 〈Bin : n < ω〉. Since the B1
n exhaust PM1

1 , B0
n∗ is finite, and for c ∈ PM0

2 and all r,
FM1
r (c) = FM0

r (c), for all sufficiently large n, B1
n contains the FM0

r (c) for r < n and thus B0
n. But if some

b ∈ B1
n ∩ P

M0
1 , but is not in B0

n then for some k, b ∈ B0
k+1 − B0

k. But then B0
k+1 is not generated by B0

n∗

along with the FM0
r (c) for r < k. 3.2.11

Note that if the conclusion of Lemma 3.2.11 hold for n, it holds for all m ≥ n.

We now introduce some special notation for this paper by defining K1-free over (K1-free extension of)
for models in the K1. M2 is a K1-free extension of M1 if not only is in the Boolean algebra PM2

1 /PM2
4

the image of PM2
1 is a free extension of the image of PM1

1 but the Fn(c) satisfy technical conditions which
allow the preservation of this condition under unions of chains.

Definition 3.2.12. When M1 ⊆ M2 are both in K1, we say M2 is K1-free over or is a K1-free extension
of M1 and write M1 ⊆fr M2, witnessed by (I,H) when

1. I ⊂ PM2
1 − (PM1

1 ∪ PM2
4 ) such that i) I ∪ PM1

1 ∪ PM2
4 generates PM2

1 and ii) I is independent from
PM1
1 over PM2

4 in PM2
1 .

2. There is a function H from PM2
2 \ PM1

2 to N such that the Fn(c) for n ≥ H(c) are distinct and

{FMn (c) : c ∈ PM2
2 \ PM1

2 and n ≥ H(c)} ⊂ I

and for every c 6= d ∈ PM2
2 , {n : (∃m)FM2

m (c) = FM2
n (d)} is finite.

We say M is K1-free over the empty set or simply K1-free if M is a K1-free extension of Mmin.

Lemma 3.2.13. 1. IfM1 ⊆fr M2 by (I1, H1) andM2 ⊆fr M3 by (I2, H2) thenM1 ⊆fr M3 by I1∪I2
with the same Hi. Thus, ⊆fr is a partial order.

2. More generally ifMα with α < δ is continuous⊆fr increasing thenM =
⋃
Mα satisfiesMα ⊆fr M

witnessed by
⋃
α<β<δ Iβ .

Proof. By Lemma 3.1.8 (taking the ideals as PM2
4 and PM3

4 ), I1 ∪ I2 is free from PM1
1 over PM3

4 . But
we can take H3(c) as Hi(c) for i = 1, 2, since the FMi+1

n (c) for c ∈ PMi+1

2 −PMi
2 cannot lie in PMi

1 by the
independence. Part 2 follows by induction. Successors are the same, while limits are automatic. 3.2.13

Remark 3.2.14. In an increasing chain such as that of Lemma 3.2.13, if some b ∈ PMα+1
1 is free from

PMα+1
1 over PMα+1

4 then b is also free from PMα+1
1 over PMβ

4 for any β > α since PMβ

4 ∩ PMα+1
1 =

PMα+1
4 .

The next lemma uses the requirement that the Bn in the witnessing sequence are free Boolean algebras.

Lemma 3.2.15. If M0 ⊂M1 are both in K0 then M0 ⊂fr M1.
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Proof. Choose n∗ as the maximum of ni∗ for i < 2; we can assume by Lemma 3.2.11 that the ni∗ for
i < 2 are equal and that B1,n1

∗
∩ B0,n0

∗
= B0,n0

∗
. Since the Bi,n∗ are free from PMi

4 over ∅, we can choose
bases I0, I1 for B0,n0

∗
and B1,n1

∗
respectively. Now Ii ∪ {FMi

n (c) : i < 2, n ≥ nini∗
, c ∈ PMi

2 } is a free

basis of PMi
1 over PMi

4 . Hence (I2 \ I1) ∪ {FMi
n (c) : i < 2, n ≥ nini∗

, c ∈ PMi
2 } is the required I from

Definition 3.2.12 with H(c) = n∗ for all c. 3.2.15

Crucially, Lemma 3.2.15 fails in general if K0 is replaced by K1. We can immediately deduce.

Corollary 3.2.16. Each model N in K0 is K1-free over the empty set.

In order to construct a sequence as appears in Lemma 3.2.13, we need to construct K1-free extensions.
We now show that if M1 is K1-free, then it can be amalgamated with a finitely generated extension of

a finitely generated substructure. There are two key ingredients: N1 and N2 must be finite; this is reflected
positively in the ability to employ the decomposition Bi in proof but also by the key role in the proof of the
finite set A = PN2 −PN1 . Secondly, M1 must be K1-free. This is used in the proof that M2 ∈K1. Thirdly,
we must ensure that ‘atomicity’ is preserved in constructing extensions of Boolean algebra so the definition
of P4 and P4,1 are ‘absolute’ between models.

Theorem 3.2.17. Suppose M1 ∈ K̂ = K1 is K1-free and N1 ⊂M1. Let N1 ⊂ N2 with both in K0.
Then there are an M2 and an f such that:

1. M2 ∈K1, M1 ⊆fr M2 and so M2 is K1-free.

2. f maps N2 into M2 over N1. Moreover, the image in M2 of N2 is K1-free over N1.

Proof. We lay out the situation in more detail. M1 is K1-free means that M1 is K1-free over Mmin

by (I1, H1). For i = 1, 2, let 〈ni∗,B
i, bi∗〉 witness that Ni ∈ K0. Suppose N1 ⊆fr N2 is witnessed by

(I2, H2). Invoking Lemmas 3.2.11 and 3.2.4, we can rename ni∗ and choose n∗ so that n1∗ = n2∗ = n∗ and
B1
n = B2

n ∩N1 for n ≥ n∗, and (since PN2
2 is finite) for each c ∈ PN1

2 , H1(c) ≤ n∗. Let J1 ⊂ B1
n∗ be the

pre-image of the basis ofB1
n∗/P

N1
4 . Then, since J1/PN1

4 is a generating set ofB1
n∗/P

N1
4 , for each b ∈ B1

n∗ ,
there is a Boolean combination b′ of elements of J such that b′4b ∈ PN1

4 . Note also, that by our choice of
n∗ (Lemma 3.2.3.6), if b ∈ PN1

1 is above an atom of PN2
1 , b ∈ B1

n∗ . Let k = |PN2
4,1 − P

N1
4,1 |, fix a0 . . . ak−1

listing a new set A and let f be 1-1 function from PN2
4,1 − P

N1
4,1 onto A.

