Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models?

Is \aleph_1 -categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

John T. Baldwin

August 5, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sacks Dicta

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models? "... the central notions of model theory are absolute and absoluteness, unlike cardinality, is a logical concept. That is why model theory does not founder on that rock of undecidability, the generalized continuum hypothesis, and why the Łos conjecture is decidable."

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gerald Sacks, 1972

Our question

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models? Does Sacks dicta extend from $L_{\omega,\omega}$ to $L_{\omega_1,\omega}$?

The main thread here is work Chris, Saharon and I have doing for most of this decade.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\begin{matrix} \text{Is } \aleph_1\text{-} \\ \text{categoricity} \\ \text{Absolute in} \\ L_{\omega_1,\omega}\text{?} \\ \text{Laskowski} \\ \text{Fest} \end{matrix}$

John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models?

The Absoluteness Issue

・ロト・日本・日本・日本・日本・日本

Shoenfield Absoluteness Lemma

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models?

Theorem (Shoenfield)

lf

1 $V \subset V'$ are models of ZF with the same ordinals and **2** ϕ is a lightface Π_2^1 predicate of a set of natural numbers then for any $A \subset N$, $V \models \phi(A)$ iff $V' \models \phi(A)$.

Note that this trivially gives the same absoluteness results for $\Sigma^1_2\text{-}\mathsf{predicates}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complexity of first order concepts

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models? For example a first order theory T is unstable just if there is a formula $\phi(\mathbf{x}, \mathbf{y})$ such for every n

$$T \models (\exists \mathbf{x}_1, \dots, \mathbf{x}_n \exists \mathbf{y}_1, \dots, \mathbf{y}_n) \bigwedge_{i < j} \phi(\mathbf{x}_i, \mathbf{y}_j) \land \bigwedge_{i \ge j} \neg \phi(\mathbf{x}_i, \mathbf{y}_j)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 ω -stability, superstability and \aleph_1 -categoricity are Π_1^1 .

Easy remark

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models? The class of first order -sentences (formulas) is arithmetic, in fact recursive.

The class of satisfiable first order sentences is Π_1^0 .

Existence of a model M of T with $|M| = \aleph_1$ is absolute between models of ZF with the same ordinals.

Remark

Slightly more complicated remark: Similar absoluteness results hold between ω -models of set theory for basic syntax and semantics of $L_{\omega_1,\omega}$. In particular, ω -stablility

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From $L_{\omega_1,\omega}$ to 'first order'

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models?

1
$$\phi \in L_{\omega_1,\omega} \to (T,\Gamma)$$

2 complete $\phi \in L_{\omega_1,\omega} \to (T, Atomic)$

The models of a complete sentence in $L_{\omega_1,\omega}$ can be represented as:

K is the class of atomic models (realize only principal types) of a first order theory (in an expanded language).

 $(\mathbf{K}, \prec_{\mathbf{K}})$ is the class of atomic models of a first order theory under elementary submodel.

$\omega\text{-stability}$

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models?

Definitions

 $p \in S_{at}(A)$ if $a \models p$ implies Aa is atomic. K is ω -stable if for every countable model M, $S_{at}(M)$ is countable.

But, there may be $A \subseteq M$, $p \in S_{at}(A)$ that has no extension to $S_{at}(M)$.

Chris's framework

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models?

Is the property:

'the class of atomic models of a complete first order theory ${\mathcal T}$ is $\aleph_1\text{-}\mathsf{categorical'}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

an absolute property of T?

First order absoluteness

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models?

Theorem (Morley-Baldwin-Lachlan)

A first order theory ${\mathcal T}$ in a countable language is \aleph_1 categorical iff

1 T has no 2-cardinal models and

2 T is ω -stable.

1) is arithmetic and 2) is Π_1^1 .

Fact

A first order theory T in a countable language whose class of atomic models satisfies 1) and 2) is \aleph_1 -categorical.

I emphasize Morley because it is his direction: ' \aleph_1 -categorical implies ω -stable' that is problematic for $L_{\omega_1,\omega}$. Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models? The $L_{\omega_1,\omega}$ case

One Completely General Result

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do

ℵ₁-categorical theories have 'big' models? WGCH(λ): $2^{\lambda} < 2^{\lambda^+}$ Let \boldsymbol{K} be an abstract elementary class (AEC).

