
Axiomatizing changing conceptions of the
geometric continuum I: Euclid-Hilbert

John T. Baldwin
Department of Mathematics, Statistics and Computer Science

University of Illinois at Chicago∗

October 2, 2017

Abstract

We begin with a general account of the goals of axiomatization, introducing
a variant (modest) on Detlefsen’s notion of ‘complete descriptive axiomatization’.
We examine the distinctions between the Greek and modern view of number, mag-
nitude and proportion and consider how this impacts the interpretation of Hilbert’s
axiomatization of geometry. We argue, as indeed did Hilbert, that Euclid’s propo-
sitions concerning polygons, area, and similar triangles are derivable (in their mod-
ern interpretation in terms of number) from Hilbert’s first-order axioms.

We argue that Hilbert’s axioms including continuity show much more than
Euclid’s theorems on polygons and basic results in geometry and thus are an im-
modest complete descriptive axiomatization of that subject.

Consider the following two propositions.

(*) Euclid VI.1: Triangles and parallelograms which are under the same
height are to one another as their bases.

Hilbert1 gives the area of a triangle by the following formula.

(**) Hilbert: Consider a triangle ABC having a right angle at A. The measure
of the area of this triangle is expressed by the formula

F (ABC) =
1

2
AB ·AC.

At first glance these statements seem to carry the same message, the familiar
fact about computing the area of triangle. But clearly they are not identical. Euclid
∗Research partially supported by Simons travel grant G5402.
1Hilbert doesn’t state this result as a theorem; I have excerpted the statement below from an application

on page 66 of [Hilbert 1962].
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tells us that the two-dimensional area of two triangles ‘under the same height’ is pro-
portional to their 1-dimensional bases. Hilbert’s result is not a statement of proportion-
ality; it tells us the 2-dimensional measure of a triangle is computed from a product of
the 1-dimensional measures of its base and height. Hilbert’s rule looks like a rule of
basic analytic geometry, but it isn’t. He derived it from an axiomatic geometry similar
to Euclid’s, which in no way builds on Cartesian analytic geometry.

Although the subject, often called Euclidean geometry, seems the same,
clearly much has changed. This paper and its sequel [Baldwin 2017a] aim to contribute
to our understanding some important aspects of this change. One of these aspects is the
different ways in which the geometric continuum, the line in the context of the plane,
is perceived. Another is a different basis for the notion of proportion. The two papers
deal with axiomatizations of the geometric line in logics of differing strengths. This
analysis is integrated with a more general discussion of model theory and the philos-
ophy of mathematical practice in [Baldwin 2017b]. Hilbert’s axiomatization is central
to our considerations. One can see several challenges that Hilbert faced in formulating
a new axiom set in the late 19th century:

1. Delineate the relations among the principles underlying Euclidean geometry. In
particular, identify and fill ‘gaps’ or remove ‘extraneous hypotheses’ in Euclid’s
reasoning.

2. Reformulate propositions such as VI.1 to reflect the 19th century understanding
of real numbers as measuring both length and area.

3. Ground the geometry of Descartes, late nineteenth century analytic geometry,
and mathematical analysis.

The third aspect of the third challenge is not obviously explicit in Hilbert. We
will argue Hilbert’s completeness axiom is unnecessary for the first two challenges and
at least for the Cartesian aspect of the third. The gain is that it grounds mathemati-
cal analysis (provides a rigorous basis for calculus); that Hilbert desired this is more
plausible than that he thoughtlessly assumed too much. For such a judgement we need
some idea of the goals of axiomatization and when such goals are met or even ex-
ceeded. We frame this discussion in terms of the notion of descriptive axiomatization
from [Detlefsen 2014], which is discussed in the first section of this paper.

The main modification to Detlefsen’s framework addresses the concern that
the axioms might be too strong and obscure the ‘cause’ for a proposition to hold. We
introduce the term ‘modest’ descriptive axiomatization to denote one which avoids this
defect. That is, one which meets a certain clear aim, but doesn’t overshoot by too
much. We describe several ‘data sets’, explicit lists of propositions from Euclid, and
draw from [Hartshorne 2000], to link specified subsets of Hilbert’s axioms that justify
them.

Recall that Hilbert groups his axioms for geometry into 5 classes. The first
four are first-order. Group V, Continuity, contains Archimedes axiom, which can be
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stated in the logic2 Lω1,ω , and a second-order completeness axiom equivalent (over the
other axioms) to Dedekind completeness3 of each line in the plane.

The side-splitter theorem asserts that a line parallel to the base cuts the sides
of a triangle proportionately. To prove it Euclid passes through a theory of area that
is based on a theory of proportion that implicitly uses a form of Archimedes Axiom.
Bolzano called this path an atrocious detour. Hilbert met what we call Bolzano’s chal-
lenge by developing proportionality, similar triangles, and then area on the basis of his
first order axioms.

We conclude that Hilbert’s first-order axioms provide a modest complete de-
scriptive axiomatization for most of Euclid’s geometry. In the sequel we argue that
the second-order axioms aim at results that are beyond (and even in some cases anti-
thetical to) the Greek and even the Cartesian view of geometry. So Hilbert’s axioms
are immodest as an axiomatization of traditional geometry. This conclusion is no sur-
prise to Hilbert4 although it may be to many readers5. In the preface to [Hilbert 1962]
the translator Townsend writes, ‘it is shown that the whole of the Euclidean geometry
may be developed without the use of the axiom of continuity.’ Hilbert concludes his
introduction of the continuity axioms with:

From a theoretical point of view, the value of this axiom is that it leads indi-
rectly to the introduction of limiting points, and, hence, renders it possible
to establish a one-to-one correspondence between the points of segment
and the system of real numbers. However, in what is to follow, no use will
be made of the ‘axiom of completeness. ([Hilbert 1962], page 26)

How should one compare such statements as (*) and (**)? We lay out the rela-
tions among three perspectives on a mathematical topic. After clarifying the notion of
data set in the next section, the two papers focus on aligning the latter two perspectives
for various data sets.

2 In the logic, Lω1,ω , quantification is still over individuals but now countable conjunctions are permitted
so it is easy to formulate Archimedes Axiom: ∀x, y(

∨
m∈ωmx > y). By switching the roles of x and y

we see each is reached by a finite multiple of the other.
3 Dedekind defines the notion of a cut in a linearly ordered set I (a partition of Q into two intervals (L,U)

with all elements ofU less than all elements ofU ). He postulates that each cut has unique realization, a point
above all members of L and below all members U -it may be in either L or U (page 20 of [Dedekind 1963]).
If either the L contains a least upper bound or the upper interval U contains a greatest lower bound, the
cut is called ‘rational’ and no new element is introduced. Each of the other (irrational) cuts introduces a
new number. It is easy to see that the unique realization requirement implies the Archimedes axiom. By
Dedekind completeness of a line, I mean the Dedekind postulate holds for the linear ordering of that line.
See the sequel.

4Hilbert lectured on geometry several summers in the 1890’s and his notes (German) with extremely
helpful introductions (English) appear in [Hallett & Majer 2004]. The first Festschrift version of the Grund-
lagen does not contain the continuity axioms. I draw primarily on the (2nd (Townsend edition) of Hilbert
and on the 7th [Hilbert 1971].

5The first 10 urls from a google search for ‘Hilbert’s axioms for Euclidean geometry’ contained 8 with
no clear distinction between the geometries of Hilbert and Euclid and two links to Hartshorne, who distin-
guishes.
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1. A data set [Detlefsen 2014], a collection of propositions about the topic.

2. A system of axioms and theorems for the topic.

3. The different conceptions of various terms used in the area at various times.

In Section 1, we consider several accounts of the purpose of axiomatization.
We adjust Detlefsen’s definition of complete descriptive axiomatization to guarantee
some ‘minimality’ of the axioms by fixing on a framework for discussing the various
axiom systems: a modest descriptively complete axiomatization. One of our principal
tools is Detlefsen’s notion of ‘data set’, a collection of sentences to be accounted for
by an axiomatization. ‘The data set for area X’ is time dependent; new sentences are
added; old ones are reinterpreted. Section 2 lists data sets (collections of mathemat-
ical ‘facts’), then specific axiom systems, and asserts the correlation. In Section 3,
we consider the changes in conception of the continuum, magnitude, and number. In
particular, we analyze the impact of the distinction between ratios in the language of
Euclid and segment multiplication in [Hilbert 1962] or multiplication6 of ‘numbers’.
With this background, we sketch in Section 4 Hilbert’s theory of proportions and area,
focusing on Euclidean propositions that might appear to depend on continuity axioms.
In particular, we outline Hilbert’s definition of the field in a plane and how this leads to
a good theory of area and proportion, while avoiding the Axiom of Archimedes.