Step 1: Construct a Boolean algebra B1 that has exactly the required atoms. More precisely, construct
a Boolean algebra B1 that is generated by PM1

1 ∪ A and so that the atoms of B1 are PM1
4,1 ∪ A. For this

demand, let D`, for each ` < k, be an ultrafilter of the Boolean algebra PM1
1 , disjoint from I1 − J1 such

that for b ∈ PN1
1 , b ∈ D` if and only if N2 |= f−1(a`) ≤ b. (Such an ultrafilter exists as clearly {b ∈

PN1
1 : f−1(a`) ≤ b}, as noted in last paragraph, contains no element of I1 − J1 and is a filter on PN1

1 that
can be extended to an ultrafilter on the Boolean algebra PM1

1 .) Since PN2

4,k ∩ P
N1
1 = PN1

4,k , there can be no
b ∈ PN1

4 with N2 |= f−1(ai) ≤ b. So the elements of A remain atoms in B1.
Now let X be the union of the Stone space of PM1 with A. For b ∈ PM1

1 , let

Xb = {d ∈ S(PM1
1 ) : b ∈ d} ∪ {ai : b ∈ Di}.

Now let B1 be the subalgebra of P(X) generated by the {Xb : b ∈ PM1
1 } ∪ A. Now, generalizing the

Stone representation theorem, let b 7→ Xb for b ∈ PM1
1 and a 7→ {a} for a ∈ A. Abusing notation, we write

f(a) for {f(a)}. Note i) that for b ∈ PM1
1 , B1 |= f−1(ai) ≤ b iff b ∈ Di and ii) that the atoms of B1 are

exactly PM1
4,1 ∪A.
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Step 2: Find a sub-Boolean algebra of B1 that is a suitable amalgamation base. For this, denote by B∗
the sub-Boolean algebra of B1 generated by PN1

1 and A. Denote by B̌∗ the sub-Boolean algebra of PN2
1

generated by PN1
1 ∪ f−1(A). We also denote by f the embedding of B̌∗ into B1 and onto B∗ which is the

identity on PN1
4,1 , the map f on PN2

4,1 − P
N1
4,1 , and naturally extends by the operations of N2 of f to B̌∗.

Step 3: We now construct a Boolean algebra B2 which is a quotient of the pushout B′2 of B1 and PN2
1

over the sub-Boolean algebra B∗ of B1 generated by PN1
1 and A. Moreover, B2 contains M1 and f(B̌∗) and

the atoms of B2 are PB1
4,1 ∪ A. The crux of the proof is to verify this property of the atoms; it allows us to

construct an amalgam in K1.
By standard properties of the coproduct (Lemma 3.1.6), B1 and PN2

1 are disjointly embedded over B∗
into B′2. We will regard the embedding of B1 as the identity and denote by f the embedding of PN2

1

extending our earlier f mapping the sub-Boolean algebra B̌∗ of PN2
1 into B1. Crucially, while B1 and

f(PN2
1 ) are sub-Boolean algebras of B′2; they are not ideals.
The atoms of the amalgamation base B∗ remain atoms in B′2 as: if a is an atom of B∗ then every b1 ∈ B1

satisfies b1∧a = 0 or b1∧a = a and similarly for b2 ∈ PN2
1 and therefore also for b1∧ b2; using disjunctive

normal form, no element of B′2 contradicts the atomicity of an atom of B∗. Recall N1 ⊆fr N2 is witnessed
by (I2, H2). To guarantee the atoms of B1 \ B∗ (i.e. PM1

4,1 − P
N1
4,1 ) are atoms of B2, we divide B′2 by the

ideal13, =, generated by

=0 = {a ∧ f(b) : a ∈ PB1
4,1 \ P

N1
4,1 , b ∈ I2, a ∧ f(b) < a}.

(*) Since each element of = is strictly below a finite join of atoms in B′2 (actually in B1), = is a proper
ideal of B1 bounded by elements of PB1

4 ; but=∩PB1
4 = ∅. Indeed, by freeness of the coproduct, =∩B1 = ∅.

Note that the subalgebra of B′2 generated by f(I2) is a subset of B1 so it is disjoint from =.

Let π map B′2 onto B2. By (*), no element of B1 ∪ f(I2) is collapsed by the map π : B′2 → B2. Thus,
π is 1-1 on B1 ∪ f(PN2

1 ) and B2 is a disjoint amalgamation of the Boolean algebras π(B1) and π(f(PN2
1 )).

Since B′2 is generated by B1∪f(PN2
1 ), without loss of generality, we can assume the preimage of a potential

atom of B2 has the form a ∧ f(b) where a ∈ B1 \ B∗ is an atom of B1 and b ∈ PN2
1 \ B∗. By the freeness

property of coproducts14, B′2 |= a ∧ f(b) < a, so π(a ∧ f(b)) = 0 and π(a) = a is an atom.
Step 4: The actual τ -amalgam. Now to define the extensionM2, let PM2

1 = B2, PM2
4,1 = PM1

4,1 ∪A; PM2
4

is the set of finite joins of these atoms. Then, let PM2
2 = PM1

2 ∪ PN2
2 and the FM2

n be as in the submodels.
Define PM2

0 to be a set in 1-1 correspondence with PM2
4 and call the correspondence GM2

1 . Finally, we must
define RM2 : for each b ∈ PM2

1 , let R(M2, b) = {a ∈ PM2
0 : GM2

1 (a) ≤M2 b}.
By Lemma 3.1.5, I2 is independent from B1 over = in B′2 and so, by (*), π(f(I2)) is independent from

PM1
1 = B2 over PM2

4 in M2. So M1 ⊂fr M2 with HM2
(c) = n∗ for c ∈ PM2

2 . 3.2.17

Note the M0,M1,M2,M3 in the next argument are N0,M1, N2,M2 in Lemma 3.2.17.

