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Abstract

We use iterations of elementary embeddings derived from the nonsta-
tionary ideal on ω1 to provide a uniform proof of some classical results
connecting the number of models of cardinality ℵ1 in various infinitary
logics to the number of syntactic types over the empty set. We introduce
the notion of an analytically presented abstract elementary class (AEC)
which allows the formulation and proof of generalizations of these results
to refer to Galois types rather than syntactic types. We the equivalence
of this descriptive set theoretic condition on countable models of an AEC
with a logical condition on all models in the class. We further apply the
iterated embeddings method to provide the first absoluteness condition
for categoricity in ℵ1 for AEC’s (rather than syntactically given classes).
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This paper combines methods of axiomatic and descriptive set theory to
study problems in model theory. In particular, we use iterated generic elemen-
tary embeddings to analyze the number of models in ℵ1 in various infinitary
logics and for Abstract Elementary Classes (AEC). The technique here provides
a uniform method for approaching and extending theorems that Keisler et al.
proved in the 1970’s relating the existence of uncountable models realizing many
types to the existence of many models in ℵ1 (Theorem 2.4). To formalize this
uniformity we introduce the notion of an analytically presented AEC and show
that is a further disguise for a well-known notion (Theorem 4.3). This allows
us to extend the Keisler-style results relating the number of types in ℵ0 to the
number of models in ℵ1 from syntactic types to Galois types (Theorem 5.6).
Finally, we show categoricity in ℵ1 is absolute for analytically presented AEC
that satisfy the amalgamation property in ℵ0 and are almost Galois-ω-stable
(Theorem 6.3).
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The arguments presented here are very much in the spirit of [9, 10], in which
these embeddings were used to prove forcing-absoluteness results. Those papers
focused on the large cardinal context. Here we work primarily in ZFC, though
we note some cases where our results can be extended assuming the existence
of large cardinals.

We refer the reader to [1] for model-theoretic definitions such as Abstract
Elementary Class and for background on the notions used here. For example,
Theorem 0.2 is stated for atomic models of first order theories. The equivalence
between this context and models of a complete sentence in Lω1,ω is explained
in Chapter 6 of [1]. Abstract Elementary Classes form a general context uni-
fying many of the properties of such infinitary logics as Lω1,ω, Lω1,ω(Q), and
Lω1,ω(aa).

A fundamental result in the study of ℵ1-categoricity for Abstract Elementary
Classes is the following theorem of Shelah (see [1], Theorem 17.11).

Theorem 0.1 (Shelah). Suppose that K is an Abstract Elementary Class such
that

• The Lówenheim-Skolem number, LS(K), is ℵ0;

• K is ℵ0-categorical;

• amalgamation fails for countable models in K1.

Suppose also that 2ℵ0 < 2ℵ1 . Then there are 2ℵ1 non-isomorphic models of
cardinality ℵ1 in K.

Theorem 0.1 is one of the two fundamental tools to develop the stability
theory of Lω1,ω. The second is the following theorem of Keisler (see [1], Theorem
18.15).

Theorem 0.2 (Keisler). Suppose that K is the class of atomic models of a
complete first order theory, and that uncountably many types over the empty set
are realized in some uncountable model in K. Then there are 2ℵ1 non-isomorphic
models of cardinality ℵ1 in K.

The notion of ω-stability for sentences in Lω1,ω is a bit subtle and is more
easily formulated for the associated class K of atomic models of a first theory.
For countable A ⊆ M ∈ K, Sat(A) denotes the set of first order types over
A realized in atomic models2. K is ω-stable if for each countable M ∈ K,
|Sat(M)| = ℵ0 3.

Combining these two theorems, Shelah showed (under the assumption 2ℵ0 <
2ℵ1) that a complete sentence of Lω1,ω which has less that 2ℵ1 models in ℵ1 has
the amalgamation property in ℵ0 and is ω-stable. Crucially, Shelah’s argument

1Unlike first order logic, this is a strictly stronger statement than ‘amalgamation fails over
subsets of models of K.’

2This definition does not extend to uncountable A, see page 138 of [1]
3This requirement that M is a model is essential; Example 3.17 of [1], covers of the multi-

plicative group of C, is ω-stable but there are countable atomic A with |Sat(A)| = 2ℵ0
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relies on the assumption 2ℵ0 < 2ℵ1 in two ways. It first uses a variation of
the Devlin-Shelah weak diamond principle [6] for Theorem 0.1. Then using
amalgamation, extending Keisler’s theorem from types over the empty set to
types over a countable model is a straightforward counting argument, as it is in
this paper. In Section 4 we work on analogs of this analysis for AEC for which
the class of countable models is analytic.

Using the iterated ultrapower approach we give a new proof of an extension
of Theorem 0.2 to the logic Lω1,ω(aa) (as claimed in [20]). Again, it suffices to
consider the case where amalgamation holds. Theorem 0.3 follows from Theorem
2.4 below.

Theorem 0.3. Suppose that K is the class of models of some fixed sentence
of Lω1,ω(aa), and that, for some countable fragment F of Lω1,ω(aa)-sentences,
uncountably many F -types are realized over some countable model in K. Suppose
also that 2ℵ0 < 2ℵ1 . Then there are 2ℵ1 non-isomorphic models of cardinality
ℵ1 in K.

We introduce the notion of an analytically presented AEC (the natural de-
scriptive set theoretic definition) the countable models (and elementary sub-
model relation) and prove:

Theorem 0.4. If K is an AEC in a countable language with countable Löwenheim-
Skolem number, then K can be analytically presented iff and only if its restriction
to ℵ0 is the restriction to ℵ0 of a PCΓ(ℵ0,ℵ0)-AEC.

