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Abstract

We propose a criterion to regard a property of a theory (in first or second order
logic) as virtuous: the property must have significant mathematical consequences
for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor,
H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has
little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’
has enormous structural consequences for any of the theories satisfying it. This
virtue extends to other theories according to properties defining the stability hier-
archy. The interaction of model theory and traditional mathematics is examined by
considering the views of such as Bourbaki, Hrushovski, Kashdan, and Shelah to
flesh out argument that the main impact of formal methods in mathematics is using
formal definability to obtain results in ‘mainstream’ mathematics. Moreover, these
methods (e.g., the stability hierarchy) provide an organization for much mathe-
matics which gives specific content to dreams of Bourbaki about the architecture
of mathematics.

1 What is the role of categoricity?

In correspondence in 2008, Michael Detlefsen raised a number of questions about the
role of categoricity. We discuss two of them in this paper.

Question I1: (A) Which view is the more plausible—that theories are the
∗I realized while writing that the title was a subconscious homage to the splendid historical work on

Completeness and Categoricity by Awodey and Reck [6].
1The first were questions III.A and III.B in the original letter. The second was question IV in the Detlefsen

letter. I thank Professor Detlefsen for permission to quote this correspondence.
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better the more nearly they are categorical, or that theories are the better
the more they give rise to significant non-isomorphic interpretations?

(B) Is there a single answer to the preceding question? Or is it rather the
case that categoricity is a virtue in some theories but not in others? If so,
how do we tell these apart, and how to we justify the claim that categoricity
is or would be a virtue just in the former?

Question II: Given that categoricity can rarely be achieved, are there alter-
native conditions that are more widely achievable and that give at least a
substantial part of the benefit that categoricity would? Can completeness
be shown to be such a condition? If so, can we give a relatively precise
statement and demonstration of the part of the value of categoricity that it
preserves?

Further discussion revealed different understandings of some basic terminol-
ogy. Does categoricity mean ‘exactly one model’, full stop. Or does it mean exactly one
model in a given cardinal? Is a theory automatically closed under (deductive/semantic)
consequence? (Is the topic ‘theory’ or ‘axiomatization’?). Detlefsen’s concerns were
primarily about first or second order axiomatizations to provide descriptive complete-
ness2 for a particular area or for all of mathematics. I was thinking mostly of arbitrary
(complete) first order theories. These different perspectives led me to articulate two
roles for formalism in mathematics: as a foundational tool and as one more device
in the mathematician’s toolbox. In developing this second role in Sections 4 and 5,
I am also providing a counterpoint to earlier work of Kennedy [52] and myself [14]
concerning formalism-free developments in logic.

After fixing precisely the meanings for this article of certain basic terminol-
ogy, I begin the paper by analyzing Question I.B. What does it mean for a property of a
theory to be virtuous? Before one can decide the virtue of categoricity, one must clarify
what is meant by virtue. After providing a criterion for a ‘good or virtuous property’
in Section 2, we deal in the succeeding sections with Question I.A. Section 3 concerns
2nd order logic, Section 4 first order logic and Section 5 infinitary logic. We argue in
Section 3 that categoricity is interesting for a few second order sentences describing
particular structures. But this interest arises from the importance of those axiomatiza-
tions of those structures; not from any intrinsic consequence of 2nd order categoricity

2In [30], Detlefsen distinguishes between ‘descriptive completeness’ and ‘completeness for truth’. De-
scriptive completeness connects a notion of a data set, say, a not fully determinate list of (perhaps formalized)
propositions about some area (perhaps all) of mathematics and a set of formal propositions derived in a the-
ory T . The theory T is descriptively complete if the formal propositions contain all the formalized sentences
expressing the data set. Gödel fixes on completeness for truth: every sentence in the formalized language
is either derived or refuted by T . In this paper I discuss formalized theories. For them it seems evident
that Gódel completeness is a sufficient but not necessarily necessary condition for descriptive completeness
(modulo the assumption that the theory is in fact formalizing the data set in question). In general, when I
speak of ‘foundationalism’, I refer to the notion of obtaining a basis for certitude in an area (perhaps) all
of mathematics. The discussion of formalism as a tool for organizing mathematics argues that comparing
various formalizations of local areas of mathematics allows one to see important patterns across mathematics
without attempting any global foundations.
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for arbitrary theories. From this standpoint, categoricity of a particular axiom set is
crucial. In contrast, contemporary model theory focuses either on the properties of
(complete) first order theories and classes of those theories or on studying particular
theories, usually those arising in mathematical practice. Here, the particular choice of
axioms is not important.

We answer question II by analyzing the importance of completeness. This
analysis, coupled with our criteria for virtue (a virtuous property has significant math-
ematical consequences for theories or their models), leads to the main argument (Sec-
tion 4) of this paper. Formalization impacts mathematical practice most directly not
because of its foundational aspect but by the direct application of formal methods to
ordinary mathematical problems. In particular, the notion of first order (complete)
theories provides a significant mathematical tool. And identifying specific virtuous
properties of first order theories is a key part of that tool. In Subsection 4.1, we discuss
the distinction (made for example by Bourbaki [23]) between the axiomatic method
and formal methods. We argue a) that the study of formal theories is an effective math-
ematical tool for studying problems in mainstream mathematics and b) that the study
of classes of theories (in particular, but not exclusively, by stability theoretic means)
enhances this tool, identifies concepts that cross areas of mathematics and provides a
useful scheme for organizing mathematics

Sections 4.1 and 4.2 contain basic arguments for a); these are further extended
as b) is explicated in later sections. Subsection 4.2 argues that the notion of a complete
theory selects classes of structures that are sufficiently similar that information can be
transferred from one structure (where it may be verified using special properties of the
structure) to another (which doesn’t have those special properties). In Subsection 4.3,
we move to claim b) by examining the role of categoricity. While categoricity is trivial
for first order theories, categoricity in power is a notion with significant explanatory
power. We describe the detailed information about the models of a theory T that de-
pend only on T being categorical in power. Further, this analysis of categoricity in
power leads to a general dimension theory for models of first order theories with broad
applications to organize and to do mainstream mathematics. We sketch the stability
hierarchy and its consequences in Subsection 4.4. Subsection 4.5 notes that the clas-
sification introduced in Subsection 4.4 sheds light on some traditional philosophical
problems about infinity. In Subsection 4.6 we provide some examples of the uses of
model theory in mathematics, stressing the connections to the hierarchy of properties
of theories described in Subsection 4.4. Subsection 4.7 is a rudimentary example of the
kind of case study that could be done to fill out our argument; we give a more extended
treatment of groups of finite Morley rank. Subsection 5.1 provides a mathematical ex-
ample (Lefchetz’s principle) of the value of infinitary logic. We summarize the study
of categoricity in Lω1,ω in Subsection 5.2. In Subsection 5.3, we expound recent work
of Hyttinen, Kangas, and Väänänen that invoke the first order analysis to obtain strik-
ing results on categoricity in infinitary second order logic. Section 6 summarizes the
argument.
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In addition to thanking Mic Detlefson for providing and elucidating the origi-
nal questions, I want to thank him as well as Andrew Arana, Juliette Kennedy, Saharon
Shelah and Jouko Väänänen for many helpful discussions and comments.

2 Framing the Question
{quest}

We address Question I along two axes, ‘Why is the theory studied and what is the
logic?’. But first we analyze the underlying issue. What are the criteria by which one
property of a theory is judged better than another? We clarify some basic terminology
in Subsection 2.1 and note the significance in apparently small changes in definitions.
In Subsection 2.2 we provide our criterion for what makes a property of theories virtu-
ous.

2.1 Terminology and its importance
{term}

The meanings of such words as categoricity and theory has varied over time and among
different groups of logicians during the 20th century. Without giving a serious histori-
cal account I want to settle on particular meanings commonly taken by contemporary
model theorists. Some of the subtle differences in these definition are crucial for the
uses of formalized theories described in Section 4.

In [14], I distinguished two degrees of formalization. The Euclid-Hilbert (the
Hilbert of the Grundlagen) framework has the notions of axioms, definitions, proofs
and, with Hilbert, models. But the arguments take place in natural language. For
Euclid-Hilbert logic is a means of proof. In the Hilbert (the founder of proof theory)-
Gödel-Tarski framework, logic is a mathematical subject. There are now explicit rules
for defining a formal language and for proof. I gave the following anachronistic defini-
tion of a Hilbert-Gödel-Tarski formalization of an area of mathematics in [14].

Definition 2.1.1 (Formalization). A full formalization involves the following compo-
nents.

1. Vocabulary3: Specification of primitive notions.

2. Logic:

(a) Specify a class4 of well formed formulas.

(b) Specify truth of a formula from this class in a structure (M |= φ).

(c) Specify the notion of a formal deduction for these sentences (Φ ` φ).

3In Section 1 of [14] I elaborate on the special role attention to vocabulary plays in model theory.
4For most logics there are only a set of formulas, but some infinitary languages have a proper class of

formulas.
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3. Axioms: Specify the basic properties of the situation in question by sentences of
the logic.

In [14] I focused on the development of a formal theory from prior intuitions
of a mathematical subject area. In this paper I contrast this development with the use
of fully formalized theories as a tool in mathematics. In the latter context the particular
axiomatization is irrelevant. Thus, I define: a theory T is a collection of sentences in
some logic L, which is closed under semantic consequence5. (We will consider first
order, second order, Lω1,ω , L2

κ,ω and Lω1,ω(Q).) For simplicity, we will assume that
T is consistent (has at least one model), has only infinite models, and is in a countable
vocabulary. I assume the existence of a semantics for each logic is defined in ZFC.

T is categorical if it has exactly one model (up to isomorphism).

T is categorical in power κ if it has exactly one model in cardinality κ. T is
totally categorical if it is categorical in every infinite power.

Definition 2.1.2. 1. A logic L6 is deductively complete if there is a deductive sys-
tem such that for every φ

` φ if and only if |= φ.

2. A theory T in a logic L is (semantically) complete if for every sentence φ ∈ L

T |= φ or T |= ¬φ.

3. A theory T in a logic L is (deductively) complete if for every sentence φ ∈ L

T ` φ or T ` ¬φ.

Under these definitions, every categorical theory is semantically complete.
Further every theory in a logic which admits upward and downward Löwenheim-
Skölem theorem for theories that is categorical in some infinite cardinality is seman-
tically complete. First order logic is the only one of our logics that satisfies this
condition without any qualification. Note that for any structure M and any logic L,
ThL(M) = {φ ∈ L : M |= φ} is a complete theory.

A theory T admits elimination of quantifiers if every formula φ(x) is equiv-
alent in T to a quantifier free formula φ∗(x). Elimination of quantifiers can arise in

5This is by no means a universal convention even in model theory. We adopt it to avoid a cumbersome
use of the fairly trivial equivalence relation that theories, defined as sets of sentences, are equivalent if they
have the consequences. Even as late as Shoenfield’s classic graduate text [89], the word theory is used for
the entire syntactical apparatus: formal language, axioms and rules of inference for the logic, and specific
axioms.

6While there is a standard deductive system for second order logic, whether second order logic is com-
plete depends on the choice of semantics (Henkin or ‘full’).
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two radically different ways. Morley [66] introduced the idea of making a definitional
extension of a first order theory by adding a predicate symbol for each definable rela-
tion.7 At the time this appeared only a technical convenience. In retrospect, it allows
one to focus attention on the kind of property whose significance we explore in Sub-
section 4.4. Thus, most studies in pure model theory adopt the convention that this
expansion has taken place. But this extension requires a large price; the vocabulary is
no longer tied to the basic concepts of the area of mathematics. Thus algebraic model
theorists work very hard to find the minimal number of expansion by definitions that
must be made to obtain quantifier elimination (or the weaker model completeness).