Corollary 3.2.18. (K0,⊆) has the disjoint amalgamation property.

Proof. We know every member of K0 is K1-free over the emptyset. So the amalgamation becomes
a special case of Lemma 3.2.16 when we add a proof that the amalgam is in K0. We have the following
situation. M0 is K1-free over the minimal model Mmin. That is, there are J0, I0, H0 such that J0 generates
B0,n0

∗
and (J0 ∪ I0, H0) witness that M0 is a K1-free extension of the minimal model Mmin. Similarly

13Abusing notation, since B1 is not a τ -structure, we write PB1
4,1 for the set of atoms of B1 and PB1

4 for their finite joins.
14B′2 is freely generated as a Boolean algebra by (isomorphic copies of) B1 and PN2

1 over B∗.
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there are for i = 1, 2, Ji, Ii, Hi such that Ji generates Bi,ni∗ and (Ji ∪ Ii, Hi) that witness that Mi is a
K1-free extension of the minimal model M0.

Choose n∗ as the maximum of ni∗ for i < 3; we can assume the ni∗ for i < 3 are equal and that
B2,ni∗

∩ B0,n0
∗

= B0,n0
∗

for i = 1, 2. Rechoosing n∗ by Lemma 3.2.11 we can assume for all n ≥ n∗,
B1
n ∩ P

M0
1 = B0

n = B2
n ∩ P

M0
1 .

Choose M3 by Lemma 3.2.17. Let b3n∗ = b1n∗ ∧ b
1
n∗ . Now let B3,n∗ be the subboolean algebra of M3

generated by J0∪J1∪J3 and for n ≥ n∗, B3,n be generated byB1,n∪B2,n. This is the required witnessing
sequence. 3.2.18

Since K0 has joint embedding, amalgamation and only countably many finitely generated models, we
construct in the usual way a generic model. This construction can be rearranged in order type ω so by
Theorem 3.2.17 and Lemma 3.2.13 the generic is K1-free.

Corollary 3.2.19. There is a countable generic model M for K0. We denote its Scott sentence by φM .
Moreover M is K1-free.

Aligning our notation with earlier sections of the paper we note the models of φM are rich in the sense
defined there.

Definition 3.2.20. We say a model M in K1 is rich if for any N1, N2 ∈ K0 with N1 ⊆ N2 and N1 ⊆ M ,
there is an embedding of N2 into M over N1. We denote the class of rich models in K1 by K2 = R.

Lemma 3.2.17 finds a K1-free extension of each K1-free model in K1; more strongly:

Corollary 3.2.21. Let M1 be K1-free. There exists an M2 ∈ K2 which is a proper K1-free extension of
M1.

Proof. Iterate Corollary 3.2.17 as in Corollary 2.1.6 to obtain a rich model; note that freeness is preserved
at each stage. 3.2.21

The crucial distinction from Corollary 2.1.6 is that here we extend only ‘K1-free models’ in K1 to K2.
While this construction applied to K2 will necessarily increase P0 (case 2 of Construction 3.3.8), we can
find extensions in K1 which do not extend P0 or P1 but only P2 (case 4 of Construction 3.3.8). We require
two crucial properties of the generic model.

Lemma 3.2.22. If M is the generic model then

i if b1 6= b2 are in PM1 − PM4 then R(b1,M) 6= R(b2,M), i.e. the map f from Definition 3.2.2.1.c is
injective.

ii For any a ∈ PM0 , b ∈ PM1 , M |= R(a, b) ∨R(a, b−). Indeed, PM1 is an atomic Boolean algebra.

iii For each b ∈ PM1 − PM4 , RM (M, b) is infinite and coinfinite.

Proof. For i) fix a finitely generated model M0 containing b1, b2; there is a finitely generated extension
M1 in K0 by adding a ∈ PM1

0 with RM1(a, b1) ∧ ¬RM1(a, b2). This shows the injectivity; the other
conditions are similar.

3.2.22

Lemma 3.2.23. If M,N ∈ K2, M ≡∞,ω N so they satisfy the Scott sentence ΦM . Moreover, if M ⊂ N
and both in K2, M ≺∞,ω N .
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Proof: Suppose M and N are in K2. We define a back-and-forth between M and N for a ∈ Mn,
b ∈ Nn by a ≡ b if they realize the same first order type over the ∅ with respect to T . Fix such a ≡ b and
choose c ∈ M . The interest is when c is not in A = acl(a), If c ∈ PM1 − A, let A1 = 〈A ∪ {c}〉M . Since
M ∈K1, A1 ∈K1. Now let B = 〈b〉N that is equivalent to A. By richness there exists B1 isomorphic to
A1 with B ⊂ B′ ⊂ N .

IfM ⊂ N and both are in K2, then aclM (a) = aclN (a) for a ∈M ; this yields the moreover. 3.2.23

This completes our description of the class K2 of rich models and its Scott sentence. At this point
we construct a member of K1 which is a K1-free-extension of a member of K2. In case 2 of the main
construction, we apply Corollary 3.2.21 to regain a member of K2.

Lemma 3.2.24. If M ∈ K2, there is an N such that M ⊂fr N , both are in K1 P
N
2 = PM2 , PN0 = PM0

and N ⊂ N ′ where PN1 is generated by PM1 ∪ {b}. Moreover given u ⊆ PM0 , we can require R(N, b) = u
and b is free from PM1 over PN4 . Moreover, if M is K1-free then so is N .