Theorem

[WGCH (λ)] Suppose $\lambda \geq LS(\mathbf{K})$ and \mathbf{K} is λ -categorical. If amalgamation fails in λ there are 2^{λ^+} models in \mathbf{K} of cardinality $\kappa = \lambda^+$.

Uses $[\hat{\Theta}_{\lambda^+}(S)]$ for many S.

 $\lambda\text{-}categoricity$ plays a fundamental role.

Definitely not provable in ZFC for AEC (but maybe for $L_{\omega_1,\omega}$).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Getting ω -stability

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models?

Theorem: Keisler/Shelah

- (Keisler) ZFC If some uncountable model in K realizes uncountably many types (in a countable fragment) over Ø then K has 2^{ℵ1} models in ℵ1.
- 2 (Shelah) $2^{\aleph_0} < 2^{\aleph_1}$ If K has $< 2^{\aleph_1}$ models of cardinality \aleph_1 , then K is ω -stable.

Two uses of WCH

1 WCH implies AP in \aleph_0 . Thus, if \mathbf{K} is not ω -stable there is a countable model M and an uncountable $N \in \mathbf{K}$ which realizes uncountably many types over M.

Getting ω -stability

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models?

Theorem: Keisler/Shelah

- (Keisler) ZFC If some uncountable model in K realizes uncountably many types (in a countable fragment) over Ø then K has 2^{ℵ1} models in ℵ1.
- 2 (Shelah) $2^{\aleph_0} < 2^{\aleph_1}$ If K has $< 2^{\aleph_1}$ models of cardinality \aleph_1 , then K is ω -stable.

Two uses of WCH

- **1** WCH implies AP in \aleph_0 . Thus, if \boldsymbol{K} is not ω -stable there is a countable model M and an uncountable $N \in \boldsymbol{K}$ which realizes uncountably many types over M.
- 2 By Keisler, $\operatorname{Th}_{M}(M)$ has $2^{\aleph_{1}}$ models. From WCH we conclude $\operatorname{Th}(M)$ has $2^{\aleph_{1}}$ models.

Is WCH needed?

for amalgamation

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models? Yes for AEC, even for L_{ω1,ω}(Q). There is a sentence in L_{ω1,ω}(Q) that under MA is ℵ₁-categorical but is not ω-stable and fails amalgamation in ℵ₀

Is WCH needed?

for amalgamation

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do \aleph_1 -categorical theories have 'big' models?

Yes for AEC, even for L_{ω1,ω}(Q). There is a sentence in L_{ω1,ω}(Q) that under MA is ℵ₁-categorical but is not ω-stable and fails amalgamation in ℵ₀

2 $L_{\omega_1,\omega}$: open - equivalent to absoluteness by results below.

Shelah suggested a variant, axiomatized in $L_{\omega_1,\omega}$ with the same properties in \aleph_0 . Laskowski showed that sentence had at least 2^{\aleph_0} models in \aleph_1 .

Is WCH needed?

for amalgamation

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models?

Yes for AEC, even for L_{ω1,ω}(Q). There is a sentence in L_{ω1,ω}(Q) that under MA is ℵ₁-categorical but is not ω-stable and fails amalgamation in ℵ₀

2 $L_{\omega_1,\omega}$: open - equivalent to absoluteness by results below.

Shelah suggested a variant, axiomatized in $L_{\omega_1,\omega}$ with the same properties in \aleph_0 . Laskowski showed that sentence had at least 2^{\aleph_0} models in \aleph_1 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

counting models over a countable set ????

Another route to ω -stability

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models? Morley's original proof using the Skolem hull gives:

Theorem

If a complete first order theory has arbitrarily large models and is \aleph_1 -categorical then it is ω -stable.

More generally,

Theorem

An \aleph_1 -categorical atomic class K that has arbitrarily large models and amalgamation in \aleph_0 is ω -stable.

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models? Understanding *Locally* the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The class of models

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do

ℵ₁-categorical theories have 'big' models? K_T is the class of atomic models of the countable first order theory T.

Definition

The atomic class K_T is extendible if there is a pair $M \leq N$ of countable, atomic models, with $N \neq M$.

Equivalently, K_T is extendible if and only if there is an uncountable, atomic model of T.