As we will see, apparently minor differences in terminology introduced only
for convenience, such as demanding a theory is closed under semantic consequence, or
completeness, or invoking Morley’s procedure can signal major changes in viewpoint.

The model theoretic analyses discussed below depends on the description of
some area of mathematics as the models of a formal first order theory. Actual formulas
in the formal system appear rarely in the technical papers; the fact that a particular
concepts admits such a description is endemic and essential.

2.2 A criterion for evaluating properties of theories
{criteria}

I leave the notion of a property of a theory undefined. But here are a number of ex-
amples of ‘properties’: categorical, complete, decidable, finitely axiomatizable, Π0

2-
axiomatizable, has an or only infinite models, interprets arithmetic. Another family
of properties refer to models of the theory: each model admits8 a linear order of an
infinite subset; each model admits a combinatorial geometry; each model admits a
tree-decomposition into countable models; each model interprets a classical group; ev-
ery definable subset of a model is finite or cofinite; every model is linearly ordered and
every definable subset is a finite union of intervals. The second group of properties
(sometimes non-trivially) satisfies that for a complete theory, ‘each model admits’ is
equivalent to ‘some model admits’. Further examples of the second sort and the signif-
icance of that kind of property for mathematics will be developed below. Key to all of
these notions is that they involve syntactic properties of the theory.

I take the word virtue in Question I to mean: the property of theories has
significant mathematical consequences for any theory holding the property. For cate-
goricity to be virtuous it would have to be that some properties of theories are explained
simply by them being categorical. The notion of significant consequence is left vague
now, but one aspect of significance is that theories which have the property will display
other significant similarities. Many examples of ‘significant consequence’ appear in
Section 4.4. We will note in Subsection 3 that the mere fact of categoricity has few
consequences for a second order theory. In contrast, as we’ll see in Subsection 4.3 the

7For more detail on the methodological role of this notion see Section 1.1 of [14].
8‘Admits’ is jargon; it means the property described holds of or about the model.

6



property, categoricity in power, of a first order theory T gives rich structural informa-
tion about the models of T .

A property could be virtuous because it has useful equivalents. For example
a first order theory T is model complete if every submodel N of a model M is an
elementary submodel N ≺ M . This is equivalent to the statement: every formula
ψ(x) is proven equivalent in T to a formula (∃y)φ(x,y), where φ is quantifier free.
The second version is of enormous help in analyzing the definable subsets of a model
of T .

To determine the virtue of a property A ask, ‘ What consequences for the the-
ory T or for models of the theory follow fromA holding of T ?’ We will be particularly
interested in ‘structural properties’, i.e. information about how the models of the theory
are constructed from simpler structures. In this context Shelah’s notion of a dividing
line lays out those properties which are ‘most virtuous’.

A dividing line is not just a good property, it is one for which we have some
things to say on both sides: the classes having the property and the ones
failing it. In our context normally all the classes on one side, the “high”
one, will be provably “chaotic” by the non-structure side of our theory,
and all the classes on the other side, the “low” one will have a positive
theory. The class of models of true arithmetic is a prototypical example
for a class in the “high” side and the class of algebraically closed field the
prototypical non-trivial example in the “low” side.9

We will argue in general that categoricity is not very virtuous. Its importance
is as a signal that a theory (or rather an axiomatization) attempting to describe a par-
ticular structure has succeeded. But for first order theories, categoricity in power is
a highly virtuous property of a theory10. Further we will argue that a small number
of models in a cardinal is a sign that the models of the theory have a strong structure
theory.

3 Categoricity of Second Order Theories
{2nd}

As we explain in Section 4.1, Löwenheim-Skolem conditions undermine the signif-
icance of categoricity in logics weaker than second order. In this section we argue
against categoricity per se as a significant property of second order theories, while
acknowledging the importance of noticing certain axiomatizations are categorical.

9See page 3 of [87]. Shelah elaborates this theme in Section 2, ‘For the logically challenged’ of the same
chapter. Note that the virtue of a property in terms of the significance of its consequences is a different issue
from which if either of ‘high/chaotic’ or ‘low/structured’ is virtuous under some conception of virtue.

10It does not however reach the status of dividing line; there are few specific consequences of a theory
simply failing to be categorical in any power.
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We need to distinguish here between the categoricity of an axiomatization11

and the categoricity of a theory. One aim of axiomatization is to describe a particular,
fundamental structure. There are really very few such structures. In addition to the re-
als < and natural numbers N one could add Z,C,Q and of course Euclidean geometry.
In the 20th century such structures as the p-adic numbers enter the canon. Categoricity
is a necessary condition for calling a second order axiomatization of a theory success-
ful. But, given the ease described below of obtaining complete second order theories, it
is not sufficient12. The goal of an axiomatization is to illuminate the central intuitions
about the structure. The real linear order could be given a categorical axiomatization
by describing the construction of the rationals from the natural numbers and then the
reals as Cauchy sequences of rationals. As pointed out in [96], this construction takes
place in Vω+7. But, it is Dedekind’s categorical axiomatization of the real order as a
(Dedekind) complete linear order that is mathematically useful. This axiomatization
highlights the properties needed for the foundations of calculus [92]. From the per-
spective of providing a unique description of our intuitions, even a categorical second
order axiomatization (of say the reals) is subject to attack from radically different per-
spectives (e.g. constructive mathematics or Ehrlich’s absolute continuum [32]). Thus,
the interest in categoricity is not really that the theory13 is categorical but in the cate-
goricity of the particular axiomatization that expresses the intuitions about the target
structure.

For any logic L it is evident that categoricity of ThL(M) implies ThL(M) is
semantically complete; the converse fails if the logic has only a set of theories as there
are a proper class of structures. Many second order theories are categorical. Consider
the following little known results14.

Marek-Magidor/Ajtai (V=L) The second order theory of a countable structure is cat-
egorical.

H. Friedman (V=L) The second order theory of a Borel structure is categorical.

Solovay (V=L) A recursively axiomatizable complete second order theory is categor-
ical.

Solovay/Ajtai It is consistent with ZFC that there is a complete finitely axiomatizable

11Following modern model theoretic practice, I say a class is L-axiomatizable if it is the class of models
of a set of L-sentences. If I mean recursively axiomatized I add this adjective.

12 This perspective is highlighted by Huntington’s initial name for categoricity, sufficiency, (See page 16 {hunt}
of [6]). Veblen [99] introduces the term categoricity.

13That is, the collection of all true sentences about the structure.
14These results appeared in a paper by Marek [58], its review by Magidor, and in a thread on

Fom (http://cs.nyu.edu/pipermail/fom/2006-May/010544.html). They were summa-
rized by Ali Enayat at http://mathoverflow.net/questions/72635/categoricity-in-
second-order-logic/72659#72659. Solovay’s forcing argument for independence is at http:
//cs.nyu.edu/pipermail/fom/2006-May/010561.html.

Jouko Väänänen has relayed some further history. Corcoran reports in his review of [36], where Fraissé
gives another proof of 1), that Fraissé had conjectured 1) in 1950. Further, Ajtai in [1] both proves 1) and
that it requires V = L.
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second order theory with a finite vocabulary15 that is not categorical.

To summarize these results, if a second order theory is complete and easily
described (i.e. recursively axiomatized) or has an intended model which is ‘small’
(countable or Borel) then (at least16 in L) it is categorical. Awodey and Reck [6] point
out that Carnap provided (as he realized) a false proof that every finitely axiomatized
complete 2nd order theory is categorical. The Solovay/Ajtai result above shows this
question cannot have a positive answer in ZFC. The fact that the most fundamental
structures were categorical17 may partially explain why it took 25 years to clarify the
distinction between syntactically complete and categorical. As reported in [6], Fraenkel
in mid-20s [35] distinguished these notions in a context of higher order logic without
establishing that they are really distinct18.

One might argue that it is hard to actually prove categority in ZFC. But for
this argument to have much weight, one would have to get around two facts. 1) Con-
sistently19, categoricity is easy to achieve. Even in ZFC, there are many examples of
categorical structures: various ordinals, the least inaccessible cardinal, the Hanf num-
ber of second order logic etc.. 2) We have just seen that second order categoricity tells
us nothing about the internal ‘algebraic’ properties of the structure. So the fact that a
second order theory is categorical provides little information.

Bourbaki20 wrote,

Many of the latter [mathematicians] have been unwilling for a long time to
see in axiomatics anything other else than a futile logical hairsplitting not
capable of fructifying any theory whatever. This critical attitude can prob-
ably be accounted for by a purely historical accident. The first axiomatic
treatments and those which caused the greatest stir (those of arithmetic
by Dedekind and Peano, those of Euclidean geometry by Hilbert) dealt
with univalent theories, i.e. theories which are entirely determined by their
complete systems of axioms; for this reason they could not be applied to

15There are trivial examples if infinitely many constants are allowed.
16In fact (per Väänänen), for countable models V = L could be replaced by the existence of a sec-

ond order definable well-ordering of the reals; in ongoing work Väänänen and Shelah are weakening this
requirement.

17We follow current model theoretic practice and label a structure with any property that is satisfied by
its complete first theory. We extend this practice by saying e.g. M is 2nd-order categorical when the 2nd
order theory of M is categorical. Indeed the recent results cited above show that under V = L each of the
fundamental structures had to be categorical.

18More precisely Awodey and Reck point out that in the 2nd edition of Fraenkel’s book (1923) he had
distinguished between categoricity and deductive completeness. In the 3rd (1928) edition he also clarifies
the distinction between syntactic and semantic completeness. Corcoran [28] points out that Veblen in 1904
distinguishes deductive and semantic completeness but confuses semantic completeness and categoricity.
Corcoran relates the generally unsettled nature of these notions in the first decades of the 20th century and
raises a number of precise historical questions.. {fn1}

19I.e., in some extension of ZFC.
20Page 230 of [23].Throughout the paper, square brackets in quotations indicate my interpolation; round

brackets are from the original.
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any theory except the one from which they had been abstracted (quite con-
trary to what we have seen, for instance, for the theory of groups). If the
same had been true of all other structures, the reproach of sterility brought
against the axiomatic method, would have been fully justified.

Bourbaki has missed (ignored?) the fact that there are two different motiva-
tions for axiomatizing an area of mathematics. Bourbaki is focused on describing the
properties of a class of structures that appear in many places in mathematics, specif-
ically groups. Dedekind, Peano, and Hilbert provided second order axiomatizations
that were explicitly intended to describe certain fundamental structures. Nevertheless
from the Bourbaki standpoint of investigating the impact on mathematics as a whole of
certain unifying concepts, one can reasonably ascribes sterility to such specific axioma-
tizations. However, the goal of the axiomatizers was to understand the given structure,
not generalization. An insightful categorical axiomatization of a particular structure
is expected only to explain the given structure, not to organize arguments about other
structures. The other arguments mentioned above that provide many other categorical
second order structures don’t even have this benefit. Their real significance is to the
understanding of second order logic, identifying some kinds of structures it can de-
scribe precisely (at least under V = L)21. Even though (at least in L) there are many
2nd-order categorical structures, this fact tells us little about such structures. They
have fairly simple descriptions, but not in a way that the reflects the properties of the
structure. There is no consequence of the statement that the second order theory T is
categorical beyond ‘it has only one model’. We will see the situation is far different for
first order logic and categoricity in power.