This paper expounds the consequences of Hilbert’s first-order axioms and ar-
gues they form a modest descriptive axiomatization of Euclidean geometry. The sequel
extends the historical analysis from Euclid and Hilbert to Descartes and Tarski, ex-
plores several variants on Dedekind’s axiom and the role of first-order, infinitary, and
second-order logic. Further, it expounds a first-order basis for the formulas for area
and circumference of a circle.

I very much appreciate helpful comments by Neil Barton, Rose Cherubin, Da-
vide Crippa, Philip Ehrlich, Eduardo Giovannini, Michael Hallett, Robin Hartshorne,
William Howard, Juliette Kennedy, Barry Masur, Julian Narboux, Victor Pambuccian,
Marco Panza, Craig Smorynski, and Jouko Väänänen. I thank especially the anony-
mous referee.

1 The Goals of Axiomatization

In this section, we place our analysis in the context of recent philosophical work on
the purposes of axiomatization. We explicate Detlefsen’s notion of ‘data set’ and in-
vestigate the connection between axiom sets and data sets of sentences for an area of
mathematics. Hilbert begins the Grundlagen [Hilbert 1971] with:

6That is, a multiplication on points rather than segments. See Heyting [Heyting 1963]; the most thorough
treatment is in [Artin 1957].
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The following investigation is a new attempt to choose for geometry a
simple and complete set of independent axioms and to deduce from them
the most important geometrical theorems in such a manner as to bring
out as clearly as possible the significance of the groups of axioms and the
scope of the conclusions to be derived from the individual axioms.

Hallett ([Hallett 2008], 204) delineates the meaning of facts in this context, ‘sim-
ply what over time has come to be accepted, for example, from an accumulation of
proofs or observations. Geometry, of course, is the central example . . . .’ Hallett
([Hallett & Majer 2004], 434) presaged the emphasis here on ‘data sets’.

Thus completeness appears to mean [for Hilbert] ‘deductive completeness
with respect to the geometrical facts’. . . . In the case of Euclidean ge-
ometry there are various ways in which ‘the facts before us’ can be pre-
sented. If interpreted as ‘the facts presented in school geometry’ (or the
initial stages of Euclid’s geometry), then arguably the system of the origi-
nal Festschrift [i.e. 1899 French version] is adequate. If, however, the facts
are those given by geometrical intuition, then matters are less clear.

Hilbert described the general axiomatization project in 1918.

When we assemble the facts of a definite, more or less comprehensive field
of knowledge, we soon notice these facts are capable of being ordered.
This ordering always comes about with the help of a certain framework of
concepts [Fachwerk von Begriffen] in the following way: a concept of this
framework corresponds to each individual object of the field of knowledge,
a logical relation between concepts corresponds to every fact within the
field of knowledge. The framework of concepts is nothing other than the
theory of the field of knowledge. ([Hilbert 1918], 1107)

Detlefson [Detlefsen 2014] describes such a project as a descriptive axiomatization.
He motivates the notion with this remark by Huntington (Huntington’s emphasis):

[A] miscellaneous collection of facts . . . does not constitute a science. In
order to reduce it to a science the first step is to do what Euclid did in
geometry, namely, to select a small number of the given facts as axioms
and then to show that all other facts can be deduced from these axioms by
the methods of formal logic. [Huntington 1911]

Detlefsen uses the term data set (i.e. facts7) to describe a local descriptive axiomatiza-
tion as an attempt to deductively organize a data set of commonly accepted sentences.

7There is an interesting subtlety here (perhaps analogous to the Shapiro’s algebraic and non-algebraic
theories). The data set for group theory could be interpreted as a) formal consequences of the axioms for
groups in the vocabulary (+, 0), or b) theorem proved by group theorists. For Euclid-Hilbert geometry these
meanings coalesce.
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The axioms are descriptively complete if all elements of the data set are deducible from
them. This raises two questions. What is a sentence? Who commonly accepts?

From the standpoint of modern logic, a natural answer to the first question
would be to specify a logic and a vocabulary and consider all sentences in that language.
Detlefsen argues (pages 5-7 of [Detlefsen 2014]) that this is the wrong answer. He
thinks Gödel errs in seeing the problem as completeness in the now standard sense of
a first-order theory8. Rather, Detlefsen presents us with an empirical question. We
(at some point in time) look at the received mathematical knowledge in some area and
want to construct a set of axioms from which it can all be deduced. In our case we want
to compare the commonly accepted sentences from 300 BC with a twentieth century
axiomatization. As we see below, new interpretations for terms arise. Nevertheless, a
specific data set delineates a certain area of inquiry. The data set is inherently flexible;
conjectures are proven (or refuted) from time to time. The analysis in this paper tries to
distinguish propositions that are simply later deductions about the same intuitions and
those which invoke radically different assumptions. By analyzing the interpretations
in particular cases, we can specify a data set. Comparing geometry at various times
opens a deep question worthy of more serious exploration than there is space for here.
In what sense do (*) and (**) opening this paper express the same thought, concept
etc.? Rather than address the issue of what is expressed, we will simply show how to
interpret (*) (and other propositions of Euclid) as propositions in Hilbert’s system.

Working in a framework of formal logic, we return to our question, ‘What
is a sentence?’ The first four groups of Hilbert’s axioms are sentences of first-order
logic: quantification is over individuals and only finite conjunctions are allowed. As
noted in Footnote 2, Archimedes axiom can be formulated in Lω1,ω . But the Dedekind
postulate in any of its variants is a sentence of a kind of second-order logic9. All three
logics have deductive systems and the first and second order systems allow only finite
proofs so the set of provable sentences is recursively enumerable. Second-order logic
(in the standard semantics) fails the completeness theorem but, by the Gödel and Karp
[Karp 1959] completeness theorems, every valid sentence ofLω,ω orLω1,ω is provable.

Adopting this syntactic view, there is a striking contrast between the data set
of geometry in earlier generations and the axiom systems advanced near the turn of
the twentieth century. Except for the Archimedean axiom, the earlier data sets are
expressed in first-order logic.

Geometry is an example of what Detlefsen calls a local as opposed to a foun-
dational (global) descriptive axiomatization. Beyond the obvious difference in scope,
Detlefsen points out several other distinctions. In particular, ([Detlefsen 2014], 5) as-
serts axioms of a local axiomatization are generally among the given facts while those
of a foundational axiomatization are found by (paraphrasing Detlefsen) tracing each
truth in a data set back to the deepest level where it can be properly traced. Hilbert’s
geometric axioms have a hybrid flavor. Through the analysis of the concepts involved,

8We dispute some of his points just before Remark 2.1 in the sequel.
9See the caveats on ‘second-order’ (e.g. sortal) in the sequel.
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Dedekind arrived at a second-order axiom10 that is not in the data set but formed the
capstone of the axiomatization: Dedekind completeness for geometry.

An aspect of choosing axioms seems to be missing from the account so far.
Hilbert [Hilbert 1918] provides the following insight into how axioms are chosen:

If we consider a particular theory more closely, we always see that a few11

distinguished propositions of the field of knowledge underlie the construc-
tion of the framework of concepts, and these propositions then suffice by
themselves for the construction, in accordance with logical principles, of
the entire framework. . . .

These underlying propositions may from an initial point of view be re-
garded as the axioms of the respective field of knowledge . . .

By a modest axiomatization of a given data set12, we mean one that implies all the
data and not too much more13. Of course, ‘not too much more’ is a rather imprecise
term. One cannot expect a list of known mathematical propositions to be deductively
complete. By too much more, we mean the axioms introduce essentially new concepts
and concerns or add additional hypotheses proving a result that contradicts the explicit
understandings of the authors of the data set. (Section 3 in the sequel).