We assume throughout that K_T is extendible. We work in the monster model of T, which is usually not atomic.

A new notion of closure

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models?

Definition

An atomic tuple **c** is in the pseudo-algebraic closure of the finite, atomic set B ($\mathbf{c} \in pcl(B)$) if for every atomic model M such that $B \subseteq M$, and $M\mathbf{c}$ is atomic, $\mathbf{c} \subseteq M$.

When this occurs, and **b** is any enumeration of *B* and $p(\mathbf{x}, \mathbf{y})$ is the complete type of **cb**, we say that $p(\mathbf{x}, \mathbf{b})$ is pseudo-algebraic.

Example I

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models? Our notion, pcl of *algebraic* differs from the classical first-order notion of algebraic as the following examples show:

Example

Suppose that an atomic model M consists of two sorts. The U-part is countable, but non-extendible (e.g., U infinite, and has a successor function S on it, in which every element has a unique predecessor). On the other sort, V is an infinite set with no structure (hence arbitrarily large atomic models). Then, an element $x_0 \in U$ is not algebraic over \emptyset in the normal sense but is in $pcl(\emptyset)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Example II

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L\omega_1, \omega^-$ sentences

Do ℵ₁-categorical theories have 'big' models?

Example

Let $L = A, B, \pi, S$ and T say that A and B partition the universe with B infinite, $\pi : A \to B$ is a total surjective function and S is a successor function on A such that every π -fiber is the union of S-components. K_T is the class of $M \models T$ such that every π -fiber contains exactly one S-component. Now choose elements $a, b \in M$ for such an Msuch that $a \in A$ and $b \in B$ and $\pi(a) = b$. Clearly, a is not algebraic over b in the classical sense, but $a \in pcl(b)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Definability of pseudo-algebraic closure

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models? Strong ω -homogeneity of the monster model of T yields:

If $p(\mathbf{x}, \mathbf{y})$ is the complete type of **cb**, then

 $\textbf{c} \in \mathrm{pcl}(\textbf{b}) \quad \text{if and only if} \quad \textbf{c}' \in \mathrm{pcl}(\textbf{b}')$

for any $\mathbf{c'b'}$ realizing $p(\mathbf{x}, \mathbf{y})$.

In particular, the truth of $c \in pcl(\mathbf{b})$ does not depend on an ambient atomic model.

Further, since a model which atomic over the empty set is also atomic over any finite subset, moving M to N we have:

Fact

Fact

If $\mathbf{c} \notin \operatorname{pcl}(B)$, witnessed by M then for every countable, atomic $N \supset B$, there is a realization \mathbf{c}' of $p(\mathbf{x}, B)$ such that $\mathbf{c}' \not\subseteq N$.

= v) Q (~

Pseudo-minimal sets

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L\omega_1, \omega^-$ sentences

Do ℵ₁-categorica theories have 'big' models?

Definition

1 A possibly incomplete type q over \mathbf{b} is pseudominimal if for any finite, $\mathbf{b}^* \supseteq \mathbf{b}$, $\mathbf{a} \models q$, and \mathbf{c} such that $\mathbf{b}^* \mathbf{c} \mathbf{a}$ is atomic, if $\mathbf{c} \subset \operatorname{pcl}(\mathbf{b}^* \mathbf{a})$, and $\mathbf{c} \notin \operatorname{pcl}(\mathbf{b}^*)$, then $\mathbf{a} \in \operatorname{pcl}(\mathbf{b}^* \mathbf{c})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2 *M* is pseudominimal if x = x is pseudominimal in *M*.

I.e, pcl satisfies exchange (and more); we have a geometry.

'Density'

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models?

Definition

 K_T satisfies 'density' of pseudominimal types if for every atomic **e** and atomic type $p(\mathbf{e}, \mathbf{x})$ there is a **b** with **eb** atomic and $q(\mathbf{e}, \mathbf{b}, \mathbf{x})$ extending p such that q is pseudominimal.

Failing 'density'

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models?