4 First order logic
{effform}

In this section we discuss many properties of first order theories which are virtuous in
the sense of Subsection 2.2. Most were generated by Shelah’s search for dividing lines
in the spectrum problem22 of first order theories. Subsection 4.1 distinguishes between
two uses of formalization. Subsection 4.2 addresses a second question of Detlefsen and
shows the tight connection among the models of a fixed complete theory; thus com-
plete theories become the natural class of theories to study. We introduce the notion
of obtaining structural information about the models of a theory T by global proper-
ties23 of T with the motivating example of categoricity in power (Subsection 4.3). We

21The ‘idea’ of the arguments presented on Fom (See footnote 18.) is that for well-ordered structures one
can express in 2nd order logic the assertion that a model is minimal (no initial segment is a model) provided
that the axiomatization can be properly coded. The coding can be done in L. A similar approach (by Scott)
proving that semantic completeness does imply categoricity for pure second order logic is Proposition 3 of
[7].

22To calculate the function IT (κ) that counts the number of non-isomorphic models of T with cardinality
κ. {spectrum}

23Here a global property of a theory such as categoricity or a place in the stability hierarchy is distinguished
from local properties of the models of T .
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introduce in Subsection 4.4 various formal (sytactic) properties that explain common
properties of classes of complete first order theories and so are virtuous in the sense of
Subsection 2.2. In addition the classification imposed by these properties has a small
finite number of classes yielding a hierarchy of theories. Subsection 4.5 connects the
stability hierarchy with classical problems of axiomatizing the infinite. Finally in Sub-
section 4.6, we explore how the properties described earlier in the Section are exploited
in current mathematical research.

4.1 The two roles of formal methods
{formal}

While the immense significance of formal methods in the foundations of mathematics
cannot be denied, the effect of such methods on the normal conduct of mathematics
is open to considerable doubt [75, 55]. Our goal here is not to join the current anti-
foundationalist parade but to describe a different contribution of formal methods to
mathematics.

In [52] and [14], Juliette Kennedy and I have discussed the development of
some ‘formalism-free’ approaches in logic and especially in model theory. Here I pro-
ceed in the opposite direction; the goal is to show how formal symbolic logic plays
an increasingly important role in ordinary mathematical investigations and provides
schemes for organizing mathematics aimed not at finding foundations but at identify-
ing mathematical concepts that link apparently diverse areas of mathematics and often
address specific mathematical problems. We will see in Section 4.3 that these ideas
develop from appropriate weakenings of categoricity and that they provided an unex-
pected fulfillment of some hopes of Bourbaki. We gave in Section 2.1 our definition
of formalization of an area of mathematics [14]. What does this definition have to do
with traditional mathematics? A leading representation theorist David Kazhdan, in the
first chapter, entitled logic, of his lecture notes on motivic integration [51], writes:

One difficulty facing one who is trying to learn Model theory is disappear-
ance of the natural distinction between the formalism and the substance.
For example the fundamental existence theorem says that the syntactic
analysis of a theory [the existence or non-existence of a contradiction]
is equivalent to the semantic analysis of a theory [the existence or non-
existence of a model].

At first glance this statement struck me as a bit strange. The fundamental
point of model theory is the distinction between the syntactic and the semantic. On re-
flection24, it seems that Kazhdan is making a crucial point which I elaborate as follows.
The separation of syntax and semantics is a relatively recent development. Dedekind
grasps it late in the 19th century25. But it is actually clearly formulated as a tool only

24I thank Udi Hrushovski, Juliette Kennedy, and David Marker for illuminating correspondence on this
issue.

25See footnote 11 of [90].
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in Hilbert’s 1917-18 lectures [91]. And immediately Hilbert smudges the line in one
direction by seeing the ‘formal objects’ as mathematical. As Sieg (page 75 of [90])
writes,

But it was only in his paper of 1904, that Hilbert proposed a radically new,
although still vague, approach to the consistency problem for mathemati-
cal theories. During the early 1920s he turned the issue into an elementary
arithmetical problem...

Hilbert began the study of metamathematics by considering the formal lan-
guage and the deduction relation on its sentences as mathematical objects. Thus syn-
tactical analysis is regarded as a study of mathematical objects (substance)26. The first
great role of formalization then, aimed to provide a global foundation for mathematics.
The Hilbert program treats the syntax as a mathematical ‘substance’.

But Kazhdan is commenting on a smudge in the other direction; to prove the
completeness theorem, Gödel constructs a model (a mathematical object) from the syn-
tactical formulas27. When one views the completeness theorem solely from the stand-
point of logic, the construction of ‘models’ from syntactic objects to make a statement
about syntactic objects is less jarring. The surprise is when a real mathematical object
arises from the syntactic paraphernalia. Marker e-mailed, ‘I’ve found when lecturing
that a similar stumbling block comes when giving the model theoretic proof of the
Nullstellensatz (page 88 of [60]) or Hilbert’s 17th Problem when the variables in the
polynomial become the witnessing elements in a field extension.’

In [51], Kazhdan is not concerned with the global foundations of mathemat-
ics; he is concerned with laying a foundation for the study of motivic integration. This
is an example of the second great application of formalization: By specifying in a for-
mal language the primitive concepts involved in a particular area of mathematics and
postulating the crucial insights of that field (usually thought of as defining the concepts
implicitly in the Hilbert sense), one can employ the resources of ‘formalization’ to the
analysis of ‘standard’ mathematical problems. The goal of this formalization is not
foundational in the traditional sense but accords with Bourbaki’s ideal of isolating the
crucial constructions that appear in many places. The new feature is that one is able to
identify certain common syntactic features in mathematical theories that discuss very
different content. The bonus that Bourbaki did not foresee is the mathematical applica-
bility of such resources as the completeness theorem, quantifier elimination, techniques
of interpreting theories, and the entire apparatus of stability theory.

Bourbaki [23] distinguishes between ‘logical formalism’ and the ‘axiomatic
method’; the second, as they are too modest to say, is best exemplified by the Bourbaki

26This translation is seen even in the title of Post’s 1920 thesis [72].
27In fact this blurring is frequent in the standpoint of the Schröder school of algebraic logic. Badesa

makes this point in [9]; his argument is very clearly summarized in [5]. The combinatorics of the proofs
of Löwenheim and Skolem are very close to those of Gödel. But Gödel makes the distinction between the
syntactic and semantic clear since the warrant for the form of the syntactic configuration, which is interpreted
as a model, is that it does not formally imply a contradiction.
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treatise28. ‘We emphasize that it [logical formalism] is but one aspect of this [the
axiomatic] method, indeed the least interesting one29.’ In part, this remark is a reaction
to the great pedantry of early 20th century logic as the language of mathematics was
made rigorous. It also is a reaction to the use of logic only for foundational purposes
in the precise sense of finding a universal grounding for mathematics30. Bourbaki
is reacting against a foundationalism which sacrifices meaning for verifiability. The
coding of mathematics into set theory performs a useful function of providing a basis;
unfortunately, the ideas are often lost in the translation. In contrast, the second role of
formalization described above provides a means for analysis of ideas in different areas
of mathematics.

In his remarks at the Vienna Gödel centenary symposium in 2006, Angus
Macintyre wrote [55],

That the 1931 paper had a broad impact on popular culture is clear. In
contrast, the impact on mathematics beyond mathematical logic has been
so restricted that it is feasible to survey the areas of mathematics where
ideas coming from Gödel have some relevance.

This sentence unintentionally makes a false identification31. Macintyre’s pa-
per surveys the areas of mathematics where he sees the ideas coming from ‘the 1931
paper’ have some relevance. But incompleteness is not the only contribution of Gödel.
In Section 4 we barely touch the tip of the iceberg of results across mathematics that
develop from the Gödel completeness theorem and the use of formalization as we de-
scribe above. It is perhaps not surprising that in 1939, Dieudonné [31] sees only min-
imal value in formalization, ‘le principal mérite de la méthode formaliste sera d’avoir
dissipé les obscurités qui pesaieant encore sur la pensée mathématique’; the first true
application of the compactness theorem in mathematics occurs only in Malcev’s 1941
paper [57]32.

Bourbaki [23] hints at an ‘architecture’ of mathematics by describing three
great ‘types of structures’: algebraic structures, order structures, and topological struc-
tures. As we describe below in Subsection 4.4, the methods of stability theory provide
a much more detailed and useful taxonomy which provides links between areas that
were not addressed by the Bourbaki standpoint.

28Mathias [63, 64] has earlier made a more detailed and more emphatic (stressing the inadequacy of their
formal system) but similar critique to ours of Bourbaki’s foundations.

29Parenthetical remarks added. Page 223 of [23].
30I use the term global foundations for this study.
31Macintyre has confirmed via email that he intended only to survey the influences of the incompleteness

results.
32Malcev writes, ‘The general approach to local theorems does not, of course, give the solutions to any

difficult algebraic theorems. In many cases, however, it makes the algebraic proofs redundant.’ Malcev
goes on to point out that he significantly generalizes one earlier argument and gives a uniform proof for all
cardinalities of an earlier result, whose proof by Baer held only for countable groups.
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4.2 Complete Theories
{comp}

Detlefsen asked.

Question II (philosophical question)33: Given that categoricity can rarely
be achieved, are there alternative conditions that are more widely achiev-
able and that give at least a substantial part of the benefit that categoricity
would? Can completeness be shown to be such a condition? If so, can
we give a relatively precise statement and demonstration of the part of the
value of categoricity that it preserves?

We argue that the notion of a complete theory provides a formidable mathe-
matical tool. One that is not sterile but allows for the comparison in a systematic way of
structures that are closely related but not isomorphic. So we argue that completeness of
a theory gives substantial benefits that approximate (especially in combination with fur-
ther properties) the mathematical benefits of categoricity in power (but are completely
impossible for categorical theories). {afs}

Example 4.2.1 (Affine Schemes). Before turning to complete theories, we note that
the notion of a theory provides a general method for studying ‘families of mathematical
structures’. First order axiomatizations may pick out salient features of a structure
without determining the structure up to isomorphism. One obvious example is that
algebraic geometers want to study ‘the same’ variety over different fields. This is
crisply described as the solution in the field k of the equations defining the variety.
Similarly the Chevalley groups can be seen as the matrix groups, given by a specific
definition interpreted as solutions in each field. For finite fields, this gives ‘most’ of
the non-exceptional finite simple groups [56]. These are examples of affine schemes.
In introducing the notion of an affine group scheme, Waterhouse [101] begins with a
page and a half of examples and defines a group functor. He then writes,

The crucial additional34 property of our functors is that elements of G(R)
are given by finding solutions in R of some family of equations with coe-
ficients in k. . . . Affine group schemes are exactly the group functors con-
structed by solutions of equations. But such a definition would be tech-
nically awkward, since quite different collections of equations can have
essentially the same solutions.

He follows with another page of proof and then a paragraph with a slightly
imprecise (the source of the coefficients is not specified) definition of affine group
scheme over a field k. Note that (for Waterhouse) a k-algebra is a commutative ring
R with unit that extends k. Now, for someone with a basic understanding of logic, an
affine group scheme over k is a collection of equations φ over k that define a group

33Question IV in Detlefsen’s letter.
34My emphasis. See next paragraph.
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under some binary operations defined by equations ψ. For any k-algebra R, the group
functor F sends R to the subgroup defined in R defined by those equations35. The
key point is that, not only is the formal version more perspicuous, it underlines the
fundamental notion. Definability is not an ‘addition’; the group functor aspect is a
consequence of the equational definition.

We now give several examples that illustrate the mathematical power of the
notion of complete theory, demonstrating that completeness is a virtuous property. As
we said above, axiomatic theories arise from two distinct motivations. We emphasized
above the importance of a (usually second order) axiomatization of single significant
structure such as (N,+, ·) or (<,+, ·). The other is to find the common characteristics
of a number of structures; theories of the second sort include groups, rings, fields, etc.
In the second case, little is gained simply from knowing a class is axiomatized by first
order sentences36. Although in Example 4.2.1, we exhibited a mathematical impact
of formal axiomatizability, in general, the various completions of the theory simply
provide too many alternatives. But for complete theories, the models are sufficiently
similar that information can be transferred from one to another.