In this paper, we are investigating modern axiomatizations for an ancient data
set. As we’ll see below, using Notation 2.2, Hilbert’s first-order axioms (HP5) are a
modest axiomatization of the data (Euclid I): the theorems in Euclid about polygons
(not circles) in the plane. We give an example later showing that HP5 + CCP (circle-
circle intersection), while modest for Euclid II, is an immodest first-order axiomatiza-
tion of polygonal geometry. In the twentieth century the process of formalization is
usually attentive to modesty so it is a bit hard to find non-artificial examples. How-
ever, to study complex exponentiation, [Zilber 2005] defined a quasi-minimal excellent
class. The axioms asserted models were combinatorial geometries satisfying extra con-
ditions, most importantly excellence. Although his axioms were informal they can be
formalized14 in Lω1,ω(Q). Quite unexpectedly, [Bays et al. 2014] showed ‘excellence’
was not needed for the main result. Thus, the original axiomatization was immodest.

No single axiom is modest or immodest; the relation has two arguments: a set

10We discuss the ‘equivalence’ of Dedekinds and Hilbert’s formulation of completeness in the sequel.
11Often, few is interpreted as finite. Whatever Hilbert meant, we should now be satisfied with a small

finite number of axioms and axiom schemes. At the beginning of the Grundlagen, Hilbert adds ‘simple,
independent, and complete’. Such a list including schemes is simple.

12We considered replacing ‘modest’ by ’precise or‘safe’ or ‘adequate’. We chose ‘modest’ rather than
one of the other words to stress that we want a sufficient set and one that is as necessary as possible. As the
examples show, ‘necessary’ is too strong. Later work finds consequences of the original data set undreamed
by the earlier mathematicians. Thus just as, ‘descriptively complete’, ‘modest’ is a description, not a formal
definition.

13This concept describes normal work for a mathematician. “I have a proof; what are the actual hypotheses
so I can convert it to a theorem.”

14The Q is the quantifier, ‘there exist uncountably many’.
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of sentences is a modest axiomatization of a given data set. If the axioms are contained
in the data set the axiomatization is manifestly modest and this is just a mathematical
fact that can be clarified by formalization. But some other subset might later be taken
as axioms that imply the whole set. This might just happen by a clever proof. But, the
cases studied here are more subtle. New interpretations of the basic concepts developed
over time (of multiplication and number) so that the sentences attained essentially new
meanings. As (**) illustrates, such is the case with Euclid’s VI.1. Distinct philo-
sophical issues arise in checking modesty and immodesty. For modesty, an historical
investigation, as in this paper, can explore how changing conceptions are reflected in
new proofs and whether such arguments are modest. For, immodesty, the conceptual
content of the new axioms must be compared with that of the data set.

In our view, modesty and purity are distinct, though related, notions.
We just saw that formalization is useful to check modesty. [Hallett 2008],
[Arana & Mancosu 2012, Detlefsen & Arana 2011, Baldwin 2013a] argue that purity
asks about specific arguments for a proposition. [Baldwin 2013a] emphasized that the
same theorem can have both pure and impure proofs and [Baldwin 2017b] extends
the analysis of modesty versus purity. In contrast, modesty concerns the existence of
proofs and appropriateness of hypotheses.

In the quotation above, Hilbert takes the axioms to come from the data set.
But this raises a subtle issue about what comprises the data set. For examples such as
geometry and number theory, it was taken for granted that there was a unique model.
Even Hilbert adds his completeness axiom to guarantee categoricity and to connect
with the real numbers. So one could argue that the early 20th century axiomatizers
took categoricity as part of the data15. But such an intuition is inherently metatheoretic
and so dissimilar to the other data. It is certainly not in the data set of the Greeks for
whom ‘categoricity’ is meaningless.

2 Some geometric Data sets and Axiom Systems

This section is intended to lay out several topics in plane geometry that represent dis-
tinct data sets in Detlefsen’s sense16. In cases where certain axioms are explicit, they
are included in the data set. Although we describe five sets here, only polygonal ge-
ometry and circle geometry are considered in this paper; the others are treated in the
sequel. Each set includes its predecessors; the description is of the added propositions.

Notation 2.1. (5 data sets of geometry)
Euclid I, polygonal geometry: Book I (except I.1, I.22), Book II.1-II.13, Book III

(except III.1 and III.17), Book VI.)
15Huntington invokes Dedekind’s postulate when axiomatizing the complex field in [Huntington 1911].
16In the first instance we draw from Euclid: Books I-IV, VI and XII.1, 2 clearly concern plane geometry;

XI, the rest of XII and XIII deal with solid geometry; V and X deal with a general notion proportion and with
incommensurability. Thus, below we put each proposition Books I-IV, VI, XII.1,2 in a group and consider
certain geometrical aspects of Books V and X.

8



Euclid II, circle geometry: CCP, I.1, I.22, II.14, III.1, III.17 and Book IV.

Archimedes, arc length and π: XII.2 (area of circle proportional to square of the
diameter), approximation of π, circumference of circle proportional to radius,
Archimedes’ axiom.

Descartes, higher degree polynomials: nth roots; coordinate geometry

Hilbert, continuity: The Dedekind plane

Our division of the data sets is somewhat arbitrary and is made with the sub-
sequent axiomatizations in mind.

The importance of Euclid II appears already in Proposition I of Euclid where
Euclid makes the standard construction of an equilateral triangle on a given base17.
Why do the two circles intersect? While some18 regard the absence of an axiom guar-
anteeing such intersections as a gap in Euclid, Manders (page 66 of [Manders 2008])
asserts: ‘Already the simplest observation on what the texts do infer from diagrams and
do not suffices to show the intersection of two circles is completely safe19.’

The circle-circle intersection axiom resolves those continuity issues involving
intersections of circles and lines20. As noted, this proposition is in the data set; so
adding this one axiom in our axioms EG (below), which does not appear explicitly in
either the Grundlagen or Euclid, does not detract from the modesty of our axioms. It
is a first-order consequence of the Dedekind postulate which plays an essential role
in Euclidean geometry. Hilbert is aware of that fact; he chooses to resolve the issue
(implicitly) by his completeness axiom.

Circle-Circle Intersection Postulate (CCP): If from distinct points A and
B, circles with radius AC and BD are drawn such that one circle contains points both
in the interior of one and in the exterior of the other, then they intersect in two points,
on opposite sides of AB.

17Proposition I.1 is omitted from Euclid I, because it is not possible to construct an equilateral triangle
with side length 1 in HP5. Proposition I.2 (transferring a length) is an axiom for Hilbert and of course follows
from CCP.

18E.g. ( Veblen [Veblen 1914], 4)
19Manders emphasized the use of diagrams as a coherent mathematical practice. Properties that are not

changed by minor variations in the diagram such as subsegment, inclusion of one figure in another, the
intersection of two lines, betweenness are termed coexact. Properties that can be changed by minor variations
in the diagram, such as whether a curve is a straight line, congruence, a point is on a line, are termed exact. We
can rely on reading coexact properties from the diagram. The difficulty in turning this insight into a formal
deductive system is that, depending on the particular diagram drawn, after a construction, the diagram may
have different coexact properties.

Independently, Miller [Miller 2007] and Avigad et al. [Avigad et al. 2009] formulated deductive systems
whose rules are intended to capture properties that formerly were read off from diagrams. Miller treats
diagrams as topological objects; this leads to difficulties bounding the number of cases. The system in
[Avigad et al. 2009] incorporates metric information and provides a complete and sound deductive system
for a collection of ∀∃ sentences on models of EG; these include Euclid I-IV, but do not appear to include
the theorems relating area and proportionality that are central here.

20Circle-circle intersection implies line-circle intersection. Hilbert already in [Hilbert 1971] shows (page
204-206 of [Hallett & Majer 2004]) that circle-circle intersection holds in a Euclidean plane. See Section 4.3.
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We have placed Euclid XII.2 (area of a circle is proportional to the square
of the diameter) with Archimedes rather than Euclid’s other theorems on circles. The
crux is the different resources needed to prove VI.1 (area of a parallelogram) and XII.2;
the first is provable in EG; The sequel contains a first-order extension of EG in which
XII.2 is provable. Note also that we consider only a fraction of Archimedes, his work
on the circle. We analyze the connections among Archimedes, Descartes and Tarski in
the sequel.