Proof: Let p(x) be the type of an element satisfying P1(x) ∧ ¬P4(x):

{x ≥ G1(a) : a ∈ u} ∪ {G1(a) ∧ x = 0: a ∈ PN4 \ u} ∪ {b ∧ σ(x) 6= a : b ∈ PM1 \ PM4 , a ∈ PM4 },

where σ(x) ranges over nontrivial Boolean polynomials. Each finite subset q of p is satisfied in M because
M ∈K2 so p is finitely satisfied in M . Thus there is an elementary extension N ′ of M where p is realized
by some b. Let B be the boolean subalgebra of PN

′

1 generated by PM1 ∪ {b}. Since N ′ satisfies the first
order properties of K2, the atoms of M are atoms of B.

Moreover, if d ∈ B− PN ′4 then there is an ultrafilter D on B such that for each c ∈ PM2 , at most finitely
many FMn (c) ∈ D. To see this, write d as (d1 ∧ b)∨ (d2 ∧ b) for some d1, d2 ∈ PM1 . Now, since the FMn (c)
are independent (as sets) in PM1 , there is an ultrafilter D1 on B with (d1 ∧ b) ∈ D1 and for each c ∈ PM2 , at
most finitely many FMn (c) ∈ D1. Now extend D1 to an ultrafilter D on B with (d1 ∧ b) and hence b ∈ D.
Thus for any c ∈ PM2 no element of B realizes

∧
n < ωFMn (c). Let Y be the atoms of the atomic Boolean

algebra PN
′

1 − PM1 that are below an element of B. And let B′ be a subalgebra of PN
′

1 generated by B∪ Y .
Now for any c ∈ PM2 , no element of B′ realizes

∧
n<ω F

M
n (c).

Define a τ -structure N with PN1 = B′. Interpret P2 and the Fn in N as in M . Extend GM1 and PM0 so
that PN0 = (GN1 )−1(Y ). The structure N is well-defined; we must prove it is in K1.

Let 〈(Mi, Zi) : i < |M |, Zi ⊂ω Y 〉 list the pairs of finitely generated Mi ⊂M in K0 and finite subsets
of Y . (TheMi will be repeated.) LetNi ⊂ N with PNi0 = PM1

0 ∪Zi, PNi2 = PM1
2 , and PNi1 be the universe

of the Boolean subalgebra of N generated by PN1
2 ∪ {b} ∪Zi. Using the moreover above it is easy to check

each Ni ∈K0.
Now N is the direct limit of the finitely generated {Ni : i < |M |} so it is in K1. Finally b is free

from b is free from PM1 over PN4 since no trivial unary polynomial σ satisfies maps σ(b) ∧ a ∈ PN4 with
a ∈ PM1 − PM4 . The moreover follows by Definition 3.2.12 from the independence of b. 3.2.24

3.3 Constructing maximal models in an extension of ZFC
We show that in each cardinal below a measurable cardinal, assuming a mild set theoretic hypothesis de-
scribed below, K2 has maximal models. We begin by defining a pair of set theoretic notions and some
specific notions of maximal model.

Definition 3.3.1 (�S). Given a cardinal κ and a stationary set S ⊆ κ, �S is the statement that there is a
sequence 〈Aα : α ∈ S〉 such that
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1. each Aα ⊆ α

2. for every A ⊆ κ, {α ∈ S : A ∩ α = Aα} is stationary in κ

Definition 3.3.2 (S reflects). Let κ be a regular uncountable cardinal and let S be a stationary subset of κ.
If α < κ has uncountable cofinality, S reflects at α if S ∩α is stationary in α . S reflects if it reflects at some
α < κ.

Definition 3.3.3. 1. A model M ∈ K2 = R is P0-maximal (for K1) if M ⊆ N and N ∈ K2 = K1

implies PM0 = PN0 .

2. A model M ∈K2 is maximal (for K2) if M ⊆ N and N ∈K2 implies M = N .

Let Sλℵ0 denote the stationary set {δ < λ : cf(δ) = ℵ0, δ is divisible by |δ|}.

Theorem 3.3.4. Fix K0,K1 = K̂, and K2 = R as in Definitions 3.2.3, 3.2.9 and 3.2.20. There is a
P0-maximal (for K1) model M ∈ R of card λ if there is no measurable cardinal ρ with ρ ≤ λ, λ = λ<λ,
and there is an S ⊆ Sλℵ0 , that is stationary non-reflecting, and �S holds.

Under V = L, the hypotheses are clearly consistent and imply there are arbitrarily large maximal models
of R in L. When a measurable cardinal exists, the consistency of the conditions can be established by
forcing; see the article by Cummings in the Handbook of Set Theory [Cum08] or by considering the inner
model of a measurable L[D] where is D is a normal ultrafilter on µ.

We now define a crucial notion and prove a lemma about it, applied to perform case 5 of the construction.

Definition 3.3.5. Suppose that Nn ⊂fr Nn+1 for n < ω, is sequence of models, N , in K1. We say a
sequence b = 〈bn : n < ω〉 is

1. good for N if

(a) PNn+1

2 − PNn2 is infinite;

(b) for each n, bn ∈ PNn+1

1 so that {bn} is free from PNn1 over PNn+1

4 ;

(c) if a ∈ PNi0 , then for all but finitely many n ≥ i, a 6∈ R(Nn+1, bn).

2. for A ⊂
⋃
N , b is A-good if each bn ∈ A.

3. and named if there is a pair (Nb, cb) = with Nb ∈K1 and Nb ⊇ Nω =
⋃
Nn such that for each n,

FNn (cb) = bn. By the definition of K1,
⋂
nR(Nb, FNn (cb)) = ∅.

Note that for every c ∈ Nm ( Nω , at most finitely many of any good sequence bn occur in the sequence
FNmn (c) for n < ω.

Claim 3.3.6. Suppose that for n < ω, N = 〈Nn ⊂fr Nn+1〉 are in K1. If Condition A) holds then so does
condition B).

A) There is an A-good sequence for N .