Kazhdan [51] illuminates the key reason to study complete theories:

On the other hand, the Model theory is concentrated on [the] gap between
an abstract definition and a concrete construction. Let T be a complete
theory. On the first glance one should not distinguish between different
models of T, since all the results which are true in one model of T are true
in any other model. One of main observations of the Model theory says
that our decision to ignore the existence of differences between models is
too hasty. Different models of complete theories are of different flavors
and support different intuitions. So an attack on a problem often starts
[with] a choice of an appropriate model. Such an approach lead to many
non-trivial techniques for constructions of models which all are based on
the compactness theorem which is almost the same as the fundamental
existence theorem.

On the other hand the novelty creates difficulties for an outsider who is
trying to reformulate the concepts in familiar terms and to ignore the dif-
ferences between models.

The next three examples use the syntactic concept of a complete theory to
transfer results between structures in way that was impossible or ad hoc without the

35We are working with the incomplete theory T in the language of rings with names for the elements
of k. Two finite systems of equations over k, σ(x) and τ(x), are equivalent if T ` (∀x)σ(x) = τ(x).
The functorial aspects of F are immediate from the preservation of positive formulas under homomorphism.
Note that I am taking full advantage of k being a field by being able to embed k in each k-algebra. If we were
to study modules over Z complications about finite characteristic would ensue. To be fair to Waterhouse’s
longer exposition he is introducing further terminology that is useful in his development.

36One does know such properties as closure of the class under ultraproduct, the ability to use compactness
arguments, and, as illustrated above some consequences of the form of the axioms.
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formalism.

Example 4.2.2 (Algebraic geometry). A model theoretic maxim asserts, ‘algebraic
geometry is the study of definable subsets of algebraically closed fields’. A first sup-
port for this assertion is Seidenberg’s formulation of the role of characteristic in the
completeness of algebraically closed fields. {folef}

Theorem 4.2.3. [Minor Principle of Lefschetz]

Let φ be a sentence in the language Lr = {0, 1,+,−, ·} for rings, where 0, 1
are constants and +,−, · are binary functions. The following are equivalent:

1. φ is true in every algebraically closed field of characteristic 0.

2. φ is true in some algebraically closed field of characteristic 0.

3. φ is true in algebraically closed fields of characteristic p for arbitrarily large
primes p.

4. φ is true in algebraically closed fields of characteristic p for sufficiently large
primes p.

Proof. This follows from the completeness of algebraically closed fields of
characteristic zero and Gödel’s completeness theorem.

In Subsection 5.1 we explore logicians attempts to better reflect the Lefschetz
principle using infinitary logic. But first we discuss algebraic geometry in the context
of first order logic. Here are two equivalent statements of the same result showing the
connections of formal definability37 to algebraic geometry.

Theorem 4.2.4. Chevalley-Tarski Theorem38

Chevalley: Over an algebraically closed field, the projection of a con-
structible set is constructible.

Tarski: The theory of algebraically closed fields admits elimination of quan-
tifiers.

Thus quantifier elimination is a different phrasing of a fundamental tool of
algebraic geometry. But there are too many definable sets; the basic domain of geom-

37A relation on a field is ‘constructible’ if it is defined by a Boolean combination of equations. A set
defined by a conjunction of equations is a variety.

38The version of this theorem for the reals is also known as the Tarski-Seidenberg theorem [78]. Tarski
announced the quantifier eliminability of the real closed fields in [94]. He apparently became aware that
his argument extended to the complex numbers when Robinson proved the quantifier eliminability of alge-
braically closed fields in [73]. There are rumors that Chevalley was well aware of Tarski’s proof for the
reals.
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etry is (unions) of varieties and this class is not closed under negation. This problem is
addressed model theoretically by the notion of Zariski geometry39.

It frequently turns out that important information about a structure is only im-
plicit in the structure but can be manifested by taking a saturated elementary extension
of the theory. In particular, within the saturated models the syntactic types40 over a
model can be realized as orbits of automorphisms of the ambient saturated model.

The germs of this idea are seen in the role of types over sets in giving a general
formulation of the notions of generic point. The notion of a generic point on a variety
X defined over a field k is a rather amorphous concept for much of the twentieth
century. In the model theoretic approach a generic point a is a point in an extension
field of k. More precisely, if k is the algebraic closure of k, a is a realization in an
elementary extension of k of a non-forking extension of the type of minimal Morley
rank and contained in X . Weil’s notion of a universal domain is in model theoretic
terms, an ℵ1-saturated model of the theory of algebraically closed fields.

Example 4.2.5 (Ax-Grothedieck Theorem:). The Ax-Grothendieck theorem [8, 40]
asserts that an injective polynomial map on an affine algebraic variety over C is sur-
jective. The model theoretic proof 41 in [8] observes that the condition is axiomatized
by a family of ‘for all –there exist’ first order sentences φi (one for each pair of a map
and a variety). Such sentences are preserved under direct limits and the φi are trivially
true on all finite fields. So they hold for the algebraic closure of Fp for each p (as it is a
direct limit of finite fields). By Theorem 4.2.3, T = Th(C), the theory of algebraically
closed fields of characteristic 0, is axiomatized by a schema Σ asserting each polyno-
mial has a root and, for each p, stating that the characteristic is not p. Since each φi
is consistent with every finite subset of Σ, it is consistent with Σ and so proved by Σ,
since the consequences T of Σ form a complete theory.

Note that surjectivity implies bijectivity is false. A model theorist might im-
mediately sense the failure since injectivity is universally axiomatized and so passes to

39Hrushovski and Zilber [47]provide a model theoretic context for the Zariski topology in which the
solutions of equations as satisfying closed sets.

40Let A be a subset of a model M and b ∈ M . The syntactic type of b over A in the sense of M is
{φ(x,a) : a ∈ A,M |= φ(b,a)}. A key reason for Shelah introducing the universal domain is to remove
the dependence on the ambient M . A model M is κ-saturated if every type over any A with |A| < κ is
realized in M and saturated if κ = |M |.

41There is a non-model theoretic proof in the spirit of Ax which replaces model completeness by multiple
references to the Nullstellensatz [50]. Ax [8] was apparently unaware of Grothendieck’s proof. He cites
other work by Grothendieck and not this, but says ”This fact seems to have been noticed only in special
cases (e.g. for affine space over the reals by Bialynicki-Birula and Rosenlicht [20]).” While the argument in
the real case is more complicated, it easily yields the result for the complexes.

In fact, there is no model theoretic proof of the real case. We can express the compactness argument in
Ax’s proof by noting C is an ultraproduct of locally finite fields. However, < is not such an ultraproduct
because (∃z)(x+ z2 = y) defines a linear order of <. So this must be true for a family of fields indexed by
a member of the ultrafilter is such an ultraproduct representation existed. But, no locally finite field can be
linearly ordered.

Moreover, in this situation there are ‘too many’ definable sets. The natural variant for o-minimal theories
that Nash functions (ie. semialgebraic + real analytic functions) satisfy the theorem fails. f(x) = x

(x2+1)
1
2

is a one-to-one map from < into (−1, 1).
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substructure, while surjectivity is ∀∃ axiomatized and so does not pass to substructures;
an algebraist would immediately note that the map x 7→ x2 is a counterexample in, for
example, the complex numbers.

Tao ([93]) gives an algebraic proof. He makes extensive use of the Nullstel-
lensatz and notably misses the simpler direct limit argument to go from the finite fields
to the algebraic closure of Fp42. These distinct approaches reflect the different perspec-
tive of logic on such a problem. {da}

Example 4.2.6 (Division Algebras). The study of finite dimensional division algebras
provides a similar example.

Theorem A: (Real division algebras): Any finite-dimensional real division
algebra must be of dimension 1, 2, 4, or 8. This is proved (by Hopf, Kervaire, Milnor)
using methods of algebraic topology.

Theorem B: (Division algebras over real closed fields): Any finite-
dimensional division algebra over a real closed field must be of dimension 1, 2, 4,
or 8.

Theorem B follows immediately from Theorem A by the completeness of the
theory of real closed fields. No other proof is known.

This kind of direct transfer between models of complete (so necessarily for-
malized) theories is one benefit of formalization. Here is another example of the virtue
of ‘the right’ complete first order theories. In a rough sense undecidability seems to
disappear when a structure is ‘completed’ to answer natural questions (e.g. adding
inverses and then roots to the natural numbers). Here is a specific measure of that idea.

Example 4.2.7 (Ruler and Compass Geometry). Beeson [19] notes that the theory of
‘constructible geometry’ (i.e. the geometry of ruler and compass) is undecidable. This
result is an application of Ziegler’s proof [106] that any finitely axiomatizable theory
in the vocabulary (+, ·, 0, 1) of which the real field is a model is undecidable. Thus the
complete theory is tractable while none of its finitely axiomatized subtheories are.

While I have given only a few simple examples, note that all the works in
‘algebraic model theory’ of A. Robinson, Ax-Kochen, Macintyre, Van den Dries and
the entire school are using formal methods in the sense here described. A fundamental
tool is to investigate the definable sets in models of a complete theory describing an
appropriate area of mathematics.

4.3 Categoricity in Power
{cat}

In this subsection, we expound what we mean by ‘significant mathematical conse-
quences of a property’ with a detailed description of the consequences of categoricity

42He gracefully acknowledges this simplification in reply to a comment.
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in power. With this example in mind, in later sections, we give less detailed descrip-
tions of the consequences of other properties.

Categoricity is trivial for first order logic. All and only finite structures are
categorical in Lω,ω. The interesting notion is ‘Categoricity in (uncountable) Power’.
The upward and downward Löwenheim-Skolem theorems show that for first order the-
ories, categoricity in power of an axiomatization Φ implies the theory generated by
Φ is complete. Ryll-Nardjewski [74], characterized first order theories that are ℵ0-
categorical. Unlike the second order case, this theorem contains a lot of information.
We don’t include all the technical definitions in the following description; they can be
found in introductory texts in model theory (e.g.[60]).

Theorem 4.3.1. The following are equivalent.

1. T is ℵ0-categorical.

2. T has only finitely many finite n-types for each n.

3. T has only finitely many inequivalent n-ary formulas for each n.

4. T has a countable model that is both prime and saturated.

Wildly different kinds of theories are ℵ0-categorical. The theory of an (infinite
dimensional) vector space over a finite field differs enormously from the theory of an
atomless Boolean algebra, the random graph or a dense linear order. But in the 1960s
there was no way to make this difference precise. One distinction stands out; only the
vector space is categorical in an uncountable power.

We discuss below the role of ‘admitting a structure theory’. Theories that are
categorical in an uncountable power have the simplest kind of structure theory and their
study led to a more general analysis. In general, by a structure theory for T we mean
the isolation of certain basic well-understood families of structures (e.g. geometries)
usually identified by a single cardinal invariant, and the decomposition in a systematic
way of each model of T into these basic structures. The following theorem summarizes
the basic landscape [65, 15, 110] for first order theories categorical in (uncountable)
power. {catchar}

Theorem 4.3.2. (Morley/ Baldwin-Lachlan/Zilber) The following are equivalent:

1. T is categorical in one uncountable cardinal.

2. T is categorical in all uncountable cardinals.

3. T is ω-stable and has no two cardinal models.

4. Each model of T is prime over a strongly minimal set.
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5. Each model of T can be decomposed by finite ‘ladders’ of strongly minimal
sets43.

First order theories which are totally categorical have a much stronger struc-
ture theory. Zilber’s quest to prove that no totally categorical theory is finitely axiom-
atizable [109, 26] not only gave a detailed description of the models of such theories
but sparked ‘geometric stability theory’. Moreover, to eliminate the classification of
the finite simple groups from the proof Zilber gave new proofs of the classification of
two transitive groups [34, 107, 108].