Showing a particular set of axioms is descriptively complete is inherently em-
pirical. One must check whether each of a certain set of results is derivable from a
given set of axioms. Hartshorne [Hartshorne 2000] carried out this project indepen-
dently from Detelfsen’s analysis; we organize his results at the end of this section.

We identify two levels of formalization in mathematics. By the Euclid-Hilbert
style we mean the axiomatic approach of Euclid along with the Hilbert insight that
postulates are implicit definitions of classes of models21. By the Hilbert-Gödel-Tarski
style, we mean that that syntax and semantics have been identified as mathematical
objects; Gödel’s completeness theorem is a standard tool, so methods of modern model
theory can be applied22. We will give our arguments in English; but we will be careful
to specify the vocabulary and the postulates in a way that the translation to a first-order
theory is transparent.

We will frequently switch from syntactic to semantic discussions so we stipu-
late precisely the vocabulary in which we take the axioms above to be formalized. We
freely use defined terms such as collinear, segment, and angle in giving the reading of
the relevant relation symbols. The fundamental relations of plane geometry make up
the following vocabulary τ .

1. two-sorted universe: points (P ) and lines (L).

2. Binary relation I(A, `): Read: a point is incident on a line;

3. Ternary relation B(A,B,C): Read: B is between A and C (and A,B,C are
collinear).

4. quaternary relation, C(A,B,C,D): Read: two segments are congruent, in sym-
bols AB ∼= CD.

5. 6-ary relation C ′(A,B,C,A′, B′, C ′): Read: the two angles ∠ABC and
∠A′B′C ′ are congruent, in symbols ∠ABC ∼= ∠A′B′C ′.

Notation 2.2. Consider the following axiom sets23.
21The priority for this insight is assigned to such slightly earlier authors as Pasch, Peano, Fano, in works

such as [Freudenthal 1957] as commented on in [Bos 1993] and chapter 24 of [Gray 2011].
22See [Baldwin 2014] and the sequel for further explication of this method.
23The names HP, HP5, and EG come from [Hartshorne 2000] and E2 from [Tarski 1959]. In fact, Tarski

also studies EG under the name E ′′2 .
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1. First-order axioms:

HP, HP5: We write HP for Hilbert’s incidence, betweenness24, and congruence
axioms. We write HP5 for HP plus the parallel postulate.

EG: The axioms for Euclidean geometry, denoted EG25, consist of HP5 and in
addition the circle-circle intersection postulate CCP.

E2: Tarski’s axiom system for a plane over a real closed field (RCF26).

EGπ and Eπ: Two new systems, which extend EG and E2, will be described
and analyzed in the sequel.

2. Hilbert’s continuity axioms, infinitary and second-order, will also be examined
in detail in the sequel.

Archimedes: The sentence in the logic Lω1,ω expressing the Archimedean ax-
iom.

Dedekind: Dedekind’s second-order axiom27 that there is a point in each irra-
tional cut in the line.

With these definitions we align various subsystems of Hilbert’s geometry
with certain collections of propositions in Euclidean geometry as spelled out in
Hartshorne28. With our grouping, Hartshorne shows the following results. They imply
the statements in HP5 or EG are either theorems or implicit (CCP) in Euclid, they
are a modest axiomatization of Euclid I and II.

First-order Axiomatizations

1. The sentences of Euclid I are provable in HP5.

2. The additional sentences of Euclid II are provable in EG.

In this framework we discuss the changing conceptions of the continuum, ratio, and
number from the Greeks to modern times and sketch some highlights of the proof this

24These include Pasch’s axiom (B4 of [Hartshorne 2000]) as we axiomatize plane geometry. Hartshorne’s
version of Pasch is that any line intersecting one side of triangle must intersect one of the other two.

25In the vocabulary here, there is a natural translation of ‘Euclid’s axioms’ into first-order statements. The
construction axioms have to be viewed as ‘for all – there exist’ sentences. The axiom of Archimedes is of
course not first-order. We write Euclid’s axioms for those in the original as opposed to modernized (first-
order) axioms for Euclidean geometry, EG. Note that EG is equivalent to (i.e. has the same models) as the
system laid out in Avigad et al [Avigad et al. 2009].

26A field is real closed if it is formally real (−1 is not a sum of squares) and every odd degree polynomial
has a solution.

27Hilbert added his Vollstandigkeitsaxiom to the French translation of the 1st edition and it appears from
then on. In Section 4.2 of the sequel we explore the connections between various formulations of complete-
ness. We take Dedekind’s formulation (Footnote 3) as emblematic.

28See Theorems 10.4, 12.3-12.5 in Section 12 and Sections 20-23 of [Hartshorne 2000].
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result to demonstrate the philosophical modesty of the axiomatization. The sequel con-
tains modest descriptive axiom systems29 for the data sets of Archimedes and Descartes
and argues that the full Hilbert axiom set is immodest for any of these data sets.

3 Changing conceptions of the continuum, magnitude,
and number

In the Section 3.1, we distinguish the geometric continuum from the set-theoretic con-
tinuum. In Section 3.2 we sketch the background shift from the study of various types
of magnitudes by the Greeks, to the modern notion of a collection of real numbers
which can measure any sort of magnitude. In Section 3.4 we contrast the current goal
of an independent basis for geometry with the 19th century arithmetization project.

3.1 Conceptions of the continuum

In this section, we motivate our restriction to the geometric continuum; we defined it
as a linearly ordered structure that is situated in a plane. Sylvester30 describes the three
divisions of mathematics:

There are three ruling ideas, three so to say, spheres of thought, which
pervade the whole body of mathematical science, to some one or other of
which, or to two or all of them combined, every mathematical truth admits
of being referred; these are the three cardinal notions, of Number, Space
and Order.

This is a slightly unfamiliar trio. We are all accustomed to the opposition between
arithmetic and geometry. While Newton famously founded the calculus on geometry
([Detlefsen & Arana 2011]) the ‘arithmetization of analysis’ in the late 19th century
reversed the priority. From the natural numbers the rational numbers are built by taking
quotients and the reals by some notion of completion. And this remains the normal
approach today. We want here to consider reversing the direction again: building a firm
grounding for geometry and then finding first the field and then some completion and
considering incidentially the role of the natural numbers. In this process, Sylvester’s

29In [Baldwin & Mueller 2012] and [Baldwin 2013b] we give an equivalent set of postulates to EG, which
returns to Euclid’s construction postulates and stress the role of Euclid’s axioms (Common Notions) in
interpreting the geometric postulates. While not spelled out rigorously, our aim is to consider the diagram as
part of the argument. For pedagogical reasons the system used SSS rather than SAS as the basic congruence
postulate, as it more easily justifies the common core approach to similarity through dilations and makes
clear that the equality axioms in logic, as in Euclid’s Common Notions, apply to both algebra and arithmetic.
This eliminates the silly 6 step arguments in high school texts reducing subtraction of segments to the axioms
of the real numbers.

30As quoted in [Mathias 1992].
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third cardinal notion, order, will play a crucial role. The notion that one point lies
between two others will be fundamental and an order relation will naturally follow; the
properties of space will generate an ordered field and the elements of that field will be
numbers albeit not numbers in the Greek conception.

There are different conceptions of the continuum (the line); hence different
axiomatizations may be necessary to reflect these different conceptions. These concep-
tions are witnessed by such collections as [Ehrlich 1994, Salanskis & Sincaceur 1992]
and further publications concerned with the constructive continuum and various non-
Archimedean notions of the continuum.

In [Feferman 2008], Feferman lists six31 different conceptions of the contin-
uum: (i) the Euclidean continuum, (ii) Cantor’s continuum, (iii) Dedekind’s contin-
uum, (iv) the Hilbertian continuum, (v) the set of all paths in the full binary tree, and
(vi) the set of all subsets of the natural numbers. For our purposes, we will identify
ii), v), and vi) as essentially cardinality based as they have lost the order type imposed
by the geometry; so, they are not in our purview. We want to contrast two essentially
geometrically based notions of the continuum: those of Euclid and Hilbert/Dedekind.
Hilbert’s continuum differs from Dedekind’s as it has the field structure derived from
the geometric structure of the plane, while Dedekind’s field is determined by continu-
ity from known field operations on the rationals. Nevertheless they are isomorphic as
ordered fields.