We can prove the following partial extension of Keisler’s Theorem for analyt-
ically presented Abstract Elementary Classes. Hypothesis (3) below corresponds
to one of the cases given by Burgess’s theorem for analytic equivalence relations
(see [13], Theorem 9.1.5). Theorem 0.5 follows from Theorem 5.6 below.

Theorem 0.5. Suppose that K is an Abstract Elementary Class such that

1. the set of reals coding countable structures in K and the corresponding
strong submodel relation ≺K are both analytic (we say analytically pre-
sented);

2. K satisfies amalgamation for countable models;

3. there is a countable model in K over which there is a perfect set of reals
coding inequivalent Galois types.

Suppose also that 2ℵ0 < 2ℵ1 . Then there are 2ℵ1 non-isomorphic models of
cardinality ℵ1 in K.

Though the approach here can very likely be applied more generally, we
restrict our attention in this paper to the contexts of Theorems 0.3 and 0.5.

Finally, we turn our attention to absoluteness and prove:

Theorem 0.6. Let K be an analytically presented almost Galois ω-stable AEC
satisfying amalgamation in ℵ0, and having an uncountable model. Then the
ℵ1-categoricity of K is equivalent to a Π1

2-sentence, and therefore absolute.
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In Section 1 we lay out the method of iterated ultrapowers of models of set
theory; Section 2 applies this method to classes defined syntactically in various
infinitary logics. Section 3 discusses the descriptive set theory of analytic equiv-
alence relation; Section 4 adapts these methods to study ‘analytically presented’
AEC. Section 5 extends the Keisler theorem to relate the number of Galois types
to the number of models in this context. In Section 6 we address the issue of
absoluteness of ℵ1-categoricity for AEC. Finally Section 7 raises some further
problems.

We thank Dave Marker for helpful comments, particularly on clarifying the
notion of analytically presented.

1 Iterations

The main technical tool in this paper is the iterated generic elementary embed-
ding induced by the nonstationary ideal on ω1, which we will denote by NSω1

.
We are using this as a device to reproduce Keisler’s constructions for expanding
a countable model of set theory in such a way that sets in the original model
get new members in the extension if and only if they are uncountable from the
point of view of the original model. Though this will not be relevant here, we
note that this these iterated embeddings and their relatives play a fundamental
role in Woodin’s Pmax forcing [33]. Most of this section is a condensed version
of Section 1 of [26].

The iterations constructed here could be developed using the construction
of carefully specified extensions of models of set theory. See [21, 16, 8] for
background on these methods. We illustrate this technique in [5].

Recall that NSω1
is closed under countable unions. Moreover, Fodor’s Lemma

(see, for instance, [18]) says that for any stationary A ⊆ ω1, if f : A → ω1 is
regressive (i.e., f(α) < α for all α ∈ A), then f is constant on a stationary
set. Forcing with the Boolean algebra (P(ω1)/NSω1)M over a ZFC model M
gives rise to an M -normal ultrafilter U on ωM1 (i.e., every regressive function on
ωM1 in M is constant on a set in U). Given such M and U , we can form the
generic ultrapower Ult(M,U), which consists of all functions in M with domain
ωM1 , where for any two such functions f , g, and any relation R in {=,∈}, fRg
in Ult(M,U) if and only if {α < ωM1 | f(α)Rg(α)} ∈ U . By convention, we
identify the well-founded part of the ultrapower Ult(M,U) with its Mostowski
collapse. The corresponding elementary embedding j : M → Ult(M,U) (where
each element of M is mapped to the equivalence class of its corresponding con-
stant function on ωM1 ) has critical point (i.e., first ordinal moved) ωM1 (see Fact
1.4 and the discussion before). We say that such an embedding is derived by
forcing with (P(ω1)/NSω1)M over M . Fodor’s Lemma implies that the iden-
tity function represents the ordinal ωM1 in the ultrapower. It follows then by
the definition of Ult(M,U) that for each A ∈ P(ω1)M , A ∈ U if and only if
ωM1 ∈ j(A). Each ordinal γ ∈ ωM2 is represented in Ult(M,U) by a function of
the form f(α) = o.t.(g[α]), where g : ω1 → γ is a surjection (and o.t. stands for
“ordertype”), so the ordinals of Ult(M,U) always contain an isomorphic copy of
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ωM2 (which is less than or equal to j(ωM1 ), since each such f has range contained
in ωM1 ) as an initial segment. We call such a function f a canonical function for
γ. While it is possible to have well-founded ultrapowers of the form Ult(M,U)
(at least assuming the existence of large cardinals), this does not always happen
(see Lemma 1.10, for instance).

Since we want to deal with structures whose existence can be proved in ZFC,
we define a useful fragment of ZFC.

1.1 Definition. The fragment ZFC◦ is the theory ZFC − Powerset − Replace-
ment + “P(P(ω1)) exists” plus the following scheme, which is a strengthening of
ω1-Replacement: every (possibly proper class) tree of height ω1 definable from
set parameters has a maximal branch (i.e., a branch with no proper extensions;
in the cases we are concerned with, this just means a branch of length ω1).

The theory ZFC◦ holds in every structure of the form H(κ) or Vκ, where κ

is a regular cardinal greater than 22
ℵ1

(recall that H(κ) is the collection of sets
whose transitive closures have cardinality less than κ).