Because of Morley’s theorem, for any theory we can say ‘ℵ1-categorical’ for
‘categorical in one (and therefore) all uncountable cardinals’. In addition [15] shows
that an ℵ1-categorical theory has either 1 or ℵ0 models in ℵ0. Since by 4 and 5 of The-
orem 4.3.2, strongly minimal sets are the building blocks of uncountably categorical
theories, we should describe them. {smgeo}

Definition 4.3.3. Let T be a first order theory. A definable subset X of a model is T is
strongly minimal if every definable subset φ(x,a) of X is finite or cofinite (uniformly
in a). A theory T is strongly minimal if the set defined by x = x is strongly minimal in
T .

The notion of a combinatorial geometry generalizes such examples as vector
space closure or algebraic closure in fields. An important contribution of model theory
is to find such geometries in many different contexts. {geodef}

Definition 4.3.4. A pregeometry is a set G together with a dependence relation

cl : P(G)→ P(G)

satisfying the following axioms.

A1. cl(X) =
⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X)

A3. If a ∈ cl(Xb) and a 6∈ cl(X), then b ∈ cl(Xa).

A4. cl(cl(X)) = cl(X)

If points are closed the structure is called a geometry.

Note that the preceding is a mathematical (formalism-free) concept. The next
definition and theorem provide formal (syntactic conditions) on a theory for its models
to be combinatorial geometries under an appropriate notion of closure.

43Zilber shows certain automorphism groups (the linking groups of the strongly minimal sets) are first
order definable; this leads to the definability of the field in certain groups of finite Morley rank. See Subsec-
tion 4.7.
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Definition 4.3.5. Let B ⊂ M |= T where T is a complete theory. a ∈ acl(B)
(algebraic closure) if for some φ(a,y) and some b ∈ B, φ(a, b) and φ(x, b) has only
finitely many solutions. An acl-basis for a set X is a maximal independent set with
respect to this notion of closure. {smgeoth}

Theorem 4.3.6. A complete theory T is strongly minimal if and only if it has infinite
models, algebraic closure induces a combinatorial pre-geometry on models of T and,
any bijection between acl-bases for models of T extends to an isomorphism of the
models.

The second condition is often rendered as, ‘the pre-geometry is homoge-
neous’; it is equivalent to say all independent sets of the same cardinality κ realize
the same type (in κ-variables). By Theorem 4.3.6, the syntactic condition about the
number of solutions of formulas leads to the existence of a geometry and a dimension
for each model of the theory.

The complex field or an infinite vector space over any field is strongly min-
imal. By Theorem 4.3.3 each model of a strongly minimal theory has a dimension44

generalizing that of vector spaces or the transcendence dimension in field theory. The
dimension of a model of an arbitrary ℵ1-categorical theory is the dimension of the
strongly minimal set over which it is prime by Theorem 4.3.2.2. Thus a theory is ℵ1-
categorical if and only if each model is determined by a single dimension. Sections
5 and 6 of Pillay’s survey, Model Theory [69], gives an accessible and more detailed
account of Zilber’s [109] refinement, ‘geometric stability theory’, of Shelah’s general
classification program for first order theories. Approaching the Bourbaki ideal (Sub-
section 4.4), Zilber conjectured that all strongly minimal sets had a ‘trivial’ or ‘vector-
space like’(modular) or ‘field-like’ (nonmodular) geometry. Hrushovski found a coun-
terexample [44] to Zilber’s conjecture. His structure remains an outlier; but the method
of construction led to many interesting developments45. Hrushovski and Zilber [47]
launched a program to rescue the conjecture (and better attune model theory to alge-
braic geometry). They analyzed the counterexamples that were at first sight patholo-
gies by showing exactly how close ‘ample Zariski structures’ are to being algebraically
closed fields. Zilber [113] lays out a detailed account of the further development of
Zariski structures.

Moreover, this dimension theory extends to more general classes than the ℵ1-
categorical ones. For ω-stable theories a dimension (Morley rank) can be defined on
all definable subsets similar to and specializing to, in the case of algebraically closed
field, the notion of dimension in algebraic geometry. While the notion of dimension is
not a priori a syntactic notion, those appear in model theory and algebraic geometry
are.

44Dimension is a natural generalization of the notion of two and three dimensional space. The dimension
tell us how many coordinates are needed to specify a point. This dimension (for a countable language) and
uncountable strongly minimal (more generally ℵ1-categorical) structure is the same as the cardinality of the
model; [15] show that for countable models either every model has dimension ℵ0 or there are models of
infinitely many finite dimensions.

45See [13, 100] for surveys.
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If a theory is viewed as axiomatizing the properties of specific structure (e.g.
the complex field) categoricity in power is the best approximation that first order logic
can make to categoricity. But, it turns out to have far more profound implications than
categoricity for studying the original structure. If the axioms are universal existen-
tial then the theory is model complete (and under slightly more technical conditions
admits elimination of quantifiers). Thus the global property of categoricity in ℵ1 de-
termines the complexity of definable sets in the models. What can be very technical
proofs of quantifier elimination by induction on quantifiers are replaced by more direct
arguments for categoricity.

4.4 Virtuous properties as an organizing principle
{fol}

The stability hierarchy is a collection of properties of theories as envisioned in Subsec-
tion 2.2 that organize complete first order theories (that is structures) into families with
similar mathematically important properties. Bourbaki has some preliminary notions
of combining the ‘great mother-structures’ (group, order, topology). They write46, ‘the
organizing principle will be the concept of a hierarchy of structures, going from the
simple to complex, from the general to the particular.’ But this is a vague vision. We
now sketch a realization of a more sophisticated organization of parts of mathematics.

Of course, one should realize that there have been sweeping and profound
developments of the Bourbaki dream more directly in their school. Zalamea (page
140 [105]) summarizes, ‘In Grothendieck’s way of doing things, in particular, we can
observe, firstly, the introduction of a web of incessant transfers, transcriptions, trans-
lations of concepts between apparently distant regions of mathematics, and, secondly,
an equally incessant search for invariants, protoconcepts, and proto-objects behind that
web of movements.’ Grothendieck aims at the solution of specific problems that had
arisen in the first half of the twentieth century. In contrast, Shelah looks for orga-
nization in the abstract; applications are fine but not essential. His response [88] on
receiving the 2013 Steele prize makes clear his fundamental aims.

I am grateful for this great honour. While it is great to find full under-
standing of that for which we have considerable knowledge, I have been
attracted to trying to find some order in the darkness, more specifically,
finding meaningful dividing lines among general families of structures.
This means that there are meaningful things to be said on both sides of
the divide: characteristically, understanding the tame ones and giving ev-
idence of being complicated for the chaotic ones. It is expected that this
will eventually help in understanding even specific classes and even spe-
cific structures. Some others see this as the aim of model theory, not so
for me. Still I expect and welcome such applications and interactions. It is
a happy day for me that this line of thought has received such honourable
recognition. Thank you

46page 228 [23]
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While the exact meaning of Zalamea’s ‘transfers, transcriptions and transla-
tions’ is unclear to me, the astonishing fact is that the properties isolated by Shelah
without concern for applications show up in many areas of mathematics; we discuss
some below. The most important of Shelah’s innovations is to consider classes of
theories defined by certain (syntactic) properties of the theory. Such classes include
ω-stable, stable, o-minimal, and 1-based. We first sketch Shelah’s development of a
collection of dividing lines which solved the test problem of calculating the spectrum47

of a first order theory. Then we will examine how this classification of theories has
been developed and extended by many authors to obtain results across mathematics.

There are two key components to Shelah’s solution of the spectrum problem:

1. Producing a sequence of dividing lines between chaos and structure such that

2. each model of a theory which satisfies ‘the structural side’ of each dichotomy is
determined by a system of invariants.

The fundamental tool of this organization is the study of properties of defin-
able relations, that is relations definable within a structure in a given formal language.
Depending on the situation, there are several reasons why the subclass of definable sets
is adequate to this task. In algebraic geometry (both real and complex) it turns out that
mathematicians are, if fact, only studying (some) of the definable sets in the first place.
In the other direction, the Wedderburn theory for non-commutative rings is on its face
second order because of the study of ideals. But, for stable rings, there are enough first
order definable ideals to obtain the classical structure theorems for stable rings [16, 10].

The general idea of a structure theory as in 2) above is to isolate ‘definable’
subsets of models of a theory that admit a dimension theory analogous to that in vector
spaces. And then to show that all models are controlled by a family (indexed by a tree)
of such dimensions. Thus, the notion of ‘invariant’ is vastly generalized to consider
the different interaction of ‘parts’ of a structure that each have a dimension. Theories
that are categorical in power are the simplest case. There is a single dimension and the
control is very direct.

Shelah’s stability theory [85] provides a method to categorize theories into two
major classes (the main gap): those that admit a structure theory (classifiable) and those
which creative/chaotic. If a theory admits a structure theory, then all models of any
cardinality are controlled by countable submodels via a mechanism which is the same
for all such theories. In particular, this implies that the number of models in cardinality
ℵα is bounded by iβ(α) (where β < |T |+). In contrast, the number of models in ℵα of
a chaotic theory is 2ℵα ; rather than adding another countable constituent, an essentially
new method of creating models is needed in each cardinality.

In the last 25 years, tools in the same spirit of definability (but considering
different syntactical properties) allow the investigation of the definable subsets of cre-

47Footnote 22.
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ative theories; these include the study of simple, o-minimal and theories without the
independence property. While counting the number of models in each cardinality is
the test question for this program, the greatest benefit of studying this question lies in
the development of tools to provide invariants and give detailed descriptions of each
model.

The crucial point is that the stability hierarchy is defined by syntactic condi-
tions48. For example, a formula φ(x,y) has the order property in a model M if there
are ai, bi ∈M such that

M |= φ(ai, bj) iff i < j.

T is stable if no formula has the order property in any model of T . But existen-
tially quantifying out the ai, bi, φ is unstable in T just if for every n the sentence
∃x1, . . . xn∃y1, . . . yn

∧
i<j φ(xi, yi) ∧

∧
j≥i ¬φ(xi, yi) is in T . This last is clearly a

syntactic condition. The (local) dimension theory of a stable theory which leads to the
structural results follows from this syntactic condition.

A hidden existential quantifier in this definition disguises some of the sig-
nificance. A theory T is unstable if there is a formula with the order property. This
formula may change from theory to theory. In a dense linear order one such is x < y;
in a real closed field one is (∃z)(x + z2 = y), in the theory of (Z,+, 0,×) one is
(∃z1, z2, z3, z4)(x + (z21 + z22 + z23 + z24) = y). In the theory of (C,+,×, exp), one
first notices that exp(u) = 0 defines a substructure which is isomorphic to (N,+, 0,×)
and uses the formula from arithmetic. It is this flexibility, grounded in the formal lan-
guage, which underlies the wide applicability of stability theory. In infinite boolean
algebras an unstable formula is x 6= y & (x ∧ y) = x; here the domain of the linear
order is not definable.

The Stability Hierarchy: Every complete first order theory falls into one of
the following 4 classes.

1. ω-stable

2. superstable but not ω-stable

3. stable but not superstable

4. unstable
48In his classic 1961 paper [98], Vaught writes, ‘One is tempted to say, by analogy with the discussion in

the last paragraph of 3 (where he asserts that finitely many n-types for each n is syntactic), that condition
4.7.1 (countably many n-types for each n) is purely syntactical. Indeed, in 4.7.1, no reference to any se-
mantical concept, such as ”model”, is made. However, a little thought convinces one that a notion of “purely
syntactical condition” wide enough to include (.1) would be so broad as to be pointless.’ Obviously, I am
rejecting that observation. This is based partly on the experience that compactness arguments can be done
around such requirements and partly on the observation that ‘arithmetic’ for the condition Vaught refers to
and Π1

1 for ω-stability provide sufficiently constructive notions to justify ‘syntactic’. It is, however, techni-
cally crucial for Shelah’s development that the order property concerns a single formula, thus strengthening
the applicability of compactness.
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The stability hierarchy is essentially orthogonal to decidability. There are
continuum many strongly minimal theories so most are not decidable. The random
graph has the independence property but is recursively axiomatized and ℵ0-categorical,
so decidable. Similarly, the theory of atomless Boolean algebras has both the strict
order property and the independence property but is decidable.