We stipulated that ‘geometric continuum’ means ‘the line situated in the
plane’. One of the fundamental results of 20th century geometry is that any (pro-
jective32 for convenience) plane can be coordinatized by a ‘ternary field’. A ternary
field is a structure with one ternary function f(x, y, z) such that f has the properties
that f(x, y, z) = xy + z would have if the right hand side were interpreted in a field.
In dealing with Euclidean geometry here, we assume the axioms of congruence and the
parallel postulate; this implies that the ternary field is actually a field. But these ge-
ometric hypotheses are necessary. In [Baldwin 1994], I constructed an ℵ1-categorical
projective plane where the ternary field is as wild as possible (in the precise sense of
the Lenz-Barlotti classification in [Yaqub 1967]: the ternary function cannot be decom-
posed into an addition and a multiplication).

3.2 Ratio, magnitude, and number

In this section we give a short review of Greek attitudes toward magnitude and ra-
tio. Fuller accounts of the transition to modern attitudes appear in such sources as
[Mueller 2006, Euclid 1956, Stein 1990, Menn 2017]. We by no means follow the ‘ge-
ometric algebra’ interpretation decried in [Grattan-Guinness 2009]. Rather, we attempt

31Smorynski [Smorynski 2008] notes that Bradwardine already reported five in the 14th century. Reeder
[Reeder 2018] analyzes five different philosophical approaches to the notion of ‘infinite divisibility.

32That is, any system of points and lines such that two points determine a line, any two lines intersect in a
point, and there are 4 non-collinear points.
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to contrast the Greek meanings of propositions with Hilbert’s understanding. When we
rephrase a sentence in algebraic notation we try to make clear that this is a modern
formulation and often does not express the intent of Euclid.

Euclid develops arithmetic in Books VII-IX. What we think of as the ‘number
one’, was ‘the unit’; a number (Definition VII.2) was a multitude of units. These are
counting numbers. So from our standpoint (considering the unit as the number 1)
Euclid’s numbers (in the arithmetic) can be thought of as the ‘natural numbers’. The
numbers33 are a discretely ordered collection of objects.

Following Mueller we work from the interpretation of magnitudes in the Ele-
ments as ‘abstractions from geometric objects which leave out of account all properties
of those objects except quantity: length for lines, area of plane figures, volume of solid
figures etc.’ ([Mueller 2006], page 21) Mueller emphasizes the distinction between the
properties of proportions of magnitudes developed in Book V and those of number in
Book VII. The most easily stated is implicit in Euclid’s proof of Theorem V.5; for every
m, every magnitude can be divided in m equal parts. This is of course, false for the
(natural) numbers.

There is a second use of ‘number’ in Euclid. It is possible to count unit mag-
nitudes, to speak of, e.g. four copies of a unit magnitude. So (in modern language)
Euclid speaks of multiples of magnitudes by positive integers.

Magnitudes of the same type are also linearly ordered and between any two
there is a third34. Multiplication of line segments yields rectangles. Ratios are not
objects; equality of ratios is a 4-ary relation between two pairs of homogenous magni-
tudes35. Some key points from Euclid’s discussion of proportion in Book V are.

1. Definition V.4 of Euclid [Euclid 1956]: Magnitudes are said to have a ratio to
one another, which are capable, when multiplied, of exceeding one another.

2. Definition V.5 ‘sameness of two ratios’ (in modern terminology): The ratio of
two magnitudes x and y are proportional to the ratio of two others z, w if for
each m,n, mx > ny implies mz > nw (and also replacing > by = or <).

3. Definition V.6: Let magnitudes which have the same ratio be called proportional.

4. Proposition V.9: ‘same ratio’ is, in modern terminology, a transitive relation.
Apparently Euclid took symmetry and reflexivity for granted and treats propor-
tionality as an equivalence relation.

33More precisely, for the Greeks, natural numbers greater than 1.
34The Greeks accepted only potential infinity. From a modern perspective, the natural numbers are ordered

in order type ω, and any collection of homogeneous magnitudes (e.g. areas) are in a dense linear order (which
is necessarily infinite); however, this imposition of completed infinity is not the understanding of the Greeks.

35Homogeneous pairs means magnitudes of the same type. Ratios of numbers are described in Book VII
while ratios of magnitudes are discussed in Book V.
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3.3 Bolzano’s Challenge

In a discussion of the foundations of geometry Bolzano discusses the ‘dissimilar ob-
jects’ found in Euclid and finds Euclid’s approach fundamentally flawed. His general
position is that one must analyze conceptually prior notions (line) before more com-
plex notions (plane). See ([Bolzano & Russ 2004], 33) and [Rusnock 2000] 53) for
discussions of Bolzano’s claim that the study of the line, as ‘more fundamental’ must
precede that of the plane. More specifically, he objects to Euclid’s proof in Book VI.2
that similar triangles have proportional sides:

Firstly triangles, that are already accompanied by circles which intersect
in certain points, then angles, adjacent and vertically opposite angles, then
the equality of triangles, and only much later their similarity, which how-
ever, is derived by an atrocious detour [ungeheuern Umweg], from the
consideration of parallel lines, and even of the area of triangles, etc36.
([Bolzano 1810])

What we call Bolzano’s challenge has two aspects: a) the evil of using two
dimensional concepts to understand the line and b) the ‘atrocious detour’ to similarity
(VI.2). We consider the plane essential to understanding the geometric continuum; so,
a) is irrevant to our project; sections 4.1-4.3 sketch how Hilbert meets the challenge by
avoiding the detour.

The side-splitter theorem, VI.2. is taken to represent similarity. Euclid de-
duces VI.2 from VI.1. In his proof of VI.1 (*) Euclid applies Definition V.5 (above) to
deduce that the area of two triangle with the same height is proportional to their bases.
But this assumes that any two lengths (or any two areas) have a ratio in the sense of
Definition V.4. This is an implicit assertion of Archimedes axiom for both area and
length37.

36This quotation is taken from [Franks 2014].
37Euclid’s development of the theory of proportion and area requires the Archimedean axioms. Our as-

sertion is one of many descriptions of the exact form and location of the dependence among such authors
as [Euclid 1956, Mueller 2006, Stein 1990, Fowler 1979, Smorynski 2008]. Since our use of Euclid is as a
source of sentences, not proofs, the details are not essential to our argument.
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If, for example, BC, GB and HG are congruent segments then the area of
ACH is triple that of ABC. But without assuming BC and BD are commensurable,
Euclid calls on Definition V.5 to assert that ABD : ABC :: BD : BC. In VI.2, he
uses these results to show that similar triangles have proportional sides. From VI.2,
Euclid constructs in VI.12 the fourth proportional to three lines but does not regard it
as a definition of multiplication of segments. As we will see in more detail, Hilbert’s
treatment of area and similarity has no such dependence on Archimedes axiom. By
interpreting the field with segment arithmetic, he defines proportionality directly.

In contrast, Descartes defines the multiplication of line segments to give an-
other segment38, but he still relies on Euclid’s theory of proportion to justify the mul-
tiplication. Hilbert’s innovation is use to segment multiplication to gain the notion of
proportionality, which is defined in Subsection 4.2.

3.4 From Arithmetic to geometry or from geometry to algebra?

On the first page of Continuity and the Irrational Numbers, Dedekind wrote:

Even now such resort to geometric intuition in a first presentation of
the differential calculus, I regard as exceedingly useful from the didac-
tic standpoint . . . But that this form of introduction into the differen-
tial calculus can make no claim to being scientific, no one will deny.
[Dedekind 1963]

I do not contest Dedekind’s claim. I quote this passage to indicate that
Dedekind’s motivation was to provide a basis for analysis, not geometry. But I will
argue that the second-order Dedekind completeness axiom is not needed for the geom-
etry of Euclid and indeed for the grounding of the algebraic numbers, although it is in
Dedekind’s approach.