1.2 Remark. While one can prove stronger preservation results for ZFC◦, we
note the following, which suffices for the applications in this paper. Suppose
that θ is a regular cardinal and P is a partial order in H(θ) such that the
following hold in any forcing extension by P :

• θ is a regular cardinal greater than 22
ℵ1

;

• every element of the H(θ) of the forcing extension is the realization of a
P -name in H(θ) of the ground model.

Then any forcing extension of H(θ) (of V ) by P is a model of ZFC◦. Therefore,
if X is a countable elementary submodel of H(θ) with P as a member, then any
forcing extension of the transitive collapse of X satisfies ZFC◦. The conditions

above on P and θ are satisfied if 22
|P |

< θ. If P is c.c.c. then 2(|P |
ℵ1 ) < θ

suffices.

For us, the importance of ZFC◦ is that it proves Fact 1.3 below, which
implies that M is elementarily embedded in Ult(M,U) whenever M is a model
of ZFC◦ and U is an M -ultrafilter on ωM1 .4 The proof of the fact is a direct
application of the ω1-Replacement-like scheme in ZFC◦.

1.3 Fact (ZFC◦). Let n be an integer. Suppose that φ is a formula with n+ 1
many free variables and f0, . . . , fn−1 are functions with domain ω1. Then there
is a function g with domain ω1 such that for all α < ω1,

∃xφ(x, f0(α), . . . , fn−1(α))⇒ φ(g(α), f0(α), . . . , fn−1(α)).

4An M -ultrafilter on ω1 is a maximal proper filter contained in P(ω1)M ; in the cases we
are interested in, the filter is not an element of M .
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We let j[x] denote {j(y) | y ∈ x}. One direction of Fact 1.4 below follows
from the fact that every partition in M of ωM1 into ω many pieces must have
one piece in the ultrafilter U , so, if x is countable then every function from ω1

to x in M (i.e., every representative of a member of j(x)) must be constant on a
set in U and so must represent a member of j[x]). For the other direction, note
that if x is uncountable then any injection from ω1 to x represents an element
of j(x) \ j[x] in the ultrapower Ult(V,U).

1.4 Fact. Suppose that M is a model of ZFC◦, and that j : M → Ult(M,U) is
an elementary embedding derived from forcing over M with (P(ω1)/NSω1

)M .
Then for all x ∈M , j(x) = j[x] if and only if x is countable in M .

If M is a countable model of ZFC◦ then there exist M -generic filters for
the partial order (P(ω1)/NSω1)M . Furthermore, if j : M → N is an ultrapower
embedding of this form (where N may be ill-founded), then P(P(ω1))N is count-
able (recall that the ultrapower uses only functions from M), and there exist
N -generic filters for (P(ω1)/NSω1

)N . We can continue choosing generic filters
in this way for up to ω1 many stages, defining a commuting family of elementary
embeddings and using this family to take direct limits at limit stages.

We use the following formal definition.

1.5 Definition. Let M be a model of ZFC◦ and let γ be an ordinal less than or
equal to ω1. An iteration of M of length γ consists of models Mα (α ≤ γ), sets
Gα (α < γ) and a commuting family of elementary embeddings jαβ : Mα →Mβ

(α ≤ β ≤ γ) such that

• M0 = M ,

• each Gα is an Mα-generic filter for (P(ω1)/NSω1
)Mα ,

• each jαα is the identity mapping,

• each jα(α+1) is the ultrapower embedding induced by Gα,

• for each limit ordinal β ≤ γ, Mβ is the direct limit of the system

{Mα, jαδ : α ≤ δ < β},

and for each α < β, jαβ is the induced embedding.

The models Mα in Definition 1.5 are called iterates of M . When the individ-
ual parts of an iteration are not important, we sometimes call the elementary
embedding j0γ corresponding to an iteration an iteration itself. For instance,
if we mention an iteration j : M → M∗, we mean that j is the embedding j0γ
corresponding to some iteration

〈Mα, Gβ , jαδ : α ≤ δ ≤ γ, β < γ〉

of M , and that M∗ is the final model of this iteration.
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1.6 Remark. We emphasize that for any countable model M of ZFC◦ there
are 2ℵ0 many M -generic ultrafilters for (P(ω1)/NSω1)M . It follows that there
are 2ℵ1 many iterations of M of length ω1.

1.7 Remark. As noted above, the ordinals of Ult(M,U) always contain an
isomorphic copy of ωM2 as an initial segment, whenever M is a countable (well-
founded or illfounded) model of ZFC◦ and U is an M -normal ultrafilter. It
follows from this that whenever

〈Mα, Gβ , jαδ : α ≤ δ ≤ ω1, β < ω1〉

is an iteration of M , ω
Mω1
1 contains a closed copy of ω1 corresponding to the

members of the set {ωMα
1 : α < ω1}. This set is called the critical sequence of

the iteration.

Fact 1.8 below says that the final model of an iteration of length ω1 is
correct about uncountability. It is an immediate consequence of Fact 1.4 and
the definition of iterations. This gives another proof of Corollary B on page 138
of [20]. Corollary A on page 137 can also be proved by considering ideals on
other cardinals. The last sentence of Fact 1.8 follows from the remarks at the
end of the second paragraph of this section. The second author observed that
the absoluteness of the existence of a model in ℵ1 of an arbitrary sentence is
Lω1,ω (i.e., Theorem 2.1) follows easily from Fact 1.8; it is shown in [7] that this
argument can be carried out using Corollary A of [20].