Lemma

 K_T fails 'density' of pseudominimal types if, after naming a finite tuple **e**, there is a complete 1-type $\tilde{p}(x)$ over **e** such that for any finite, atomic **b** containing **e** and complete $q(\mathbf{e}, \mathbf{b}, \mathbf{x})$ extending \tilde{p} there are a finite atomic $\mathbf{b}^* \supset \mathbf{b}$, $\boldsymbol{a} \models q$, and **c** such that

 $\mathbf{b}^* \mathbf{c} \mathbf{a}$ is atomic, $\mathbf{c} \subset \operatorname{pcl}(\mathbf{b}^* \mathbf{a})$, $\mathbf{c} \notin \operatorname{pcl}(\mathbf{b}^*)$, and $\mathbf{a} \notin \operatorname{pcl}(\mathbf{b}^*)$, but $\mathbf{a} \notin \operatorname{pcl}(\mathbf{b}^* \mathbf{c})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

I.e. pcl fails exchange locally.

Method: 'Consistency implies Truth'

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models? [BL16]

Let ϕ be a τ -sentence in $L_{\omega_1,\omega}(Q)$ such that it is consistent that ϕ has a model.

Let A be the countable $\omega\text{-model}$ of set theory, containing $\phi,$ that thinks ϕ has an uncountable model.

Construct B, an uncountable model of set theory, which is an elementary extension of A

such that *B* is correct about uncountability. Then the model of ϕ in *B* is actually an uncountable model of ϕ .

Building many atomic models of T by ultralimits of models of set theory

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models? The first technical tool is the iterated generic elementary embedding induced by the nonstationary ideal on ω_1 , which we will denote by $NS\omega_1$.

The ultrafilter

Forcing with the Boolean algebra $(\mathcal{P}(\omega_1)^M \text{ over a ZFC model} M \text{ gives rise to an } M\text{-normal ultrafilter } U \text{ on } \omega_1^M \text{ (i.e., every regressive function on } \omega_1^M \text{ in } M \text{ is constant on a set in } U\text{).}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Ultrapower

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models? Given such M and U, we can form the generic ultrapower Ult(M, U), which consists of all functions in M with domain ω_1^M ,

where for any two such functions f, g, and any relation R in $\{=, \in\}$, fRg in Ult(M, U) if and only if $\{\alpha < \omega_1^M \mid f(\alpha)Rg(\alpha)\} \in U$.

Nota Bene

If M is countable, Ult(M, U) is countable.

By convention, we identify the well-founded part of the ultrapower Ult(M, U) with its Mostowski collapse.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Iterations

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The L_{ω_1,ω_2} case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models?

Definition

Let *M* be a model of a sufficient finite fragment of ZFC and let γ be an ordinal less than or equal to ω_1 . An iteration J_X of *M* of length γ consists of models

 M_{α} : $(\alpha \leq \gamma),$

sets

$$G_{\alpha}$$
: $(\alpha < \gamma),$

and a commuting family of elementary embeddings

$$j_{lphaeta}\colon M_{lpha} o M_{eta}: \ \ (lpha\leqeta\leq\gamma)$$

(日本)(同本)(日本)(日本)(日本)

such that for J_X we choose the ultrafilter U_α such that $P^{M_\alpha} \in U_\alpha$ iff $\alpha \in X$.

Main Theorem

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorica theories have 'big' models?

Goal Theorem

If K_T fails 'density of pseudominimal types' then K_T has 2^{\aleph_1} models of cardinality \aleph_1 .

We prove this in two steps

- **1** Force to construct a model (M, E) of set theory in which a model of T codes model theoretic and combinatorial information sufficient to guarantee the non-isomorphism of its image in the different ultralimits.
- Apply Skolem ultralimits of the models of set theory from 1) to construct 2^{ℵ1} atomic models of T with cardinality ℵ1 in V.

Proof sketch:

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models? Fix a countable transitive model M of ZFC and choose $S \subseteq \omega_1^M \setminus \{0\}$ such that

 $(M, \in) \models$ 'S is stationary/costationary'

Construct $(I, <, P, E) \in I^*$ is an \aleph_1 dense linear order with a unary predicate P and an equivalence relation E such that I/E is dense and both P/E and $\neg P/E$ are dense.

Theorem

Suppose $\delta(x)$ is a complete, non-pseudo algebraic formula with no pseudo-minimal extension. There is a c.c.c. forcing \mathbb{Q}_I such that in M[G], there is a full, atomic $N_I \models T$ and

Ultralimits of M[G] by iterations J_X and J_Y give rise to non-isomorphic atomic models N_X and N_Y of T if X - Y is stationary.