The proof of the main gap relies on discovering several more dividing lines.
We omit the technical definitions of the dimensional order property (DOP), the omit-
ting types order property (OTOP) and the shallow/deep dichotomy. Such properties49

lead to the existence of 2κ (the maximum possible) non-isomorphic models of cardinal-
ity κ. If none of these properties hold the number of models is bounded well below 2κ

and there is good decomposition theorem for the models. We discuss this in more detail
in section 5.3. Hart, Hrushovski, and Laskowski produced a full account of the spec-
trum problem for countable theories, including the greater intricacy for small infinite
cardinalities in [42].

A common reading of Shelah is that the further down the above list a theory
falls the more it lies on the side of chaos: ‘chaos’ means ‘many models’. But Shelah has
pointed out 50 that this reading puts the cart before the horse, ‘The aim is classification,
finding dividing lines and their consequences. This should come with test problems.
The number of models is an excellent test problem and few models is the strongest form
of non-chaos.’ But Shelah has suggested, beginning in late 70s, test problems for the
study of theories with many non-isomorphic models, in particular, of unstable theories
without the strict order property: existence of saturated extensions [82], the Keisler
order (Chapter 6 of [81]) and the existence of universal models [53]. In [86] he extends
this investigation by introducing the SOPn and establishing SOP4 as a dividing line
for some purposes.

The study of o-minimality, simple theories and recent advances in studying
nip (not the independence property51) show that ‘tame’ is a broader category than sta-
ble. Among the canonical structures, the complex field is a prototype for good behavior
and the real field (and even the real exponential field) are o-minimal and so there is so-
phisticated analysis of the definable sets. Of the canonical structures only arithmetic
has so far resisted these methods of understanding. This is witnessed by its having both
the independence property and being linearly ordered. Of course set theory is equally
unruly; a pairing function52 is incompatible with a global dimension theory.

In the last few paragraphs we have glimpsed the ways in which complete for-
mal theories provide a framework for analysis. In Subsection 4.6, we discuss some
of the profound implications of the hierarchy of complete theories for work in con-

49The non-structure arguments are not tightly linked to first order logic. They correspond to a theorem
scheme for building many non-isomorphic models as Skolem hulls of sets of (linearly ordered or tree ordered)
indiscernibles. The Skolem hull can accomodate some infinitary languages.

50See page 5 of [87].
51also called dependent
52 A pairing function is a definable function from X × X to X . Such a function destroys a notion of {pf}

dimension since each n-tuple is coded by a singleton.
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ventional mathematics. Thus I argue that the study of complete theories a) focuses
attention on the fundamental concepts of specific mathematical disciplines and b) even
provides techniques for solving problems in these disciplines.

4.5 Axioms of Infinity and the stability hierarchy
{infstb}

In this brief excursion, we discuss how the more advanced techniques of stability theory
address a basic philosophical problem. How can one describe (prescribe) infinity? Here
are three first order sentences which imply that the universe is infinite.

1. < is a dense linear order.

2. f(x) is an injective function; exactly one element does not have a predecessor.

3. t(x, y) is a pairing function from M ×M onto M .

W.W. Tait pointed out to me that these reflect three basic intuitions about how
infinite sets arise: density, successor, and the observation that a number is smaller than
its square53. Are there other such intuitions?

The first example is nearly a complete theory; it becomes a complete finitely
axiomatized theory by deciding whether there are end points. The second sentence has
many finite models (n-cycles). To make it a complete sentence with only infinite mod-
els requires infinitely many axioms; the resulting theory is ℵ1-categorical. In contrast,
there is an extension of a sentence expressing pairing function to a complete theory
that is strictly stable and none that is superstable. If one strengthens completeness to
demand that the sentence be categorical the answer is known but represents two major
works.

Theorem 4.5.1 ( Zilber, Cherlin-Harrington-Lachlan). No first order sentence with
only infinite models is categorical in all infinite cardinalities.

But such theories are quasi-finitely axiomatizable by a single sentence plus
an ‘infinity scheme’ and there is detailed structure theory for both finite and infinite
models [27]. But the total categoricicity is essential.

Theorem 4.5.2 (Peretyatkin). There is an ℵ1-categorical first order sentence.

Peretyatkin [67] was motivated by trying to capture a tiling problem but his
example really seems to capture ‘pairing’. The following question remains open: Is
there a finitely axiomatizable strongly minimal set?

53See footnote 52.
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4.6 Formal Methods as a tool in mathematics
{apps}

In this section we give a very brief description of the use of formal tools in problems
arising in other areas of mathematics. We give a short precis of applications in 5 fields
of mathematics. Examples 1, 2, and 4 involve properties directly in the stability hi-
erarchy; examples 3 and 4 involve the property of o-minimality; property 5) suggests
a new sort of property. In section 4.7 we give a slightly more detailed case study of
one such example in order to lay out in more detail the kind of philosophical issues
that such case studies can address. Each of the examples here, and still others would
benefit from a similar, more detailed analysis.

Here is a primitive example of how informal mathematical notions can trans-
late into the formal tools of stability theory. In an echo of the Bourbaki assertion of the
importance of groups, in the presence of a group the stability conditions translate to
chain conditions on ‘definable subgroups’54. In an ω-stable (superstable) theory there
is no descending chain of definable subgroups (with infinite index at each stage). This
principle is now seen to apply to different algebraic structures and gives a unified ex-
planation for finding various kinds of radicals55. (See [12] for a very early account of
this phenomenon and [3, 2, 37] for recent updates.)

The serious connections of stability theory with algebra and geometry grow
out of geometric stability theory. Near the end of Subsection 4.3, we mentioned Zil-
ber’s trichotomy conjecture for strongly minimal sets. Shelah’s notion of regular type
extends the possible domains of combinatorial geometries to infinite rank types. In
[48], Hrushovski studies the interaction of realizations regular types to obtain clearly
mathematical information. The notation rα means the type of α independent real-
izations of r. Roughly speaking, two types are orthogonal if there is ‘no interaction’
between realizations of the two types and almost orthogonal if there is no obvious inter-
action. In contrast dominance indicates interactions and bidominance means the types
are very tightly connected.

Theorem 4.6.1 (Hrushovski). Let T be a stable theory. Let p̃ and q̃ be nonorthogonal
stationary, regular types and let n be maximal such that p̃n is almost orthogonal to q̃ω .

Then there exist p almost bidominant to p̃ and q dominated by q̃ such that:

n = 1 q is the generic type of a (type) definable group that has the regular action on
the realizations for p.

n = 2 q is the generic type of a (type) definable algebraically closed field that acts on
the realizations for p as an affine line.

n = 3 q is the generic type of a (type) definable algebraically closed field that acts on
the realizations for p as a projective line.

54In rings these subgroups become ideals.
55A ‘radical’ a technical term used in the structure theory of rings.
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n ≥ 4 is impossible.

Note that the hypotheses are purely model theoretic. There is no assumption that a
group or ring is even interpretable in the theory. But the conclusion gives precise kinds
of group and field actions that are definable in the given structures. This is one of
many results from pure stability theory that has found applications in the last twenty
five years; we sketch several areas of application. {mathex}

Example 4.6.2. 1. Differential Algebra: Ritt in the 1930s and later Kolchin began
the study of differential algebra. Abraham Robinson introduced the notion of a
differentially closed field in analogy with the algebraically closed fields. This
concept was incorporated in Kolchin’s opus [54] and is one of the tools of dif-
ferential algebraists. Blum [21] showed the theory was ω-stable so differential
closures were unique up to isomorphism. But Shelah [80] showed they were not
minimal. Blum’s proof is a direct application of Shelah’s theorem showing the
uniqueness of prime models over sets for ω-stable theories. With some actual
investigation of differential equations, he shows they need not be minimal.

For the continued interplay between various families of (differential) groups and
rings and stability theory see [38]. Marker [61] provides an overall summary of
the interaction of model theory and differential algebra. From our viewpoint, the
crucial data is the definability conditions are applied either directly or by analogy
in several areas of mathematics; the definability provides a uniform pattern.

2. Arithmetic algebraic geometry: Hrushovski’s proof of Mordell-Lang for func-
tion fields integrates Shelah’s notions of orthogonality and p-regularity and such
notions from geometric stability theory as one-based with tools of arithmetic al-
gebraic geometry. Both the study of stable fields [62] and the model theory of
differential algebra play a role. See [24] for a proof with background in both
model theory and algebraic geometry, Hrushovski [45] for an overview and con-
nections to stability theory and [77] for a more recent account of work in this
area.

3. Real algebraic geometry and o-minimality: An important property which does
not lie in the stability hierarchy is o-minimality. This property is restricted to
those theories for which a symbol< defines a linear order of the universe of each
model. The structure (and thus its theory) is o-minimal if every definable set is
a finite union of intervals. Even though the definition concerns only subsets of
the universe, the cell-decomposition theorem provides a clear understanding of
definable sets in all dimensions. The following description of the motivations
for o-minimality are taken from Alex Wilkie’s Seminaire Bourbaki of November
2007 [104].

The notion of an o-minimal expansion of the ordered field of real
numbers was invented by Lou van den Dries as a framework for inves-
tigating the model theory of the real exponential function exp : < 7→
< : x 7→ ex, and thereby settle an old problem of Tarski. More on this
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later, but for the moment it is best motivated as being a candidate for
Grothendieck’s idea of tame topology as expounded in his Esquisse
d’un Programme. It seems to me that such a candidate should satisfy
(at least) the following criteria. (A) It should be a framework that is
flexible enough to carry out many geometrical and topological con-
structions on real functions and on subsets of real euclidean spaces.
(B) But at the same time it should have built in restrictions so that we
are a priori guaranteed that pathological phenomena can never arise.
In particular, there should be a meaningful notion of dimension for all
sets under consideration and any that can be constructed from these
by use of the operations allowed under (A). (C) One must be able to
prove finiteness theorems that are uniform over fibred collections.
None of the standard restrictions on functions that arise in elemen-
tary real analysis satisfy both (A) and (B). For example, there exists a
continuous function G : (0, 1) 7→ (0, 1)2 which is surjective, thereby
destroying any hope of a dimension theory for a framework that ad-
mits all continuous functions. [. . . ]
Rather than enumerate analytic conditions on sets and functions suffi-
cient to guarantee the criteria (A), (B) and (C) however, we shall give
one succinct axiom, the o-minimality axiom, which implies them. Of
course, this is a rather open-ended (and currently flourishing) project
because of the large number of questions that one can ask under (C).
One must also provide concrete examples of collections of sets and
functions that satisfy the axiom and this too is an active area of re-
search.

Pillay and Steinhorn recognized o-minimality as a generalization of strong min-
imality. Strong minimality characterizes the definable subsets (no matter how
extensive the ambient vocabulary) as easily describeable using only equality (fi-
nite or cofinite). A theory is o-minimal if every definable subset is easily de-
scribed in terms of a linear order of the model. Wilkie [103] proved that the
real exponential field is o-minimal. A number of examples of further o-minimal
structures were discovered; many are expansions of the real field. [59, 29]. These
techniques solved a problem of Hardy [97]. Although o-minimality is explicitly
defined in terms of formal definability, in real algebraic geometry as in alge-
braic geometry in general, the only relations considered are definable. This has
led to enormous integration between real algebraic geometry and model theory.
Mancosu and Hafner in [41] analyze the real algebraic geometer Brumfiel’s ob-
jections to transfer simply by completeness (as discussed in Example 4.2.6); the
insights available from o-minimality far extend the analysis of the early 70s. For
example, Pillay showed [68]: Let G be a group definable in an o-minimal struc-
ture M . Then, G can be equipped with a definable manifold structure making
G a topological group. In particular, if M is an expansion of the reals then G
can be given the structure of a Lie group. The connections of o-minimality with
Grothendieck’s notion of ‘tame topology’ is examined at length by the geometer
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Teissier56.