1.8 Fact. Suppose thatM is a model of ZFC◦, and thatMω1
is the final model of

an iteration of M of length ω1. Then for all x ∈Mω1 , Mω1 |= “x is uncountable”
if and only if {y | Mω1 |= x ∈ y} is uncountable. Furthermore, ωM2 is a proper

initial segment of ω
Mω1
1 .

Fact 1.9 records the fact that one can easily make Mω1
correct about sta-

tionarity for subsets of its ω1 (again, this is due to Woodin [33]). Note that the
notion of stationarity makes sense for any uncountable set (so in particular, for

ω
Mω1
1 as below, even if it is ill-founded) : Y ⊆ [X]ℵ0 is stationary if and only if

every for every function F : X<ω → X there is a nonempty element of Y closed
under F .

1.9 Fact. Suppose that M is a model of ZFC◦, {Bξ : ξ < ω1} is a partition of
ω1 into stationary sets and

〈Mα, Gβ , jα,γ : α ≤ γ ≤ ω1, β < ω1〉 (1)

is an iteration of M of length ω1. Suppose that for every α < ω1 and every
A ∈ (P(ω1) \NSω1

)Mα there is a ξ < ω1 such that, for all β ∈ ω1 \ α,

β ∈ Bξ ⇒ jα,β(A) ∈ Gβ .

Then for all A ∈ P(ω1)Mω1 , Mω1
|= “A is stationary” if and only if A is sta-

tionary.
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Lemma 1.10 gives a construction for building generic ultrapowers whose ω1’s
are illfounded, though, as remarked above, they must be well-founded up to at
least the ω2 of the ground model. We will use the lemma in the proof of Lemma
2.5. Given a function f : ω1 → ω1, we let If be the normal ideal on ω1 generated
by sets of the form

{β < ω1 | g(β) ≥ f(β)},

where g is a canonical function for an ordinal less than ω2. Whenever γ < γ′ <
ω2, g is a canonical function for γ and γ′ is a canonical function for γ′, it follows
that {β < ω1 | g(β) < g′(β)} contains a club. It follows (using the regularity
of ω2) that for each S ∈ P(ω1), S ∈ If if and only if {β ∈ S | f(β) ≥ g(β)} is
nonstationary for some canonical function g for an element of ω2. If 〈σβ : β <
ω1〉 is a 3-sequence and π : ω1 → ω1 × ω1 is a bijection, then ω1 6∈ If , where
f : ω1 → ω1 is the function defined by letting h(β) be o.t.(π[β])+1 whenever π[β]
is a wellordering (and 0 otherwise). We note that 3 is forced by the partial order
which adds a subset of ω1 by countable initial segments, and that this partial
order does not add subsets of ω. Some hypothesis beyond ZFC◦ is needed for
Lemma 1.10, as it is false for models in which the nonstationary ideal on ω1 is
saturated.

Lemma 1.10. Suppose that M is a countable transitive model of ZFC◦, and
that f∗ : ωM1 → ωM1 is a function in M such that ω1 6∈ If∗ . Then there is
an M -normal ultrafilter U such that the well-founded ordinals of Ult(M,U) are
exactly ωM2 .

Proof. Applying the usual construction of an M -normal ultrafilter, it suffices to
show that if

• S is a subset of ωM1 in M ,

• f : S → ωM1 ,

• S 6∈ If ,

• {Tα : α ∈ ωM1 } is a collection of stationary subsets of S in ω1 whose
diagonal union is S,

then there exist α < ωM1 , S′ ⊆ Tα and f ′ : S′ → ω1 in M such that

• for all β ∈ S′, f ′(β) < f(β),

• S′ 6∈ If ′ .

This implication gives a recipe for building an M -normal filter with the property
that every function in M from ωM1 to the ordinals either represents an ordinal
below ωM2 or dominates on a set in the filter another function which does not
represent an ordinal below ωM2 . The recipe uses an enumeration {hn : n ∈ ω}
of (ωω1

1 )M . In each step, starting with f = f∗ and S = ω1, it applies the
implication above to min{f, hn} (for the next n, considered in order) if S 6∈
Imin f,hn , and to f otherwise.
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To see that the implication holds, fix f and S as given. Since If is normal
and S 6∈ If , there is an α such that S ∩Tα 6∈ If . Let S0 be the set of β ∈ S ∩Tα
for which f(β) is a successor ordinal. If S0 is not in If , then let S′ = S0 and
let f ′(β) = f(β) − 1 for β ∈ S′. Then since adding 1 to the values of any
canonical function for any γ < ω2 gives a canonical function for γ + 1, we have
that S′ 6∈ If ′ .

If S0 ∈ If , there is an If -positive S1 ⊆ S ∩ Tα such that f(β) is a limit
ordinal for all β ∈ S1 . Let fn : S1 → ω1 (n ∈ ω) be functions such that for
each β ∈ S1, 〈fn(β) : n < ω〉 is an increasing sequence with supremum f(β). It
suffices to see that S1 6∈ Ifn for some n ∈ ω. Supposing towards a contradiction
that S1 ∈ Ifn for each n ∈ ω, fix, for each n a canonical function gn (for some
ordinal γn < ωM2 ) such that {β ∈ S1 | fn(β) ≥ gn(β)} is nonstationary. Let γ
be an element of ωM2 greater than all the gn’s, and fix a canonical function g for
γ. Then for each n ∈ ω the set {β ∈ S1 | fn(β) > g(β)} is nonstationary, which
means that the set {β ∈ S1 | f(β) > g(β)} is nonstationary, which means that
S1 ∈ If , giving a contradiction.