Extension

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do ℵ₁-categorical theories have 'big' models?

Definition

K is pcl-small if $S_{at}(pcl(a))$ is countable for every finite sequence a.

[LS19] show:

Theorem

If K has fewer than 2^{\aleph_1} models in \aleph_1 , then K is pcl-small.

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models?

Do \aleph_1 -categorical theories have 'big' models

Must \aleph_1 -categorical theories have a bounded number of models?

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do

ℵ₁-categorical theories have 'big' models?

How big is big?

In the mid-70's Shelah answered my question as to whether a sentence of $L_{\omega_1,\omega}(Q)$ could be *categorical in the philosophers sense*, have only one model. In different papers he proved in different ways such a theory has a model in \aleph_2 .

A natural question is whether a sentence of $L_{\omega_1,\omega}$ that is \aleph_1 -categorical has a model in 2^{\aleph_0} .

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do ℵ₁-categorical theories have 'big' models? In the novel *White Light* [Ruc80], Rudy Rucker proposes a metaphor for the continuum hypothesis. One can reach \aleph_1 by a laborious climb up the side of Mt. ON, pausing at ϵ_0 .

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do \aleph_1 -categorical theories have 'big' models?

In the novel *White Light* [Ruc80], Rudy Rucker proposes a metaphor for the continuum hypothesis. One can reach \aleph_1 by a laborious climb up the side of Mt. ON, pausing at ϵ_0 .

Or one can take

Cantor's elevator An instantaneous trip up a shaft at the center of the mountain.

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do \aleph_1 -categorical theories have 'big' models?

In the novel *White Light* [Ruc80], Rudy Rucker proposes a metaphor for the continuum hypothesis. One can reach \aleph_1 by a laborious climb up the side of Mt. ON, pausing at ϵ_0 .

Or one can take

Cantor's elevator An instantaneous trip up a shaft at the center of the mountain.

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do

ℵ₁-categorical theories have 'big' models? In the novel *White Light* [Ruc80], Rudy Rucker proposes a metaphor for the continuum hypothesis. One can reach \aleph_1 by a laborious climb up the side of Mt. ON, pausing at ϵ_0 .

Or one can take

Cantor's elevator An instantaneous trip up a shaft at the center of the mountain.

For atomic models we take the slightly slower Shelah's elevator The elevator is a bit slower but has only countably many floors. After building each finitely many rooms at each step we reach an object of cardinality 2^{\aleph_0} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Asymptotic similarity

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do

ℵ₁-categorical theories have 'big' models?

Definition

Fix an *L*-structure *M*. A subset of *M*, indexed by $\{a_{\eta} : \eta \in 2^{\omega}\}$, is asymptotically similar if, for every *k*-ary *L*-formula θ , there is an integer N_{θ} such that for every $\ell \geq N_{\theta}$,

$$M\models heta(a_{\eta_0},\ldots,a_{\eta_{k-1}})\leftrightarrow heta(a_{ au_0},\ldots,a_{ au_{k-1}})$$

whenever $(\eta_0, \ldots, \eta_{k-1})$ and $(\tau_0, \ldots, \tau_{k-1})$ are similar (mod ℓ).

Remark

Asymptotic similarity is a type of indiscernibility, but, the indiscernibility is only formula by formula. Consider $M = (2^{\omega}, U_a)_{a \in 2^{<\omega}}$, where each U_a is a unary predicate interpreted as the cone above a, i.e., $U_a(M) = \{\eta \in 2^{\omega} : a \triangleleft \eta\}$. In M, the entire universe $\{\eta : \eta \in 2^{\omega}\}$ is asymptotically similar, despite the fact that no two elements have the same 1-type.

Getting models in 2^{\aleph_0}

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do

ℵ₁-categorical theories have 'big' models?

Theorem [BL19]

If a countable first order theory T has an atomic pseudominimal model M of cardinality \aleph_1 then there is an atomic pseudominimal model N of T which a contains a set of *asymptotically similar* elements with cardinality 2^{\aleph_0} . Equivalently, if the models of a complete sentence Φ in $L_{\omega_1,\omega}$ are pseudominimal and Φ has an uncountable model, it has a model in the continuum.