B) There is a named A-good sequence for N .
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Proof. The following construction is for the fixed A-good sequence b. Note that each PN
b

1 = PN1 ; the
extension Nb only adds an element c to PNω2 and interprets the FN

b

m (c).
The difficulty is that while we know each Nn+1 is K1-free over Nn, witnessed by some (In, Hn), we

don’t know bn ∈ In. We need to find I ′n which also witnesses Nn ⊂fr Nn+1 and bn ∈ I ′n. Then we choose
c∗ and define N with domain

⋃
Nn ∪ c∗ by keeping the τ -structure on

⋃
Nn, adding c∗ to PN2 and setting

FNn (c∗) = bn for each n. Clearly, N ∈ K1 as
⋃
Nn is K1-free and the additional FNn (c∗) just pick out

independent elements; HN (c∗) = 0. ( Note that there is no requirement that m,n < ω, c ∈ PM0
2 , d ∈ PM1

2

imply FM1
n (c) 6= FM1

m (d).)
To find I ′n, we first find (Xn, Jn) such that:

1. Xn ⊆ PNn1 is finite.

2. Jn ⊂ In is countable.

3. If c ∈ PNn+1

2 − PNn2 then for sufficiently large m, FNn+1
m (c) 6∈ Jn.

4. bn ∈ BA(X ∪ Jn), the Boolean algebra generated by Xn ∪ Jn in PMn+1

1 .

First step: First, we construct such an (Xn, Jn). Note that bn is in a subalgebra generated by a finite
subset Xn of PNn1 and a finite subset J ′n of In.

Now, by hypothesis A.1) of Claim 3.3.6, fix a sequence 〈ci : i < ω〉 of distinct elements of PNn+1

2 −PNn2 .
Note that for i, j < ω if ni > Hn(ci) and nj > Hn(cj) then Fni(ci) 6= Fni(ci). Now we can construct
a J ′′n = {dn,k : k < ω} from In − J ′n by dn,k = F

Mn+1
m (ck) for some m > Hn(ck). We have countably

infinite J ′′n contained in In − J ′n such that for each c ∈ PNn+1

2 −PNn2 all but finitely many of the FNn+1(c)
are in In − (J ′n ∪ J ′′n). Set Jn = J ′n ∪ J ′′n .

Second step: Now apply Lemma 3.1.1015 to find J∗n with J∗n independent from PMn
1 over PMn+1

4 such
that 〈J∗n ∪ P

Mn+1

4 〉
P
Mn+1
1

= 〈Jn ∪ PMn+1

4 〉
P
Mn+1
1

but bn ∈ J∗n. Now, I ′n can be taken as (In − Jn) ∪ J∗n.

To ensure that Nn ⊆fr Nn+1 with basis I ′n, replace HN (cn) by HNn(cn) + r where (by Definition 3.2.3)
some rn bounds the number of m such that FNnm (cn) ∈ 〈Jn〉PMn+1

1

.

Having found an appropriate basis for N =
⋃
Nn, we expand N to Nb by adding an element cb to PN2

2

and defining FN
b

n (cb) = bn. Setting HN (cb) = 0 guarantees Nω ⊆fr N . Since the same bn were used,
it is clear the labeled sequence is A-good. The remark before Claim 3.3.6 guarantees that Nb is K-free.

3.3.6

The argument for Theorem 3.3.4 will have three parts. First, we describe the requirements on a construc-
tion of a model; then we carry out the construction. Finally, we show the model constructed is P0-maximal
when λ is below the first measurable

Construction 3.3.7 (Requirements). Let 〈Uα : α < λ〉 list [λ]<λ so that each subset is enumerated λ times
and Uα ⊆ α. Since the set of ordinals α < κ such that |α| divides α is a cub for any κ, without loss of
generality, each α ∈ S is a limit ordinal and is divided by |α|. Let A

∗
= 〈A∗δ : δ ∈ S〉 be a �S-sequence.

We will choose Mα for α < λ by induction to satisfy the following conditions. (Since the universe of
M is a subset of λ, its elements are ordinals so we may talk about their order although the order relation is
not in τ .)

15Lemma 3.1.10 is the strengthening of the notion of an independence system towards a matroid; this is the crucial application.
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1. M0 is isomorphic to the minimal model of K1. For α > 1,Mα ∈K2 has universe an ordinal between
α and λ.

2. 〈Mβ : β < α〉 is ⊆- continuous.

3. If β ∈ α− S then Mα is K1-free over Mβ , and Mα ∈K2 = R.

4. If α = β + 2 and Uβ ⊆ P
Mβ

0 then there is a bβ ∈ PMα
1 such that R(Mα, bβ) ∩Mβ+1 = Uβ and in

the Boolean algebra PMα
1 , {bβ} is free from P

Mβ+1

1 over PMα
4 . Moreover PMα

2 − PMβ

2 is infinite.

5. If δ ∈ S and α = δ + 1 then A) implies B), where:

A) there is an A-good sequence γ = 〈γδ,n, bδ,n : n < ω〉, where the γδ,n are increasing with n and
not in S such that the 〈bδ,n : n < ω〉 are good for the Mγδ,n

B) there is a labeled A-good sequence γ̂ = 〈γ̂δ,n, b̂δ,n : n < ω〉, for 〈Mγδ,n : n < ω〉 with
c ∈Mδ+1.

Note that each Mi for i < λ is K1-free; but, as we will see, Mλ may not be. For i 6∈ S, this is
requirement 3; if i = δ ∈ S, we can guarantee the Mδ is K1-free by choosing a sequence of successor
ordinals γn with limit δ. By induction each Mγn is K1-free over Mγn−1

so by Lemma 3.2.13.2 so is Mδ .
We now carry out the inductive construction.