4. Motivic integration: In what Scanlon [76] calls the prehistory, Denef
shows the rationality of Poincaré series; the geometers tool of desingular-
ization is avoided by an induction on quantifier rank using p-adic cell de-
composition. The development of motivic integration theory in the 21st
century is a joint project of model theorists and geometers (including
Denef/Cluckers/Hrushovski/Kazhdan/Loeser); it connects with the ideas of cell
decomposition arising in the study of o-minimality and with issues arising from
the study of p-adically closed fields as NIP theories [43].

5. Asymptotic classes and finite groups: Macpherson and Steinhorn [56] define
an asymptotic class as a class of finite models in which the number of solutions of
a formula φ(x,a) in a finite modelM can be uniformly approximated as µMd/N

where N is a parameter of the class and µ, d are uniformly defined depending
on a. This generalizes classical results on finding the number of solutions of
diophantine equations in finite fields. But it also provides a scheme to try to
explain the families of finite simple groups in terms of their definability.

4.7 Groups of finite Morley rank
{FMR}

In this subsection, we sketch how the resources of formalization, in particular, inter-
pretation and the stability apparatus contribute to the study of a class of groups that
were in fact defined by model theorists. This generalization of the study of finite sim-
ple groups illustrates the ways that formalization interacts with traditional mathematics
and exhibits the power of formalization to introduce a generalizing principle. In this
case the formalization (considering groups of finite Morley rank) provides a frame-
work which includes both finite groups and algebraic groups over algebraically closed
fields, thereby illuminating the role of finiteness conditions in each case. A group of
finite Morley rank (FMR) is an infinite structure which admits a group operation and is
ω-stable with finite rank57; these notions require the formalism of the first order theory
of the group in question. The driving conjecture: {czconj}

Conjecture 4.7.1 (Cherlin/Zilber). A simple group of finite Morley rank is algebraic
over an algebraically closed field.

links a model theoretic concept with algebraic geometry. The 25 year project to solve
the conjecture has developed as an amalgam of basic stability theoretic tools with many
different tools from finite and, recently, combinatorial group theory.

56See pages 232-236 of [95].
57I am not giving a detailed historical survey here so many attributions and reference are omitted. Poizat

[70, 71] provides the general setting as in the late 1980s. Borovik and Nesin [22] gives a good overview of
the finite rank case in the mid 1990s. Cherlin’s webpage [25] lays out the Borovik program in broad strokes
with references. A recent summary is [4].
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The basic scheme for understanding of the structure of groups relies on the
Jordan-Hölder theorem: Each finite group can be written (uniquely up to the order of
the decomposition) as G = G0 > G1 . . . Gn = 1, where Gi+1 is normal in Gi and
the quotient groups Gi/Gi+1 are simple. Thus identifying the finite simple groups
is a key step to understanding all finite groups. (We also need to know the nature of
the extension at each level.) The analysis of FMR groups replaces induction on the
cardinality of a group by induction on Morley rank.

Macintyre proved in the early 70s that an ℵ1-categorical, indeed any ω-stable
field is algebraically closed. An algebraic group is a variety G over a field k equipped
with a group operation from G×G→ G that is a morphism (in the sense of algebraic
geometry58. The definition of an algebraic group (over an algebraically closed field)
yields immediately that it is interpretable59 in an algebraically closed field and so has
finite Morley rank. The algebraic definition of the dimension of an (in fact definable)
subset yields the same value as the Morley rank.

Work in the late 1970s showed similar properties of algebraic groups over al-
gebraically closed field and groups of finite Morley rank in low rank. Cherlin extended
from algebraic groups to FMR groups the propositions: rank 1 implies abelian; rank
2 implies solvable. Zilber showed that a solvable connected (see below) FMR group
which is not nilpotent interprets an algebraically closed field. From this it ensues that
every FMR group ‘involves’ an algebraically closed field; the issue is, ‘how close is the
involvement?’. Although algebraic groups over algebraically closed fields have FMR,
groups of finite Morley rank are clearly more general. The Prüfer group Z∞ is ω-stable
but not algebraic and FMR groups are closed under direct sum while algebraic groups
are not. But the role of rank/dimension in each of the cases and the identification of
the field in the group led to the idea that groups of finite Morley rank were some kind
of natural closure of the algebraic groups. In particular, it led to Conjecture 4.7.1, that
the basic building blocks are the same.

The classification of the finite simple groups identifies most of them as falling
into families of algebraic groups over finite fields, the Chevalley groups. As we dis-
cussed in Example 4.2.1, families such as the Chevalley groups are a natural notion in
model theory. They are the solution of the same definition of a matrix group as the
field changes. A further impetus for this study is an analogy between finite groups and
FMR groups. In the proofs, the descending chain conditions on all subgroups for finite
subgroups is replaced by the descending chain condition on definable subgroups. This
allows an algebraic definition of ‘connected’ replacing the topological definition in the
study of algebraic groups. Induction on the cardinality of the group is replaced by in-
duction on its Morley rank. The use of definability now provides a common framework
for the study of algebraic and finite groups60. The quest for Conjecture 4.7.1 has led to

58A by-product of the study under discussion is that an equivalent definition is: a group defined in an
algebraically closed field.

59We don’t spell out here the definition of an interpretation of one formal theory in another; any of the
general sources in model theory mentioned above do so.

60Borovik had independently introduced the notion of ranked group (one which admits a collection of
subsets containing the finite set and closed under (Boolean operation, projection, quotient). Poizat showed
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intricate analysis of all three generations of the proof of the classification of finite sim-
ple groups. In particular the main strategy of the proof is an induction on the ‘minimal
counterexample’ and the possibilities for this counterexample are sorted analogously
to the finite case.

The following (slightly shortened) passage from the Borovik-Nesin book
(page 29 [22]) shows the deep ties between the formal notion of ‘interpretation’ and
algebra.

The notion of interpretation in model theory corresponds to a number of
familiar phenomena in algebra which are often considered distinct: coor-
dinatization, structure theory, and constructions like direct product and ho-
momorphic image. For example a Desarguesian projective plane is coordi-
natized by a division ring; Artinian semisimple rings are finite direct prod-
ucts of matrix rings over divisions rings; many theorems of finite group
theory have as their conclusion that a certain abstract group belongs to a
standard family of matrix groups over [. . . ]. All of these examples have a
common feature: certain structures of one kind are somehow encoded in
terms of structures of another kind. All of these examples have a further
feature which plays no role in algebra but which is crucial for us: in each
case the encoded structures can be recovered from the encoding structures
definably.

Another role of the formalization is seen in the ability to focus on the key
idea of a proposition. The standard statement of the Borel Tits theorem takes half a
page and gives a laundry list of the possible kinds of maps (albeit considering the fields
of definition of the groups). Zilber (See Theorem 4.17 [70, 71].) gives the following
elegant statement.

Theorem 4.7.2 (Borel-Tits a la Zilber/Poizat). Every pure group isomorphism between
two simple algebraic groups over algebraically closed fields K and L respectively can
be written as the composition of a map induced by a field isomorphism between K and
L followed by a quasi-rational function over L.

The maps are constructed as compositions of definable and abstract maps.
Both the explanation of the role of interpretation in [22] and the statement and proof
of the Borel-Tits theorem illustrate the role of formalization in providing context and
clarity to mathematical results. While the development of this particular project takes
place in the context of ω-stable theories, the role of classes further down the Shelah
hierarchy appeared in Example 4.6.2.2 and Example 4.6.2.4.

the class of such groups is exactly the FMR groups.
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5 Infinitary Logic
{infall}

We consider in Subsection 5.1 the role of infinitary logic in formalizing mainstream
mathematics by reviewing attempts to formalize the Lefschetz principle. Recall that
Lω1,ω allows countable Boolean combinations of formulas but only finite strings of
first order quantifiers and L∞,ω strengthens the logic by allowing conjunctions of any
cardinality. This analysis relies on the categoricity in uncountable powers of the theory
of algebraically closed field of a fixed characteristic. In Subsection 4.3 we describe
the role of categoricity in power for the logic Lω1,ω . In Subsection 5.3 we return to
second order logic with a slight twist. We consider second order logic with infinite
conjunctions of various lengths.

5.1 Why infinitary logic?
{whyinf}

We discuss in this section an example of logicians setting up local foundations for
subject. Here the foundations are tested against a goal set by André Weil. The Lef-
schetz principle was long known informally by algebraic geometers and appeared in
Lefschetz’ Algebraic Geometry. Barwise and Eklof [18] describe the issues around
formalizing the Lefschetz principle as follows.

What we call Lefschetz principle has been stated by Weil as follows ([102],
p 306): “for a given value of the characteristic p, every result, involv-
ing only number of points and varieties, which has been proved for some
choice of universal domain remains valid without restriction; there is but
one algebraic geometry of characteristic p; not one algebraic geometry for
each choice of universal domain.” Weil says that a formal proof of this
principle would require a ‘formal metamathematical’ characterization of
the type of proposition’ to which it applies; “this would have to depend
upon the ‘metamathematical’ i.e. logical analysis of all our definitions.

Seidenberg [79] argues that Weil’s formulation is weaker than Lefschetz in-
tended. Seidenberg gives a formulation ( the minor principle Theorem 4.2.3) in terms
of the infinite family of complete theories, algebraically closed fields of various char-
acteristics, which encompasses Weil’s version. But Seidenberg argues that this does
not really reflect mathematical practice and conjectures that the Lefschetz principle re-
ally needs to be formulated in terms of what he call almost-elementary sentences, a
fragment of Lω1,ω . Barwise and Eklof [18] address Weil’s question head-on. “Thus, in
contrast to previous mathematical formulations of the Lefschetz principle which arose
from general logical considerations, [...] our starting point has been an analysis of the
definitions of algebraic geometry.” They extend Example 4.2.3 to a transfer principle in
an infinitary version of finite type theory to encompass such notions as integers, affine
and abstract varieties, polynomial ideals, and finitely generated extensions of the prime
field.
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In [33], Eklof builds on work of Feferman to construct a simpler logic than
that in [18], a many-sorted language for L∞,ω . This many-sorted approach is implicit
in the Hrushovski setting [24], but Hrushovski remains in the first order context taking
advantage of the tools of first order stability theory.

5.2 Lω1,ω
{inf}

In this subsection we survey the status of categoricity and categoricity in power for
sentences of Lω1,ω . The main results are in [83, 84]; we give a systematic development
in [11].

Since there are 2ℵ0 inequivalent sentences and 22
ℵ0 theories but a proper class

of structures, some theories must fail to be categorical. In contrast to the first order
case, there are countable structures that are categorical for Lω1,ω . By the downward
Löwenheim-Skolem theorem, no sentence of Lω1,ω can have a unique model which is
uncountable. But the Lω1,ω-theory of the reals is categorical.

A countable structure is categorical iff it has no proper Lω1,ω-elementary sub-
model. For sentences in Lω1,ω , categoricity in power ℵ1 implies the existence of a
complete sentence satisfied by the model of cardinality ℵ1. It is open whether this
implication holds for ℵ2-categoricity in Lω1,ω .