A simple application of the method gives Borel models in the continuum of any theory with trivial definable closure.

State of the art: Eventual behavior

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do

ℵ₁-categorical theories have 'big' models?

[SV18] (simplified for ease of reading)

Theorem

Let κ be a strongly compact cardinal and let ψ be an $L_{\kappa,\omega}$ -sentence. If ψ is categorical in some $\mu \geq \beth_{(2^{\kappa})^+}$, then ψ is categorical in all $\mu \geq \beth_{(2^{\kappa})^+}$

Extending [She83a, She83b]:

For any countable AEC, very few models below \aleph_{ω} and $2^{\aleph_n} < 2^{\aleph_{n+1}}$ for $n < \omega$ imply

- 1 excellence, thus arbitrarily large models,
- **2** and so categoricity in any cardinal implies categoricity in all uncountable cardinals.

very few: $I(\mathbf{K}, \aleph_n) \leq 2^{\aleph_{n-1}}$ for $n < \omega$.

What is the right analogy?

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models?

1 The weak diamond WGCH theory

2 Zilber quasiminimality

What is the right analogy?

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do ℵ₁-categorical theories have 'big' models? 1 The weak diamond WGCH theory

2 Zilber quasiminimality

3 uncountable first order theories: 'superstable' but not necessarily ω -stable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4 continuous

What is the right analogy?

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do

ℵ₁-categorical theories have 'big' models?

- 1 The weak diamond WGCH theory
- 2 Zilber quasiminimality
- 3 uncountable first order theories: 'superstable' but not necessarily ω -stable.
- 4 continuous
- **5** The MA ' \aleph_1 -categoricity doesn't yield structure' approach.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Questions

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do

ℵ₁-categorical theories have 'big' models?

- Let ϕ be a complete sentence of $L_{\omega_1,\omega}$.
 - **1** If ϕ is \aleph_1 -categorial, must ϕ have arbitrarily large models?

- **2** If ϕ is \aleph_1 -categorial, must ϕ be ω -stable?
- 3 If ϕ characterizes $\kappa > \aleph_0$ must ϕ have 2^{κ} models in κ ?
- 4 For κ < ℵ_{ω1}, describe an explicit sentence that characterizes κ. [BKL17]

References I

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absoluteness Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ -sentences

Do

ℵ₁-categorical theories have 'big' models? John T. Baldwin, M. Koerwien, and C. Laskowski. Disjoint amalgamation in locally finite aec. *Journal of Symbolic Logic*, 82:98–119, 2017.

John T. Baldwin and Paul Larson. Iterated elementary embeddings and the model theory of infinitary logic.

Annals of Pure and Applied Logic, 167:309–334, 2016.

John T. Baldwin and C. Laskowski. Henkin constructions of models with size continuum. Bulletin of Symbolic Logic, 25:1-34, 2019. https://doi.org/10.1017/bsl.2018.2, http://homepages.math.uic.edu/~jbaldwin/pub/ henkcontbib.

References II

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical L_{ω_1,ω^-} sentences

Do

ℵ₁-categorical theories have 'big' models? Michael C. Laskowski and Saharon Shelah. A strong failure of ℵ₀-stability for atomic classes,. *Archive of Math Logic*, 58:99–118, 2019.

R. Rucker.

White Light. Ace, 1980.

S. Shelah.

Classification theory for nonelementary classes. I. the number of uncountable models of $\psi \in L_{\omega_1\omega}$ part A. *Israel Journal of Mathematics*, 46:3:212–240, 1983. Sh index 87a.

References III

Is \aleph_1 categoricity Absolute in $L_{\omega_1,\omega}$? Laskowski Fest

> John T. Baldwin

The Absolutenes Issue

The $L_{\omega_1,\omega}$ case

Understanding Locally the models of \aleph_1 -categorical $L_{\omega_1,\omega}$ sentences

Do

ℵ₁-categorical theories have 'big' models?

S. Shelah.

Classification theory for nonelementary classes. II. the number of uncountable models of $\psi \in L_{\omega_1\omega}$ part B. *Israel Journal of Mathematics*, 46;3:241–271, 1983. Sh index 87b.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

S. Shelah and S. Vasey.

Categoricity and multidimensional diagrams,. submitted, 2018.