Construction 3.3.8. Details

Case 1: α = 0. Let M0 be the minimal model from Lemma 3.2.10. The generic can be taken as M1.
Case 2: α = β+1 and β 6∈ S. If β is a limit we only have to choose, by Lemma 3.2.21, Mα to be a K1-free
extension of Mβ in K2. If β is a successor, there is an additional difficulty. If Uβ ⊂ P

Mβ

0 ; we must choose
bβ to satisfy condition 4) and with Mα ∈K2. For this, apply Lemma 3.2.24 with Uβ as U and Mβ+1 as M
to construct N and bβ . Now iterate Corollary 3.2.21 |Mβ+1| times to obtain Mα ∈ K2. This iteration also
ensures PMα

2 − PMβ

2 is infinite.
Case 3: α = δ, a limit ordinal that is not in S. Set Mδ =

⋃
γ<δMγ . We must prove that if β ∈ δ \ S

then Mδ is K1-free over Mβ . Since S does not reflect there exists an increasing continuous sequence
〈αi : i < cf(δ)〉 of ordinals less than δ, which are not in S and with α0 = β. By the induction hypothesis, for
each i < j < cf(δ), Mαj is K1-free over Mαi . And Mδ is K1-free over Mβ as required by Lemma 3.2.13.
Case 5: Recall that δ is divisible by |δ| so we can choose the γn so that γn+1 ≥ γn + ω and so, by iterating

as in Corollary 3.2.21, P
Mγn+1

2 − P
Mγn+1

2 is infinite.
Moreover, each γn is not in S so Mγn is K1-free so by Lemma 3.2.13, Mδ is K1-free.

Case 4a: α = δ + 1, δ ∈ S, and clause 5A fails. This is just as in case 2.
Case 4b: α = δ + 1, δ ∈ S, but clause 5A holds.

So, suppose 〈Mβ , bβ〉 for β < δ have been defined. If there exists γ as in condition 5A) of Construc-
tion 3.3.7 we must construct γ̂ = 〈γ̂δ,n, b̂δn : n < ω〉 and ĉδ to satisfy condition 5B). We deduce the result
from Claim 3.3.6.

Take any 〈γδ,n, bδ,n : n < ω〉 satisfying 5A. Let the Mγn be the Nn from Claim 3.3.6 and by that claim,
choose Mδ+1, ĉδ ∈ P

Mδ+1

2 such that for each n, FMδ+1
n (ĉδ) = b̂δ,n.

This completes the construction.
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Remark 3.3.9. Condition 5 asserts that if there is an A-good sequence then there is a labeled A-good
sequence. In the proof we, in fact, take the same sequence so the ‘A’ is preserved automatically. But for
each δ we construct only one pair of a c labeling a sequence bδ,n. We fix the relevant A in the first paragraph
of 3.3.11.

Claim 3.3.10. The structure M =
⋃
i<λMi ∈K2.

Proof. Since we required the extension to be in K2 = R in requirement 3 of Construction 3.3.7, for
cofinally many i, Mi ∈ K2. By Lemma 3.2.23, they are ∞, ω-elementary extensions. Hence M ∈ K2.

3.3.10

Construction 3.3.11. Verification that the construction suffices

Now we now show that M is P0-maximal for K2. Suppose for contradiction there exists N in K1

extending M such that PN0 ) PM0 . Choose a∗ ∈ PN0 − PM0 . Let

A = {b ∈ PM1 : RN (a∗, b)}.

Then, by Remark 3.2.22.iii, for every a ∈ PN0 , in particular a∗ and every b ∈ PN1 (and so every b ∈ PM1 )
either RN (a∗, b) or RN (a∗, b−). Thus, the subset A of PM1 is a non-principal ultrafilter of the Boolean
algebra PM1 . For, if A is principal, it is generated by some atom b0 ∈ PM1

4 . Then b0 must be in P4,1 and so
¬RN (a∗, b0), contrary to hypothesis. We will show that A induces an ℵ1-complete ultrafilter on P(PMα∗

0 )
for some α∗ < λ. But this contradicts that λ is not measurable.

Recall that the Aδ are the diamond sequence fixed in requirement 3.3.7. Note

SA = {δ ∈ S : Mδ has universe δ & Aδ = A ∩ δ}

is a stationary subset of λ. In the construction, we chose bα for α < λ which satisfied requirement 4 of
Construction 3.3.7. Note

C = {δ < λ : δ limit & α < δ → bα < δ}

is a club on λ.
There are two cases. We will show the first is impossible and the second implies λ is measurable,

contrary to hypothesis. So the construction yields a P0-maximal model in K2.
Case i): For every α < λ there is a b ∈ PM1 ∩ A such that R(M, b) is disjoint from α and {b} is

independent from PMα
1 over PM4 .

Choose δ∗ ∈ SA ∩ C. Since δ∗ has cofinality ω we can choose a sequence γ̂δ
∗
n such that each is a

successor (so not in S), and, as we are in case i), with bγδ∗n < γδ
∗

n+1. Since condition 5B) holds there are

ĉδ ∈ P
Mδ+1

2 such that for each n, FMδ+1
n (ĉδ) = b̂δ,n. Since Mδ+1 ∈ K1, by clause 8 of Definition 3.2.2,

Mδ+1 |= ¬(∃x)
∧
nR(x, Fn(c∗δ)). This contradicts that we chose bγδ∗n ∈ A, since by the definition of A,

for each n < ω, RN (a∗, bγδ∗n ) holds.

case ii) For some α∗, there is no such b. That is, if b ∈ PM1 is independent from PMα∗
1 over PM4

and R(M, b) is disjoint from α∗ then ¬R(a∗, b). From the list of elements of [λ]<λ at the beginning of
construction 3.3.7, we consider the subsequence 〈vγ : γ < λ〉 enumerating P(PMα∗

0 ); recall each element
appears λ times in the list.
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We now choose inductively by requirement 4 of Goal 3.3.7 and Lemma 3.2.24 a subsequence16 bγ of the
bα ∈ PM1 and Mγ such that R(Mγ , bγ) ∩ PMα∗

0 = vγ and 〈bβ : β ≤ γ〉 is independent from PMα∗
1 over

PM4 . In particular, bβ is independent from P
Mβ

1 over PMβ+1

4 and so by Remark 3.2.14 over PM4 .
We claim that if γ1 < γ2 ∧ vγ1 = vγ2 then RN (a∗, bγ1) ↔ RN (a∗, bγ2). For this, let b′ = bγ14bγ2 .