2 Lω1,ω(aa)

Briefly, the logic Lω1,ω is the extension of first order logic where one allows
conjunctions and disjunctions of countable sets of formulas so that only finitely
many free variables appear in the union of the set of formulas. Each formula in
Lω1,ω has a rank, the number (less than ω1) of steps it takes to construct the
formula from atomic formulas (see the appendix to [2]). More explicitly, we may
think of sentences of Lω1,ω as well-founded trees of height of at most ω; then
the rank of a sentence is just the rank of the corresponding tree in the sense
of Section 3. An ill-founded model of ZFC◦ can contain objects which it thinks
are sentences of Lω1,ω which are really not, i.e., if the rank of the sentence as
computed in the model is an ill-founded ordinal of the model. On the other
hand, if a (real) sentence φ of Lω1,ω exists in an ω-model M of ZFC◦, then M
computes the rank correctly, and is therefore well-founded at least up the rank
of φ. Furthermore, M correctly verifies whether the models that it sees satisfy
φ. In both cases, the computation of the rank and the verification of the truth
value, M runs exactly the same process that is carried out in V .

The logic Lω1,ω(aa) extends Lω1,ω by adding the quantifier aa, where aax ∈
[X]ℵ0 φ means “for stationarily many countable x ⊆ X, φ holds”, i.e., for any
function f : X<ω → X, there is a countable x ⊆ X closed under f such that x
satisfies φ. Note that “there exist uncountably many x ∈ X such that φ holds”
can be expressed using aa. If M is a model of ZFC◦ as in conclusion of Fact 1.9,
i.e., such that for all A ∈ P(ω1)Mω1 , Mω1

|= “A is stationary” if and only if A
is stationary, then if X is a set in M of cardinality ℵ1 (in M) and Y is a subset
of [X]ℵ0 in M , then Mω1 |= “Y is stationary” if and only if Y is stationary

The second parts of the equivalences in the following theorems are Σ∼
1
1, and

therefore absolute. The forward directions simply involve taking the transitive
collapse of a countable elementary submodel of suitable initial segment of the
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universe. The reverse directions involve building iterations as in the previous
section (using Fact 1.9 for correctness about stationarity). Since the final models
of these iterations are well-founded up to at least the ω2 of the corresponding
original models, they verify correctly truth for φ and for members of the set F
for the models that they see.

Theorem 2.1. Given a sentence φ of Lω1,ω(aa), the existence of a model of φ
of size ℵ1 is equivalent to the existence of a countable model of ZFC◦ containing
{φ, ω} which thinks there is a model of φ of size ℵ1.

Theorem 2.2. Given a countable fragment F of Lω1,ω(aa), the existence of a
model of size ℵ1 satisfying ℵ1-many F -types is equivalent to the existence of a
countable model of ZFC◦ containing F ∪{F, ω} which thinks there is a model of
size ℵ1 satisfying ℵ1-many F -types.

We prove in Theorem 2.4 below that the second part of the equivalence in
the previous theorem implies that there are 2ℵ1 many models of size ℵ1, pairwise
satisfying only countably many F -types in common. First we present an easier
argument for getting ℵ1 many such models.

Suppose that M is an ω-model of ZFC◦ and x̄ = 〈xα : α < ωM1 〉 is a sequence
of distinct subsets of ω in M . Then given any iteration of M as above, x̄ will

be an initial segment of j0,ω1
(x̄) = 〈xα : α < ω

Mω1
1 〉, and xα 6∈ Mβ whenever

α ≥ ωMβ

1 (by the remarks before Fact 1.4).
Furthermore, if A is any countable set of reals not in M , one can easily build

an iteration of M such that A ∩Mω1
= ∅. Now let F be a countable fragment

of Lω1,ω(aa), and let M be a ω-model of ZFC◦ in which F is countable, which
thinks there exists a model N of size ℵ1 realizing uncountably many F -types.
Then there are uncountably many iterations {jξ : ξ < ω1} of M producing
models {Mξ

ω1
: ξ < ω1} such that the models Mξ

ω1
pairwise have only the reals

from M in common, and thus the models jξ(N) pairwise realize just countably
many F -types in common.

To get 2ℵ1 many uncountable iterates pairwise having just countably many
reals in common, we use Theorem 2.3 below. Note that one can force MAℵ1
(the restriction of Martin’s Axiom which asserts the existence of a filter meeting
any ℵ1 many maximal antichains from a c.c.c. partial order) to hold over any
countable model of ZFC◦. By “distinct iterations” we mean literally iterations
that are not the same set, formally speaking. In particular, this means (using
the notation from Theorem 2.3) that there is some β such that Gβ 6= G′β . When

β is minimal with this property, Mβ = M ′β and there is a set A ∈ P(ω1)Mβ such

that A ∈ Gβ and ω
Mβ

1 \A ∈ G′β , since Gβ and G′β are distinct Mβ-ultrafilters.

Theorem 2.3 (Larson [25]). If M is a countable model of ZFC◦ + MAℵ1 and

〈Mα, Gβ , jα,γ : α ≤ γ ≤ ω1, β < ω1〉

and
〈M ′α, G′β , j′α,γ : α ≤ γ ≤ ω1, β < ω1〉
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are two distinct iterations of M , then

P(ω)Mω1 ∩ P(ω)M
′
ω1 = P(ω)Mβ ,

where β is least such that Gβ 6= G′β.