The best generalization of Morley’s theorem to Lω1,ω is due to Shelah [83,
84]. Shelah shows that one can more profitably study this subject by focusing on classes
of the form EC(T,Atomic), the class of atomic61 models of complete countable first
order theory.

The class of models of a complete sentence φ of Lω1,ω is in 1-1 correspon-
dence with an EC(T,Atomic)-class (Chapter 6 of [11]). Making this translation is a
key simplification. An EC(T,Atomic)-class is excellent if for every finite n it is pos-
sible to find a unique amalgamation of n independent countable models in the class.

Theorem 5.2.1 ( Shelah 1983). Assume only ZFC. If K is an excellent
EC(T,Atomic)-class then if it is categorical in one uncountable cardinal, it is cate-
gorical in all uncountable cardinals.

Theorem 5.2.2 (Shelah 1983). Assume ZFC + 2ℵn < 2ℵn+1 for finite n. If an
EC(T,Atomic)-class K is categorical in ℵn, for all n < ω, then it is excellent.

Thus for Lω1,ω the study of categoricity in power is in a relatively complete
state; the outstanding question from a foundational standpoint is whether the very
weak generalized continuum hypothesis (VWGCH: for all n, 2ℵn < 2ℵn+1 ) is actu-
ally needed. There are only a few papers aimed at finding an extension to the stability
hierarchy in this framework ([39, 17]).

61M is atomic if each finite sequence from M realizes a complete type over the empty set.
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There are important mathematical structures, e.g. complex exponentiation,
which exhibit the Gödel phenomena and so cannot be analyzed by stability techniques
in first order logic. However, Zilber [112, 111, 11] has conjectured a means for such
an analysis in the logic Lω1,ω(Q).

5.3 Déja vu: Categoricity in infinitary second order logic
{dejavu}

We rehearse here some recent results of Hyttinen, Kangas, and Väänänen [49] that
identify in a systematic way a proper class of categorical structures62. Consider the
logic L2

κ,ω which allows first and second order quantification and conjunctions of
length κ. In this family of logics, as κ varies there are a class of sentences so the
cardinality argument for the existence of non-categorical structures fails. In fact, every
structure of cardinality κ is categorical in L2

κ+,ω . The goal is to identify those struc-
tures of cardinality κ that are categorical in L2

κ,ω (κ not κ+). Since this work draws on
the first order stability hierarchy discussed in Section 4.4, we begin with more detail
on the main gap theorem.

Any standard text in stability theory shows that if T is stable then via the
notion of non-forking an independence relation can be defined on all models of T
which generalizes the independence notion in combinatorial geometries discussed
in Subsection 4.3. In general the closure relation fails to be a geometry because
cl(cl(X)) 6= cl(X). But on the set of realizations of a so-called regular type it is.
Thus in a model M and for any regular type p with domain in M , we can define the
dimension of the realizations of p in M .

If T is not stable or even not superstable, T has 2κ models in every uncount-
able κ ([85]). We discussed the role of DOP and OTOP in Subsection 4.4. If either
DOP or OTOP holds T has the maximal number of models in each uncountable car-
dinal. If the dimensional order property and the omitting types order property do not
hold (NDOP and NOTOP), each modelM of cardinality κ can be decomposed as a tree
of countable submodels indexed by some tree I . The root of this tree, M0 is a prime63

model. For s ∈ I , each Ms has a set of up to κ extension extensions Mŝ i which are
independent over Ms; M is prime over

⋃
s∈IMs. The systematic representation of a

model as prime over a tree of (independent) submodels is a fundamentally new math-
ematical notion. The theory is shallow if there is a uniform bound over all models on
the rank of the tree; essentially ‘deep’ means this tree is not well-founded. If a theory
satisfies NDOP, NOTOP and is shallow the theory is called classifiable.

For a classifiable theory the number of models in ℵα is bounded by iβ(α)
where β is a bound on the rank of the decomposing tree for all models of T (indepen-
dently of cardinality). [85] claims that each model of such a theory is characterized by
a sentence in a certain ‘dimension logic’. Unfortunately there are technical difficulties

62The authors use ‘characterizable’ for what we call ‘categorical’.
63That is, under an appropriate notion of submodel, it can embedded in every model of T .
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in the definition of this logic. However, the new paper [49] shows how to find such a
categorical sentence in L2

κ+,ω . Thus they obtain (in a slightly less general form):

Theorem 5.3.1 ( Hyttinen, Kangas, and Väänänen). Suppose that κ is a regular car-
dinal such that κ = ℵα, i1(|α| + ω) ≤ κ and 2λ < 2κ for all λ < κ. The countable
complete theory T is classifiable if and only if for every modelM of T with |M | ≥ iω1

,
the L2

κ+,ω theory of M is categorical.

The deduction from classifiability is a highly technical argument that the de-
composition of the models (and the dimensions of the types involved) can be defined
in L2

κ+,ω . Conversely, if a theory is not classifiable (i.e. lies on the chaotic side of the
main gap), it has 2κ models in κ. But there are only 2κ sentences in L2

κ+,ω so there
must be a sentence which is not categorical in the logic L2

κ+,ω .

So using the virtuous properties developed in first order logic, the authors are
able to uniformly identify a large family of structures with cardinality κ that are cate-
gorical in L2

κ,ω . But categoricity is used in Huntington’s role64 of ‘sufficiency’. It is
again a test of an axiomatization. In contrast to the ad hoc search for the axioms of
the fundamental structure, Shelah’s structure theorems provide a strategy for obtaining
the axiomatization, categoricity of a theory is an informative property. But while the
axiomatizations of the fundamental structures informed us about the principles under-
lying proofs in the underlying number theory and real analysis, these axiomatizations
inform us about the structure of the models of the underlying classifiable first order
theory.

6 Conclusion
{conc}

We have posited a criterion for evaluating the virtue of a property of theories (in
some logic): whether the property has significant mathematical consequences. That
is, whether the theories or more importantly the models of the theories which have this
property display other significant similarities.

We agree that from the foundational standpoint of clarifying our intuitions
about a canonical object, categoricity of a second order axiomatization plays an im-
portant role. And this is a mathematical as well as philosophical role. E.g., Dedekind
provides a framework for proving results about the real numbers.

But we have argued that according to our criterion, categoricity of a theory is
not very interesting for second order logic and trivial for first order logic. However,
for first order logic, categoricity in power is very significant because all categorical
theories are seen to possess a dimension theory similar to prototypical examples such
as vector spaces. The stability hierarchy provides both a classification of first order
theories which calibrates their ability to support nice structure theories and the details

64Footnote 12.
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of such a structure theory. The key to the structure is the definition of local dimensions
extending the basic phenomena in theories which are categorical in power.

One slogan for model theory is the ‘study of definable sets of a structure’.
We use the more general term formalization to encompass the definability of classes of
models and well as definability within a particular model. A key lesson of the last half
century is how much the first study influences the second. But both exemplify the use
of formal methods. The reason most of the work takes place in first order logic, despite
its lesser expressive power, is the pervasive use of the compactness theorem. Thus not
only formalization but a particular property of the formalization plays a central role.

This analysis builds on the distinction between ‘logical formalism’ and ‘ax-
iomatization’ made by Bourbaki65. But we think Bourbaki has missed the significance
of ‘logical formalism’ for mathematics and perhaps even reverses the relative impor-
tance of the two methods. In Section 4 and in particular Subsection 4.6 we gave a
series of examples of the use of a formal language as a tool for proving mathemati-
cal results. Thus, this paper is a counterpoint to our [14] where we discussed certain
‘formalism-free’ developments in model theory. In this paper we stressed one of the
dominant themes of model theory: the role of formal language in understanding math-
ematical questions. More than the use of formalism in seeking global foundations for
mathematics these applications have real effect in mathematics. While mathematicians
are appreciative of studying classes of models such as groups, model theory adds sev-
eral layers: studying classes of very similar (i.e. elementarily equivalent structures)
structures can deepen the study of a particular structure. The properties of classes of
theories introduced in stability theory provide new links between theories in different
content areas of mathematics and enable the transfer of results and methods.

Formal methods in model theory impact other areas of mathematics in several
ways: 1) some areas do study formally definable sets; the link is immediate once the
area is formalized; 2) in other cases, the definable sets are sufficiently rich that ostensi-
bly non-formalizable or at least not first order-formalizable concepts can be studied by
model theoretic means66 and 3) syntactic properties in the stability hierarchy provide
connections across mathematics that are not evident without the logical perspective.
I summarize with a quote67 from Ehud Hrushovski’s address [46] at the International
Conference of Mathematicians in 1998:

Instead of defining the abstract context for [stability] theory, I will present
a number of its results in a number of special and hopefully more famil-
iar, guises: compact complex manifolds, ordinary differential equations,
difference equations, highly homogeneous finite structures. Each of these
has features of its own and the transcription of results is not routine; they

65See quotation in Subsection 4.1.
66Here are two such situations: the study of chain conditions in rings discussed about half way through

Subsection 4.4 and arithmetic algegraic geometry, Example 4.6.2, where several different formal theories
interact.

67Emphasis inserted.
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are nonetheless readily recognizable as instances of a single theory.

The focus on model theory in this essay just reflects my background; simi-
lar examples of concrete applications of formal methods can be found in other areas
of logic: proof mining; set theoretic resolution of the Whitehead problem and issues
in general topology: applications of descriptive set theory to group representations,
combinatorics and analysis; use of computability hierarchies in computer science, in
differential geometry and in studying randomness; etc.. But that is another story.
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Schémas. Publ Math I.H.E.S., 28:5–255, 1966.

[41] J. Hafner and P. Mancosu. Beyond unification. In P. Mancosu, editor, The
Philosophy of Mathematical Practice, pages 151–178. Oxford University Press,
2008.

[42] B. Hart, Hrushovski E., and C. Laskowski. The uncountable spectra of countable
theories. Annals of Mathematics, 152:207–257, 2000.

[43] D. Haskell, E. Hrushovski, and H.D. MacPherson. Stable domination and inde-
pendence in algebraically closed valued fields. Lecture Notes in Logic. Associ-
ation for Symbolic Logic, 2007.

40



[44] E. Hrushovski. A new strongly minimal set. Annals of Pure and Applied Logic,
62:147–166, 1993.

[45] E. Hrushovski. Stability and its uses. In Current developments in mathematics,
1996 (Cambridge, MA), pages 61–103. Int. Press, Boston, MA, 1997.

[46] E. Hrushovski. Geometric model theory. In Proceedings of the International
Congress of Mathematicians, Vol. I (Berlin, 1998), pages 281–302 (electronic),
1998.

[47] E. Hrushovski and B. Zilber. Zariski geometries. Bulletin of the American
Mathematical Society, 28:315–324, 1993.

[48] Ehud Hrushovski. Almost orthogonal regular types. Annals of Pure and Applied
Logic, 45:139–155, 1989.

[49] Tapani Hyttinen, Kaisa Kangas, and Jouko Väänänen. On second order
characterizability. to appear:arXiv:1208.5167, doi 10.1093/jigpal/
jzs047, 2012.

[50] M.C. Kang. Injective morphisms of affine varieties. Proc. Amer. Math. Soc.,
119:1–4, 1993.

[51] David Kazhdan. Lecture notes in motivic integration: Logic. http://www.
ma.huji.ac.il/˜kazhdan/Notes/motivic/b.pdf, 2006.

[52] Juliette Kennedy. On formalism freeness. preprint: to appear Bulletin of Sym-
bolic Logic, 2013.

[53] M. Kojman and S. Shelah. Non-existence of universal orders in many cardinals.
J Symbolic Logic, 875-891:261–294, 1992. paper KhSh409.

[54] E. Kolchin. Differential Algebra & Algebraic Groups. Academic Press, New
York, 1973.

[55] Angus J. Macintyre. The impact of Gödel’s incompleteness theorems on math-
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