Dedekind provides a theory of the continuum (the continuous) line by build-
ing up in stages from the structure that is fundamental to him: the natural numbers
under successor. This development draws on second-order logic in several places. The
well-ordering of the natural numbers is required to define addition and multiplication
by recursion. Dedekind completeness is a second appeal to a second-order princi-
ple. Perhaps in response to Bolzano’s insistence, Dedekind constructs the line without
recourse to two dimensional objects and from arithmetic. Thus, he succeeds in the
‘arithmetization of analysis’.

We proceed in the opposite direction for several reasons. Most important is
that we are seeking to ground geometry, not analysis. Further, we adopt as a principle
that the concept of line arises only in the perception of at least two dimensional space.

38He refers to the construction of the fourth proportional (‘ce qui est meme que la multiplication’
[Descartes 1637]). See also Section 21 page 296 of [Bos 2001].
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Dedekind’s continuum knows nothing of being straight or breadthless. Hilbert’s proof
of the existence of the field is the essence of the geometric continuum. By virtue of its
lying in a plane, the line acquires algebraic properties.

Moreover, the distinction between the arithmetic and geometric intuitions of
multiplication is fundamental. The basis of the first is iterated addition; the basis of
the second is scaling or proportionality. The late 19th century developments provide a
formal reduction of the second to the first but the reduction is only formal; the ‘scaling’
intuition is lost. In this paper we view both intuitions as fundamental and develop the
second (Section 4.1), with the understanding that development of the first through the
Dedekind-Peano treatment of arithmetic is in the background.

4 Axiomatizing the geometry of polygons and circles

Section 4.1 sketches the key step in making an independent foundation of geometry:
Hilbert’s definition of a field in a geometry. Section 4.2 describes the transition from
segments to points as the domain of that field and gives Hilbert’s definition of propor-
tional. Section 4.3 distinguishes the role of the CCP and analyzes several problems
that can be approached by limits but have uniform solutions in any ordered field; order
completeness of the field is irrelevant. We return to Bolzano’s challenge and derive
Theorem 4.3.4, the properties of similar triangles and, in Section 4.4, the area of poly-
gons.

4.1 From geometry to segment arithmetic to numbers

One of Hilbert’s key innovations is his segment arithmetic and his definition of the
semi-field39 of segments with partial subtraction and multiplication. We assume the
axiom system we called HP5 in Notation 2.2. The details can be found in e.g.
[Hilbert 1971, Hartshorne 2000, Baldwin 2017b, Giovannini 2016].

Note that congruence forms an equivalence relation on line segments. Fix a
ray `with one end point 0 on `. For each equivalence class of segments, we consider the
unique segment 0A on ` in that class as the representative of that class. We will often
denote the segment 0A (ambiguously its congruence class) by a. We say a segment
CD (on any line) has length a if CD ∼= 0A. Following Hartshorne [Hartshorne 2000],
here is our official definition of segment multiplication40.

Fix a unit segment class, 1. Consider two segment classes a and b. To determine their
product, define a right triangle with legs of length 1 and a. Denote the angle between

39In a semi-field there is no requirement of an additive inverse.
40Hilbert’s definition goes directly via similar triangles. The clear association of a particular angle with

right multiplication by a recommends Hartshorne’s version.
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the hypoteneuse and the side of length 1 by α.

Now construct another right triangle with base of length b with the angle be-
tween the hypoteneuse and the side of length 1 congruent to α. The product ab is
defined to be the length of the vertical leg of the triangle.

Note that we must appeal to the parallel postulate to guarantee the existence of the point
F . It is clear from the definition that there are multiplicative inverses; use the triangle
with base a and height 1. Hartshorne has a roughly three page proof41 that shows
multiplication is commutative, associative, distributes over addition, and respects the
order. It uses only the cyclic quadrilateral theorem and connections between central
and inscribed angles in a circle.

To summarize the effect of the axiom sets, we introduce two definitions.

1. An ordered field F is Pythagorean if it is closed under addition, subtraction,
multiplication, division and for every a ∈ F ,

√
(1 + a2) ∈ F .

2. An ordered field F is Euclidean if it is closed under addition, subtraction, multi-
plication, division and for every positive a ∈ F ,

√
a ∈ F .

When the model is taken as geometry over the reals, it is easy42 to check that
the multiplication defined on the positive reals by this procedure is exactly the usual
multiplication on the positive reals because they agree on the positive rational numbers.

As in section 21 of [Hartshorne 2000], we have:

Theorem 4.1.1. 1. HP5 is bi-interpretable with the theory of ordered pythagorean
planes.

41See [Baldwin & Mueller 2012] or ([Hartshorne 2000],170), which explain the background cyclic
quadrilateral theorem. That theorem asserts: Let ACED be a quadrilateral. The vertices of ACED lie
on a circle (the ordering of the name of the quadrilateral implies A and E are on opposite sides of CD) if
and only if ∠EAC ∼= ∠CDE. Hilbert uses Pascal’s theorem, a relative of Desargues’ theorem.

42One has to verify that segment multiplication is continuous but this follows from the density of the order
since the addition respects order.
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2. Similarly EG is bi-interpretable with the theory of ordered Euclidean planes.

Formally bi-interpretability means there are formulas in the field language
defining the geometric notions (point, line, congruence, etc) and formulas in the ge-
ometric language (plus constants) defining the field operations (0, 1,+,×) such that
interpreting the geometric formulas in a Pythagorean field gives a model of HP5 and
conversely. See chapter 5 of [Hodges 1993] for general background on interpretability.

With this information we can explain why Proposition I.1 (equilateral triangle)
is in Euclid I rather than II. Both it and I.22 (construct a triangle given three lines
with the sum of the length of two greater than the length of the third) use circle-circle
intersection in Euclid. However, Hilbert proves the first in HP5, but the second requires
the field to be Euclidean and so uses CCP.

Dicta on Constants: Note that to fix the field we had to add constants 0, 1.
These constants can name any pair of points in the plane43. But this naming induces an
extension of the data set. We have in fact specified the unit. This specification has little
effect on the data set but a major change in view from either the Greeks or Descartes.

4.2 Points and Numbers, Multiplication and Proportionality

Hilbert shows the multiplication on segments of a line through points 0, 1 satisfies the
semi-field axioms. He defines segment multiplication on the ray from 0 through 1 as
in Section 4.1. But to get negative numbers one must reflect through 0. Then addition
and multiplication can be defined on directed segments of the line through 0, 144 and
thus all axioms for a field are obtained. The next step is to identity the points on the
line and the domain of an ordered field by mapping A to OA. This naturally leads to
thinking of a segment as a set of points, which is foreign to both Euclid and Descartes.
Although in the context of the Grundlagen, Hilbert’s goal is to coordinatize the plane
by the real numbers; his methods open the path to thinking of the members of any field
as ‘numbers’ that coordinatize the associated geometries. Boyer traces the origins of
numerical coordinates to 1827-1829 and writes,

It is sometimes said that Descartes arithmetized geometry but this is not
strictly correct. For almost two hundred years after his time coordinates
were essentially geometric. Cartesian coordinates were line segments
. . . The arithmetization of coordinates took place not in 1637 but in the
crucial years 1827-1829. ([Boyer 1956], 242)

43The automorphism group of the plane acts 2-transitively on the plane (any pair of distinct points can be
mapped by an automorphism to any other such pair); this can be proven in HP5. This transitivity implies that
a sentence φ(0, 1) holds just if either or both of ∀x∀yφ(x, y) and ∃x∃yφ(x, y) hold.

44Hilbert had done this in lecture notes in 1894 [Hallett & Majer 2004]. Hartshorne constructs the field
algebraically from the semifield rather than in the geometry.
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Boyer points to Bobillier, Möbius, Feurbach and most critically Plücker as introducing
several variants of what constitute numerical (signed distance) barycentric coordinates
of a point.

Multiplication is not repeated addition: We now have two ways in which
we can think of the product 3a. On the one hand, we can think of laying 3 segments
of length a end to end. On the other, we can perform the segment multiplication of
a segment of length 3 (i.e. 3 segments of length 1 laid end to end) by the segment of
length a. It is an easy exercise to show these give the same answer. But these distinct
constructions make an important point. The (inductive) definition of multiplication by
a natural number is indeed ‘multiplication as repeated addition’. But the multiplication
by another field element is based on similarity and has multiplicative inverses; so from a
modern standpoint they yield very different structures: no extension of natural number
arithmetic is decidable but important theories of fields are.