For the reader’s convenience, we sketch the proof of the version of Theorem
2.3 for iterations of length 1 (which appears in [11]). Suppose that M is a count-
able model of ZFC◦ + MAℵ1 and let G and G′ be two distinct M -generic filters
for (P(ω1)/NSω1)M . Then there exist disjoint sets A, A′ in (P(ω1 \ NSω1)M

such that A ∈ G and A′ ∈ G′. Let N = Ult(M,G) and N ′ = Ult(M,G′), and fix
x ∈ P(ω)N \M and x′ ∈ P(ω)N

′ \M . Then there exist functions f : A→ P(ω)M

and f ′ : A′ → P(ω)M representing x in N and x′ in N ′ respectively. Applying
Fodor’s Lemma we see that, since x and x′ are not in M , there exist B ⊆ A and
B′ ⊆ A′ in G and G′ respectively on which f and f ′ (respectively) are injective.
Applying Fodor’s Lemma again we can thin B and B′ to sets C and C ′ on which
the ranges of f and f ′ are disjoint and contain only infinite, co-infinite sets, by
subtracting nonstationary sets. Finally, it is a consequence of MAℵ1 (see [19],
for instance) that for any two disjoint sets of infinite, co-infinite subsets of ω,
there is a subset of ω which intersects each member of the first set infinitely,
and no member of the second set infinitely. Thus if M satisfies MAℵ1 there is
such a z ⊆ ω in M with respect to the ranges of f�C and f�C ′, which means
that x ∩ z is infinite and x′ ∩ z is not.

Using this, one gets the following version of Keisler’s theorem (see Fact 18.15
of [1]), for Lω1,ω(aa).

Theorem 2.4. Let F be a countable fragment of Lω1,ω(aa). If there exists a
model of cardinality ℵ1 realizing uncountably many F -types, there exists a 2ℵ1-
sized family of such models, each of cardinality ℵ1 and pairwise realizing just
countably many F -types in common.

Proof. Let N be a model of cardinality ℵ1 realizing uncountably many F -types,

let X be a countable elementary submodel of H((2(2
ℵ1 )+)+) containing {N}

and the transitive closure of {F}. Let M be the transitive collapse of X, and let
N0 be the image of N under this collapse. Let M ′ be a forcing extension of M
satisfying Martin’s Axiom via a c.c.c. partial order of cardinality (2ℵ1)+. Then,
like M , M ′ is a wellfounded model of ZFC◦ (see Remark 1.2). By choosing a pair
of distinct generic ultrafilters for each model we can build a tree of iterates of
M ′ giving rise to 2ℵ1 many distinct iterations of M ′ of length ω1 (as in Remark
1.6). Since F -types can be coded by reals using an enumeration of F in M , the
images of N0 under these iterations will pairwise realize just countably many
F -types in common, by Theorem 2.3.

If one assumes in addition that 2ℵ0 < 2ℵ1 , then, as in Theorem 18.16 of
[1], one gets that if there exists a model of cardinality ℵ1 realizing uncountably
many types over some countable subset, then there exists a 2ℵ1-sized family
of nonisomorphic models. That is, if there is an uncountable model N with
a countable subset A over which uncountably many types are realized, then
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there are models Nf (f ∈ 2ℵ1) all containing the same countable set A and all
realizing different sets of types over A, so that any isomorphisms of any two
Nf1 and Nf2 into a third Nf3 must map A pointwise to different sets (which is
impossible if 2ℵ1 > 2ℵ0).

We conclude this section by showing that a strengthening of Lemma 5.1.8
(non-definability of well-order in L(Q)) of [1] can be proved using Lemma 1.10.

Lemma 2.5. Suppose that φ is a sentence of Lω1,ω(aa) in a language with a
binary predicate <, and suppose that there is a model M of φ for which the
order-type of (M,<) is ω1. Then there is a model M ′ of φ of cardinality ℵ1
such that (M ′, <) embeds Q. Furthermore, if θ is a regular cardinal greater

than 22
ℵ1

and Z is a hereditarily countable set, then M ′ can be taken to be an
element of a model N of ZFC◦ such that

• (M ′, <) is isomorphic to ωN1 , and

• for all z1, . . . , zn in Z and every (n + 1)-ary first order formula ψ in the
language of set theory,

H(θ) |= ψ(M, z1, . . . , zn)

if and only if
N |= ψ(M ′, z1, . . . , zn).

Proof. Let θ′ be a regular cardinal greater than θ and 22
2ℵ0

and let X be a
countable elementary submodel of H(θ′) with θ,M,Z ∈ X. Let N1 be the
transitive collapse of X and let π : X → N1 be the collapsing map. Let N0 =
π(H(θ)) and let M0 = π(M).

LetN2 be a forcing extension ofN1 (via a σ-closed partial order of cardinality
2ℵ0) satisfying 3 (recall from the paragraph before Lemma 1.10 that 3 implies
the hypothesis of that lemma). Then N2 is a model of ZFC◦ (see Remark
1.2). Applying Lemma 1.10 (for the first step of the iteration) and Fact 1.9
(for the rest), we can find an iteration j : N2 → N3 of length ω1 such that
the well-founded ordinals of N3 are exactly ωN2

2 . Letting N = j(N0) (which is
j(π(H(θ))), we have that ωN1 = ωN3

1 Letting M ′ = j(M0) (which is j(π(M))),
we have that (M ′, <) is isomorphic to ωN1 , which embeds Q as it is illfounded.
Finally,

(j ◦ π)�(X ∩H(θ)) : X ∩H(θ)→ N

is an elementary embedding which sends M to M ′ and fixes every element of
Z.