Then R(M, b′) ∩ PMα∗
0 = ∅ so by the case choice, ¬R(a∗, b′). But ¬R(a∗, b′) implies RN (a∗, bγ1) ↔

RN (a∗, bγ2), as required.
Continuing the proof of case ii) we define an ultrafilter D on P(PMα∗

0 ) by v ∈ D if for some (and hence
any) bγ from our chosen subsequence with R(M, bγ) ∩ PMα∗

0 = v, RN (a∗, bγ). (This is an ultrafilter as
each u ⊂ PMα∗

0 is R(M, bγ) ∩ PMα∗
0 for some γ by requirement 4 (case 2) of the construction.)

Now we show the coding of the elements of D extends to the entire original sequence.

Claim 3.3.12. For any b ∈ PM1 , which is one of the original sequence of independent bα, if v = R(M, b) ∩
PMα∗
0 and v ∈ D then N |= R(a∗, b).

Proof. We can choose β, β1 so that α∗ < β < λ, b ∈ P
Mβ

1 and β1 > β such that vβ1 = v. Now
b̌ = b4bβ1 ∈ PM1 and R(M, b̌) ∩ PMα∗

0 = ∅. Note that since 〈bβ : β ≤ γ〉 is independent from PMα∗
1 over

PM4 in PM1 , in particular b and bβ1 are independent so the singleton b4bβ1 is independent from PMα∗
1 over

PM4 in PM1 . So by the choice of α∗, N |= ¬R(a∗, b̌). So, N |= ¬R(a∗, b) if and only N |= ¬R(a∗, bβ1).
But, we have v ∈ D and R(M, bβ1

) ∩ PMα∗
0 = v, so N |= R(a∗, bβ1

) and thus N |= R(a∗, b) as required.
3.3.12

There is no ℵ1-complete ultrafilter on P(PMα∗
0 ) since |PMα∗

0 | < λ is not measurable. So there are
〈wn ⊆ PMα∗

0 : n < ω〉, each in D, that are decreasing and intersect in ∅. Now we can find δ∗ > α∗ such
that δ∗ ∈ SA ∩ C, the universe of Mδ∗ is δ∗, Aδ∗ ∩ δ∗ = A ∩ δ∗. and there is an increasing 〈γδ∗n : n < ω〉
with limit at most δ∗ and each γδ

∗

n 6∈ S. Further, by requirement 4 on the construction, we can choose γδ
∗

n so
that bα

γδ
∗
n

(another subsequence of the orginal sequence) satisfies R(M, bγδ∗n )∩Mα∗ = wn, bγδ∗n ∈Mγδ
∗
n+1

,

and the sequence {bγδ∗n } is independent from PMδ∗
1 over PM4 . Since the wn are decreasing with empty

intersection, no a ∈ Mα∗ is in more than finitely many of the wn. Further, for any a ∈ M and any n,
a ∈ R(Mγn , bγn) if and only if a ∈ wn. Thus, Definition 3.3.5 1c is satisfied.

So by clause 5) of the construction, there is a labeled A-good sequence b̂δ∗,n for Mδ∗+1, ĉ∗δ ∈ P
Mδ∗+1

2

such that for each n, FMδ∗+1
n (ĉ∗δ) = b̂δ∗,n. And by clause 8 of Definition 3.2.2 this contradicts Claim 3.3.12,

the intersection of R(N,FNn (c)) for n < ω must be empty but it contains a∗. So we finish case ii) and thus
Lemma 3.3.4. 3.3.4

We have constructed a P0-maximal model in K2; one step remains.

Corollary 3.3.13. Under the hypotheses of Theorem 3.3.4, there is a maximal model of K2 of cardinality
at most 2λ.

Proof. Fix a P0-maximal model N0 of cardinality λ from Theorem 3.3.4. Build for as long as possible
a continuous ⊆-increasing chain of Nα ∈ K2 such that each Nα 6= Nα+1. Recall that by Lemma 3.2.22.1
the relation R is injective. So, each |PNα1 | ≤ 2|P

N0
0 | = 2λ. So this construction must stop and the final,

maximal in K2, model has cardinality at most 2λ. 3.3.13

16For local intelligibility (and at the risk of global confusion) we use indices bγ and Mγ rather than bαγ and Mαγ that would keep
track of the subsequence fact, as it does not matter.
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Remark 3.3.14. In the construction we showed for limit δ that Mδ is K1-free using S does not reflect if
δ 6∈ S and the cf(δ) = ω for δ ∈ S. We have no such tools to show the P0-maximal model, M = Mλ built
in Theorem 3.3.13 is K1-free. In fact, by the contrapositive of Corollary 3.2.21 the final maximal model,
which might be M , is not K1-free.

4 Hanf Number for Existence
As mentioned in the introduction, we improved in [BKL16] Hjorth’s result [Hjo02] by exhibiting for each
n < ω a complete sentence ψn such that ψn characterizes ℵn. This improvement is achieved by combining
the combinatorial idea of Laskowski-Shelah in [LS93] with a new notion of n-dimensional amalgamation.
We explain the main definition and theorem here (as in the Tehran lectures) and refer to [BKL16] for the
proofs. The combinatorial fact is:

Fact 4.0.1. For every k ∈ ω, if cl is a locally finite closure relation on a set X of size ℵk, then there is an
independent subset of size k + 1.

Fix a vocabulary τr with infinitely many r-ary relations Rn and infinitely many r + 1-ary functions fn.
We consider the class Kr

0 of finite τr-structures (including the empty structure) that satisfy the following
three conditions; closure just means subalgebra closure with respect to the functions.

• The relations {Rn : n ∈ ω} partition the (r + 1)-tuples;

• For every (r + 1)-tuple a = (a0, . . . , ar), if Rn(a) holds, then fm(a) = a0 for every m ≥ n;

• There is no independent subset of size r + 2.

It is easy to see from Fact 4.0.1 that every model in ℵr is maximal. The main effort is to show there is
a complete sentence φr satisfying those conditions which has model in ℵr. For this we introduce a notion
patterned on excellence17 but weaker. We pass from a class Kr

0 of, now, locally finite structures to the
associated class K̂ as in Definition 2.1.1.