The first notion of multiplication in the last paragraph, where the multiplier
is a natural number, is a kind of scalar multiplication by positive integers that can be
viewed mathematically as a rarely studied object: a semiring (the natural numbers)
acting on a semigroup (positive reals under addition). There is no uniform definition45

of this binary operation of scalar multiplication within the semiring action.

A mathematical structure more familiar to modern eyes is obtained by adding
the negative numbers to get the ring Z, which has a well-defined notion of subtraction.
The scalars are now in the ring (Z,+, ·) and act on the module (<,+). Now we can
multiply by − 17

27 but the operations is still not uniform but given by a family of unary
functions.

Looking more closely, we have three different referents for segment multipli-
cation: Euclid’s computation of the area of rectangle, his construction of the fourth
proportional, and Hilbert’s definition. These three computations give the ‘same an-
swer’. We now consider the fourth proportional in 1: a :: b : x to measure the area
of the rectangle with sides of length a and b. In view of this we do not view Hilbert
as introducing a new concept of multiplication - but as reinterpreting the notion and
indeed the same geometric construction as applying to line segments, which we now
read as numbers, rather than mapping from linear magnitudes to planar magnitudes.
With this in hand, Hilbert redefines proportionality:

Proportionality We write the ratio of CD to CA is proportional to that of CE to CB,

CD : CA :: CE : CB

which is defined as
CD × CB = CE × CA.

where × is taken in the sense of segment multiplication as defined in Section 4.1.

While in Book V Euclid provides a general account of proportionality,
45Instead, there are infinitely many formulas φn(x, y) defining unary operations nx = y for each n > 0.
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Hilbert’s ability to avoid the Archimedean axiom depends both on the geometrical
construction of the field and the reinterpretation of ‘number’.

4.3 Field arithmetic and basic geometry

In this section we investigate some statements from: 1) Euclid’s geometry that de-
pended in his development on the Archimedean Axiom and some from 2) Dedekind’s
development of the properties of real numbers that he deduces from his postulate. In
each case, they are true in any field associated with a geometry modeling HP5.

We established in Section 4.1 that one could define an ordered field F in
any plane satisfying HP5. The converse is routine, the ordinary notions of line and
incidence in F 2 creates a geometry over any Pythagorean ordered field, which is easily
seen to satisfy HP5. We now exploit this equivalence to show some important algebraic
facts using our defined operations, thus basing them on geometry. First, note that
taking square root commutes with multiplication for algebraic numbers. Dedekind
([Dedekind 1963], 22) wrote ‘ . . . in this way we arrive at real proofs of theorems (as,
e.g.
√
2 ·
√
3 =
√
6), which to the best of my knowledge have never been established

before.’

Note that this commutativity is a problem for Dedekind but not for Descartes.
Euclid had already, in constructing the fourth proportional, constructed from segments
of length 1, a and b, one of length ab; but he doesn’t regard this operation as multi-
plication. When Descartes interprets this procedure as multiplication of segments, the
reasoning above shows multiplying square roots is not an issue. But Dedekind has pre-
sented the problem as multiplication in his continuum and so he must prove a theorem
which allows us to find the product as a real number; that is, he must show the limit
operation commutes with product.

But, in an ordered field, for any positive a, if there is an element b > 0 with
b2 = a, then b is unique (and denoted

√
a). Moreover, for any positive a, c with square

roots,
√
a ·
√
c =
√
ac, since each side of the equality squares to ac. This fact holds for

any field coordinatizing a plane satisfying HP5.

Thus, the algebra of square roots in the real field is established without any
appeal to limits. The usual (e.g. [Spivak 1980, Apostol 1967]) developments of the the-
ory of complete ordered fields follow Dedekind and invoke the least upper bound prin-
ciple to obtain the existence of the roots although the multiplication rule is obtained by
the same algebraic argument as here. Hilbert’s approach contrasts with Dedekind’s46.
The justification here for either the existence of, or operations on, roots does not invoke
limits. Hilbert’s treatment is based on the geometric concepts and in particular regards
‘congruence’ as an equally fundamental notion as ‘number’.

46Dedekind objects to the introduction of irrational numbers by measuring an extensive magnitude in
terms of another of the same kind (page 9 of [Dedekind 1963]).
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In short, the shift here is from ‘proportional segments’ to ‘product of num-
bers’. Euclid had a rigorous proof of the existence of a line segment which is the fourth
proportional of 1 : a = b : x. Dedekind demands a product of numbers; Hilbert pro-
vides this by a combination of his interpretation of the field in the geometry and the
geometrical definition of multiplication.

Euclid’s proof of Pythagoras’ theorem I.47 uses the properties of area that
we will justify in Section 4.4. His second proof (Lemma for X.33) uses the property
of similar triangles that we prove in Theorem 4.3.4. In both cases Euclid depends
on the theory of proportionality (and thus implicitly on Archimedes’ axiom) to prove
the Pythagorean theorem; Hilbert avoids this appeal47. Similarly, since the right-angle
trigonometry in Euclid concerns the ratios of sides of triangles, the field multiplication
justifies basic right-angle trigonometry. We have:

Theorem 4.3.1. The Pythagorean theorem as well as the law of cosines (Euclid II.12,
II.13) and the law of sines ([Maor 1993], 216-17) hold in HP5.

Hartshorne [Hartshorne 2000] describes two instructive examples, connecting
the notions of Pythagorean and Euclidean planes.

Example 4.3.2. 1. The Cartesian plane over a Pythagorean field may fail to be
closed under square root48.

2. On page 146, Hartshorne49 observes that the smallest ordered field closed under
addition, subtraction, multiplication, division and square roots of positive num-
bers and satisfying the CCP is a Euclidean field, denoted by Fs for surd field.

Note that if HP5 + CCP were proposed as an axiom set for polygonal geometry it
would be a complete descriptive but not modest axiomatization since it would prove
CCP which is not in the polygonal geometry data set.

In a Euclidean plane every positive element of the coordinatizing plane has
a square root, so Heron’s formula (A =

√
s(s− a)(s− b)(s− c) where s is 1/2 the

perimeter and a, b, c are the side lengths) computes the area of a triangle from the
lengths of its sides. This fact demonstrates the hazards of the kind of organization of
data sets attempted here. The geometric proof of Heron doesn’t involve the square

47However, Hilbert does not avoid the parallel postulate since he uses it to establish multiplication and thus
similarity. Note also that Euclid’s theory of area depends heavily on the parallel postulate. It is a theorem in
‘neutral geometry’ in the metric tradition that the Pythagorean Theorem is equivalent to the parallel postulate
(See Theorem 9.2.8 of [Millman & Parker 1981].) But, this approach basically assumes the issues dealt with
in these papers; as, the ‘ruler postulate’ (Remark 3.12 of the sequel) also provides a multiplication on the
‘lengths’ (since they are real numbers). Julien Narboux pointed out the issues in stating the Pythagorean
theorem in the absence of the parallel postulate.

48See Exercises 39.30, 30.31 of [Hartshorne 2000]. This was known to Hilbert ([Hallett & Majer 2004],
201-202).

49 Hartshorne and Greenberg [Greenberg 2010] calls this the constructible field, but given the many mean-
ings of constructible, we use Moise’s term: surd field.
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roots of the modern formula50 ([Heath 1921], 321). But since in EG we have the field
and we have square roots, the modern form of Heron’s formula can be proved from
EG. Thus, as in the shift from (*) to (**) at the beginning of the paper, the different
means of expressing the geometrical property requires different proofs.

In each case considered in this section, Greeks give geometric constructions
for what in modern days becomes a calculation involving the field operations and
square roots. However, we still need to complete the argument that HP5 is descriptively
complete for polygonal Euclidean geometry. In particular, is our notion of proportional
correct? The test question is the similar triangle theorem. We turn to this issue now.

Definition 4.3.3. Two triangles 4ABC and 4A′B′C ′ are similar if under some
correspondence of angles, corresponding angles are congruent; e.g. ∠A′ ∼= ∠A,
∠B′ ∼= ∠B, ∠C ′ ∼= ∠C.