3 Analytic equivalence relations

In this section we prove two lemmas about analytic equivalence relations on the
reals in ω-models of set theory. The second of these, Lemma 3.3, will be applied
in Section 5 to an equivalence relation corresponding to the notion of Galois
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type. After writing this section we noticed that for our purposes one could
replace Lemma 3.3 with the classical fact that every partial function from ωω

to itself with analytic graph has a Borel extension (Theorem 3.2 below). While
we have not found this fact stated in the literature, it is an easy consequence
of the First Separation Theorem, via the argument for Theorem 4.5.2 in [31]
or Exercise 35.13 of [23] (our proof uses the fact that the Borel sets of reals
are exactly the analytic, co-analytic ones). We retain our original argument for
completeness, and note at the end of this section how one might use the Borel
extension fact instead.

In this paper, a tree is a set of finite sequences closed under initial segments.
If T ⊆ X<ω is a tree, for some set X, then [T ] is the set of x ∈ Xω such that
x�n ∈ T for all n ∈ ω. If T ⊆ (X × Y )<ω, for some sets X and Y , then the
projection of T , p[T ] is the set of f ∈ Xω such that for some g ∈ Y ω, (f, g) ∈
[T ] (this definition involves a standard identification of pairs of sequences with
sequences of pairs). For any positive n ∈ ω, a subset of (ωω)n is analytic if it
has the form p[T ] for some tree T ⊆ (ωn × ω)<ω.

Recall that for a tree T ⊆ X<ω for some set X, the ranking function
rankT : T → Ord ∪ {∞} is defined in such a way that for all t ∈ T , rankT (t)
is the smallest ordinal α such that α > rankT (s) for all proper extensions s
of t in T , and rankT (t) = ∞ if no such α exists (which happens if and only
if rankT (s) = ∞ for some proper extension s of t). We write rank(T ) for
rankT (〈〉). Then rank(T ) =∞ if and only if T has an infinite branch.

Now suppose that M is an ω-model of ZFC◦, and T ⊆ X<ω is a tree in M ,
for some X in M . If rank(T )M = ∞, then there is an infinite branch through
T in M . If rank(T )M is in the well-founded part of M , then there is no infinite
branch through T (in V ). It follows easily from the definition of rank(T ) that
if rank(T )M is an ill-founded ordinal of M , then T has an infinite branch in V
but no infinite branch in M . This happens, for instance, in the case where t is
an illfounded ordinal of M and T is the tree of descending sequences from t.

Given sets X, Y , a tree T ⊆ (X × Y )<ω and s∗ ∈ X<ω, Ts∗ is the set of
(s, t) ∈ T such that s is compatible with s∗ (i.e., one of them extends the other).

Lemma 3.1. Suppose that M is a (possibly ill-founded) ω-model of ZFC◦, and
that T ⊆ (X × Y )<ω is a tree in M , for some sets X and Y . Suppose that x is
the unique element of p[T ]. Then x ∈M .

Proof. Since p[T ] is nonempty, rank(T )M cannot be in the well-founded part of
M . If rank(T )M =∞, then [T ]∩M is nonempty, which means that p[T ]∩M is
nonempty. Suppose then that rank(T )M is an ill-founded ordinal of M . Then,
starting with with 〈〉, M can find all the initial segments of x by the following
process. Suppose that s ∈ X<ω is an initial segment of x. Then rank(Ts)

M is
an ill-founded ordinal of M . Since s is an initial segment of the unique element
of p[T ], the unique integer n such that s_〈n〉 is an initial segment of x is also
the unique integer n such that

sup{rankMT (s_〈n〉, t) : (s_〈n〉, t) ∈ T}
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is greater than
sup{rankMT (s_〈m〉, t) : (s_〈m〉, t) ∈ T}

for all m ∈ ω \ {n}, since the former set contains ill-founded ordinals of M and
the latter contains only well-founded ordinals.

The proof just given cannot in general give an element of [T ] in M . Consider,
for instance a tree of the form {(x�n, t) : n ∈ ω, |t| = n, t ∈ T}, for x an element
of ωω ∩M and T a tree in M whose rank is an illfounded ordinal of M .

The proof of Lemma 3.1 gives the following classical result, which, as noted
above, can also be used to prove Lemma 3.3.

Theorem 3.2. If f : ωω → ωω is partial function which is analytic as a subset
of ωω × ωω, then f extends to a Borel partial function f ′ : ωω → ωω.

Proof. Let T ⊆ (ω × ω × ω)<ω be a tree projecting to the graph of f . For each
y ∈ ωω, let Ty be the tree consisting of those pairs (b, c) for which (y�|b|, b, c) ∈ T .
Then Ty exists in any model of ZFC◦ containing T and y, and, it projects to
{f(y)} if y is in the domain of f , and to ∅ otherwise. The corresponding search
for x (i.e., f(y)) outlined in the proof of Lemma 3.1 (using Ty in place of T , and in
each step finding the unique n such that sup{rankMTy (s_〈n〉, t) : (s_〈n〉, t) ∈ Ty}
is greater than sup{rankMTy (s_〈m〉, t) : (s_〈m〉, t) ∈ Ty} for all m ∈ ω \ {n}, if

such an n exists) returns the same value x in any model M containing y and
T if it returns a value in any such model. The set of y for which a value x is
returned is then analytic and co-analytic, and thus Borel, and the corresponding
function is likewise Borel.

In the proof above, domain of f ′ may include some y’s not in the domain of
f , i.e., where an x not in p[Ty] is found. In these cases the values rankMTy (s) in
the construction from Lemma 3.1 are all necessarily well-founded.