Definition 4.0.2. For k ≥ 1, a k-configuration is a sequenceM = 〈Mi : i < k〉 of models (not isomorphism
types) from K. We say M has power λ if ‖

⋃
i<kMi‖ = λ. An extension of M is any N ∈ K such that

every Mi is a substructure of N .

Informally a (λ, k)-disjoint amalgamation holds when for any sequence of k models, at least one with λ
elements, there is common extension, which properly extends each model in the sequence. Crucially, there
is no notion of a universal model yet. Here is the precise formulation.

Definition 4.0.3. Fix a cardinal λ = ℵα for α ≥ −1. We define the notion of a class (K,≤) having
(λ, k)-disjoint amalgamation in two steps:

1. (K,≤) has (λ, 0)-disjoint amalgamation if there is N ∈K of power λ;

2. For k ≥ 1, (K,≤) has (≤ λ, k)-disjoint amalgamation if it has (λ, 0)-disjoint amalgamation and
every k-configuration M of cardinality ≤ λ has an extension N ∈ K such that every Mi is a proper
substructure of N .

17Shelah’s theory of excellence concerns unique free disjoint amalgamations of infinite structures in ω-stable classes of models of
complete sentences in Lω1,ω .
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For λ ≥ ℵ0, we define (< λ, k)-disjoint amalgamation by: has (≤ µ, k)-disjoint amalgamation for each
µ < λ.

Whether or not a given k-configuration M has an extension depends on more than the sequence of
isomorphism types of the constituent Mi’s, as the pattern of intersections is relevant as well. For example,
when (as here) strong substructure is just substructure), a 2-configuration 〈M0,M1〉 with neither contained
in the other has an extension if and only if the triple of structures 〈M0 ∩M1,M0,M1〉 has an extension
amalgamating them disjointly. Thus we abuse notation a bit and write (< λ, 2) amalgamation for both the
notion defined here and the one in Definition 2.1.4. But there is no existing analog of our disjoint (< λ, k)-
amalgamation for k > 2.

Now we modify a theme familiar from the theory of excellence. If the cardinality increases by one the
the number of models that can be amalgamated drops by one. In Shelah’s context [She09] (chapter 21 of
[Bal09]) there is a reliance on Fodor’s lemma to obtain compatible filtrations of the models in κ+ to prove
the version of Proposition 4.0.4. A very different approach was needed to go from the finite to the countable.
Instead of the kth level concerning finding an embedding into an upper corner for a given 2k−1 vertices of a
k-cube, we consider actual containment for k-models and do not worry about their intersections.

Lemma 4.0.4 (Proposition 2.20 of [BKL16]). Fix locally finite (K,≤) with JEP. For all cardinals λ ≥
ℵ0 and for all k ∈ ω, if K has (< λ, k + 1)-disjoint amalgamation, then it also has (≤ λ, k)-disjoint
amalgamation.

Together, these propositions yield 1)-3) of the next result. Recall from Definition 2.1.4, that by 2-
amalgamation, we mean the usual notion that allows identifications. We say 2-amalgamation is trivially true
in a cardinal κ in all models in κ are maximal.

Theorem 4.0.5 (Theorem 3.2.4 of [BKL16]). For every r ≥ 1, the class Atr satisfies:

1. there is a model of size ℵr, but no larger models;

2. every model of size ℵr is maximal, and so 2-amalgamation is trivially true in ℵr;

3. disjoint 2-amalgamation holds up to ℵr−2;

4. 2-ap fails in ℵr−1.

5. Each of the classes K̂r and Atr have 2ℵs models in ℵs for 1 ≤ s ≤ r. In addition, K̂r has 2ℵ0

models in ℵ0.

Parts 4) and 5) require a further refinement of the notion of disjoint amalgamation.

Definition 4.0.6. Let (K̂,≤) be a class of structures defined . Given a cardinal λ and k ∈ ω, we say that K
has frugal (≤ λ, k)-disjoint amalgamation if it has (≤ λ, k)-disjoint amalgamation and, when k ≥ 2, every
k-configuration 〈Mi : i < k〉 of cardinality ≤ λ has an extension N ∈K with universe

⋃
i<kMi.

Thus the domain of a frugal amalgamation is just the union of the models amalgamated. It is easy to see
that this property holds for the example in [BKL16]. It is essential for the intricate constructions to verify
the last two parts of Theorem 4.0.5 and for the work in [BKS16, BS15].

The finite amalgamation spectrum of an abstract elementary class K with LS(K) = ℵ0 is the set XK
of n < ω and K satisfies amalgamation18 in ℵn. There are many examples19 where the finite amalgamation
spectrum of a complete sentence of Lω1,ω is either ∅ or ω.

18We say amalgamation holds in κ in the trivial special case when all models in κ are maximal. We say amalgamation fails in κ if
there are no models to amalgamate.

19Kueker, as reported in [Mal68], gave the first example of a complete sentence failing amalgamation in ℵ0.
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Theorem 4.0.5 gave the first example of such a sentence with a non-trivial spectrum: for each 1 ≤ r < ω
amalagmation holds up to ℵr−2, but fails in ℵr−1. It holds (trivially) in ℵr (since all models are maximal);
there is no model in ℵr+1.

This result leaves open whether the property, AP in λ, can be true or false in various patterns as λ
increases? Is there even an AEC (and more interestingly a complete sentence of Lω1,ω) and cardinals κ < λ
such that amalgamation holds non-trivially in both κ and λ but fails at some cardinal between them?

Relying on the construction in [BKL16], Baldwin and Souldatos [BS15] show there exist complete
sentences of Lω1,ω that variously have maximal models a) in two successive cardinals, b) in κ and κω

and c) in countably many cardinals. In each case all maximal models of the sentence have cardinality
less than ℵω1

. That proof includes an intricate construction of a complete sentence that has a model in
each successor cardinal κ+ with a definable subset of power κ. The [BS15] result is distinguished from
the one here in several ways. It constructs maximal models in designated cardinals rather than an initial
segment. The crucial amalgamation properties are quite different. The example in [BKL16] satisfies (< λ, 2)
amalgamation in all cardinals.
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