Various texts define ‘similar’ as we did, or focus on corresponding sides are
proportional or require both (Euclid). We now meet Bolzano’s challenge by show-
ing that in Euclidean Geometry (without the continuity axioms) the choice doesn’t
matter. We defined ‘proportional’ in terms of segment multiplication in Section 4.2.
Hartshorne proves the fundamental result (Euclid VI.2) ([Hartshorne 2000], 176-77).

Theorem 4.3.4 (EG). Two triangles are similar if and only if corresponding sides are
proportional. Euclid VI.2 follows.

There is no assumption that the field is Archimedean or satisfies any sort of complete-
ness axiom. There is thus no appeal to approximation or limits. We have avoided
Bolzano’s ‘atrocious detour’ through area. But area is itself a vital geometric notion
and that is the topic of the next section.

4.4 Area of polygonal figures

Hilbert wrote51, “We ... establish Euclid’s theory of area for the plane geometry
and that independently of the axiom of Archimedes.” We now sketch Hartshorne’s
[Hartshorne 2000] exposition of this topic, stressing the connections with Euclid’s
Common Notions. We show the notions defined here are expressible in first-order
logic, which supports our fifth objection in Section 4.3 of the sequel: Although these
arguments are not carried out as direct deductions from the first-order axioms, the re-
sults are derivable by a direct deduction. That is, we develop area in first order logic
and even though some of the arguments are semantical the conclusions are theorems
of first order logic. This is further evidence of the immodesty of the second order
axiomatization.

50Heron’s proof invokes a peculiar squaring of areas. But [Taisbak 2014] argues that this operation can be
replaced by inferences from VI.1 or X.53.

51Emphasis in the original: (page 57 of [Hilbert 1971]).
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Informally, those configurations whose areas are considered in this section are
figures, where a figure is a subset of the plane that can be represented as a finite union
of disjoint triangles. There are serious issues concerning the formalization in first order
logic of such notions as figure or polygon that involve quantification over integers; such
quantification is strictly forbidden within a first order system. We can approach these
notions with axiom schemes52 and sketch a uniform metatheoretic definition of the
relevant concepts to prove that the theorems hold in all models of the axioms.

Hilbert raised a pseudogap in Euclid53 by distinguishing area and content. In
Hilbert, two figures have

1. equal area (are equidecomposable) if they can each be decomposed into a finite
number of triangles that are pairwise congruent

2. equal content (are equicomplementable) if we can transform one into the other
by adding and subtracting congruent triangles.

Hilbert showed: under the Archimedean Axiom the two notions are equivalent; and,
without it they are not. Euclid treats the equality of areas as a special case of his
Common Notions. The properties of equal content, described next, are consequences
for Euclid of the Common Notions and need no justification. We introduce the notion
of area function to show they hold in all models of HP5.

Fact 4.4.1 (Properties of Equal Content). The following properties of area are used in
Euclid I.35 through I.38 and beyond.

1. Congruent figures have the same content.

2. The content of two ‘disjoint’ figures (i.e. meet only in a point or along an edge)
is the sum of the contents of the two polygons. The analogous statements hold
for difference and half.

3. If one figure is properly contained in another then the area of the difference
(which is also a figure) is positive.

More precisely,

Definition 4.4.2 (Equal content). Two figures P,Q have equal content (are equi-
complementable) in n steps if there are figures P ′

1 . . . P
′
n, Q′

1 . . . Q
′
n such that none of

the figures overlap, each pair P ′
i and Q′

i are equi-decomposable and P ∪ P ′
1 . . . ∪ P ′

n

is equi-decomposable with Q ∪Q′
1 . . . ∪Q′

n.
52In order to justify the application of the completeness theorem we have to produce a scheme giving the

definition of an n-decomposable figure as the disjoint union of an (n − 1)-decomposable figure A with an
appropriately placed triangle. The axioms for π in the sequel illustrate such a scheme.

53Any model with infinitessimals shows the notions are distinct and Euclid I.35 and I.36 (triangles on the
same (congruent) base(s) and same height have the same area) fail for what Hilbert calls area. Since Euclid
includes preservation under both addition and subtraction in his Common Notions, his term ‘area’ clearly
refers to what Hilbert calls ‘equal content’, I call this a pseudogap.
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Reading equal content for Euclid’s ‘equal’, Euclid’s I.35 (for parallelograms)
and the derived I.38 (triangles) become Theorem 4.4.3 and in this formulation Hilbert
accepts Euclid’s proof.

Theorem 4.4.3. [Euclid/Hilbert] If two parallelograms (triangles) are on the same
base and between parallels they have equal content in 1 step.

Proof. P = ADCB has the same content as P ′ = EFCB in one step as letting
Q = Q′ = DGE, P +Q = P ′ +Q′ which are decomposable as CBG + ABE and
CBG+ CDF and ABE ≈ DCF . 4.4.3

To show area is well-defined for figures, varying Hilbert, Hartshorne (Sec-
tions 19-23 of [Hartshorne 2000]) shows Fact 4.4.1 in the first order axiom system EG
(Notation 2.2). The key tool is:

Definition 4.4.4. An area function is a map α from the set of figures, P , into an ordered
additive abelian group with 0 such that

1. For any nontrivial triangle T , α(T ) > 0.

2. Congruent triangles have the same content.

3. If P and Q are disjoint figures α(P ∪Q) = α(P ) + α(Q).

Semiformally, the idea is straightforward. Argue a) that every n-gon is triangulated
into a collection of disjoint triangles and b) establish an area function on such collec-
tions. The complication for formalizing is describing the area function by first order
formulas. For this54, add to the vocabulary for geometry a 3-ary function α1 from
points into line segments that satisfies 1) and 2). For n > 1, add a 3n-ary function αn

54See Definition 3.2 of the sequel for a more detailed discussion in a slightly different context.
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and assert that αn maps n-disjoint triangles into the field of line segments by summing
α1 on the individual triangles; this will satisfy 3). This handles disjoint unions of tri-
angles. Hartshorne (23.2-23.5) gives an inductive proof showing every polygon can be
decomposed into a finite number of disjoint triangles and the area does not depend on
the decomposition.

It is evident that if a plane admits an area function then the conclusions of
Lemma 4.4.1 hold. This obviates the need for positing separately De Zolt’s axiom,
(Fact 4.4.1.3). In particular this implies Common Notion 4 for ‘area’. As we just saw
Hilbert established the existence of an area function and thus a theory of area for any
plane satisfying HP5.

Now, letting F (ABC) be an area function as in Definition 4.4.4 (* from the
first page), VI.1 is interpreted as a variant of (**):

F (ABC) =
1

2
α ·AB ·AC.

But the cost is that while Euclid does not specify what we now call the proportion-
ality constant, Hilbert must. In (**) Hilbert assigns α to be one. A short argument
([Hartshorne 2000], 23.3) shows that the formula A = bh

2 does not depend on the
choice of the base and height. Thus, Hilbert proves (**) without recourse to the axiom
of Archimedes.

5 Conclusion

In this paper we defined the notion of a modest descriptive axiomatization to empha-
size that the primary goal of an axiomatization is to distill what is ‘really going on’.
One can axiomatize the first-order theory of any structure by taking as axioms all the
first-order sentences true in it; such a choice makes a farce of axiomatizing. Histori-
cally, we stress one of Hilbert’s key points. Hilbert eliminated the use of the Axiom of
Archimedes in Euclid’s polygonal and circle geometry (except for area of circle), thus
exhibiting a first order modest descriptive axiomatization of that geometry. His proof
is impure [Baldwin 2013a] as he introduces the concept of field; but it remains modest;
the axioms are in the data set. As we expand on in [Baldwin 2017b], extensions by ex-
plicit first order definition are (often unconsciously) standard mathematical tools that
may impair purity but not provability. He [Hilbert 1971] was finding the ‘distinguished
propositions of the field of knowledge that underlie the construction of the framework
of concepts’ and showing what we now call first-order axioms sufficed. The sequel 1)
expounds Tarski’s system E2 as a modest descriptive axiomatization of Cartesian ge-
ometry, 2) analyzes the distinctions between the completeness axioms of Dedekind and
Hilbert and argues that Hilbert’s continuity axioms are overkill for strictly geometric
propositions and 3) supports conclusion 2) by providing a first-order theory to justify
the formulas for circumference and area of a circle.
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