Now suppose that E is an analytic equivalence relation on an analytic set
X ⊆ ωω. By the Burgess Trichotomy Theorem (Theorem 9.1.5 of [13]), either
E has at most ℵ1 many equivalence classes, or

there is a perfect set P consisting of E-inequivalent members of X. The
following lemma shows that in this second case, if M is an ω-model containing
codes for E and P , and x ∈ ωω ∩M is E-equivalent to a member of P , then
this member of P is also in M . The lemma follows from Lemma 3.1 plus the
fact that the set of members of P which are E-equivalent to x is an analytic set
with a unique member.

Lemma 3.3. Suppose that M is a (possibly ill-founded) ω-model of ZFC◦, and
E is an analytic equivalence relation on ωω which is the projection of a tree T
on ω × ω × ω in M . Suppose that P is a perfect set of E-inequivalent members
of ωω such that P = [S] for a tree S ⊆ ω<ω in M . Let x ∈M ∩ωω be such that
xEy for some y ∈ P . Then y ∈M .

As noted above, the classical fact that every partial function from ωω to
itself with analytic graph has a Borel extension can be used in place of Lemma

14



3.3 in Section 5. We briefly sketch the argument for this. Suppose that E is an
analytic equivalence relation on ωω, and A is an analytic set of E-inequivalent
reals. Then the set of pairs (x, y) from ωω for which xEy and y ∈ A is a partial
function with analytic graph. Let f be a Borel extension of this function. Then
if M is an ω-model of ZFC◦ containing a suitable code for f , and x ∈ ωω ∩M
is E-equivalent to a member of A, then f(x) is this member, and f(x) ∈M .

4 Analytically Presented Classes

In this section, we single out a class of AEC’s that can be treated by the methods
of descriptive set theory. We work with an abstract elementary class K in a
countable vocabulary τ with Löwenheim number ℵ0. As in [13] we code τ -
structures on ω by functions f : ω → 2, where f is the characteristic function of
the (suitably coded by pairing functions) of the relational predicates and (graphs
of) function symbols of τ . In this way the set of codes for τ -structures is a closed
subset of 2ω. For any given Lω1,ω(τ)-sentence φ, the set of codes for models of
φ is Borel, and, conversely, any set of countable τ -structures (invariant under
isomorphism) for which the corresponding set of codes is Borel is the class of
models of some Lω1,ω(τ)-sentence. (These facts are Lemma 11.3.3 and Theorem
11.3.6 of [13].)

Definition 4.1. Let K be an abstract elementary class in a countable language
with countable Löwenheim-Skolem number. We say that K is analytically pre-
sented if the set of countable models in K, and the corresponding strong submodel
relation ≺K, are both analytic.

This requirement is not as ad hoc as it might seem. Shelah’s presentation
theorem (Theorem 4.15 of [1]) asserts that any AEC of τ -structures with count-
able Löwenheim-Skolem number can be presented as the reducts to τ of models
of a first order theory in a countable language τ ′ which omit a family of at most
2ℵ0 -types, and the class of pairs of elementary submodels has a definition of the
same form. In [1] these are called PCΓ(ℵ0,ℵ0) classes when the collection of
omitted types is countable.5 Keisler writes PCδ over Lω1,ω for this notion to
emphasize that it can also be described as the class of τ -structures satisfying
reducts to τ of a countable conjunction (thus a single sentence) of Lω1,ω(τ ′)-
sentences. (Note that for Keisler’s class we have to omit only countably many
types by Chang’s trick as in Theorem 6.1.8 of [1].)

Example 4.2. Sentences φ in Lω1,ω define PCΓ(ℵ0,ℵ0)-presented AEC with
≺K taken as elementary substructure in the smallest fragment containing φ.
Sentences φ in Lω1,ω(Q) are more problematic, as being an elementary submodel
in the smallest fragment containing φ is not preserved under unions (a union
of countable sets may become uncountable). And of course many Lω1,ω(Q)
sentences have Löwenheim-Skolem number ℵ1. But if we restrict to K the class
of models of a sentence φ where the Q-quantifier is only used negatively and

5Shelah writes PCℵ0 or PC(ℵ0,ℵ0), suppressing the type omission.
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we use ≤∗ (i.e., small sets can’t grow; see Notation 6.4.6 of [1]) then (K,≤∗) is
PCΓ(ℵ0,ℵ0). Examples of such classes include Zilber’s pseudoexponentiation,
Shelah’s counterexample to absoluteness of ℵ1-categoricity in L(Q) (Theorem
17.7 of [1]), and Example 5.3 below.

We now show that ‘analytically presented’ is another nom de plume for
PCΓ(ℵ0,ℵ0).

Theorem 4.3. An abstract elementary class K is analytically presented if and
only if its restriction to countable models is the restriction to countable models
of a PCΓ(ℵ0,ℵ0) class.

The proof of Theorem 4.3 starts here and ends with the proof of Lemma
4.6. A straightforward induction (Lemma 11.3.3 of [13]) shows that any Lω1,ω-
definable set of countable models is invariant Borel (a Borel class whose mem-
bership is preserved by any permutation of the universe). Any PCΓ(ℵ0,ℵ0)-
presented AEC is analytically presented, as omission of a countable family of
types in τ ′ is Borel, and taking the reduct to τ makes the class of countable
models analytic. (Mutatis mutandis we show the analogous result for pairs of
countable models (M,N) with M ≺K N .)

The converse is more complicated and we proceed by two lemmas. We first
show that if an AEC K of τ -structures is analytically presented then the count-
able models of K are the countable models of a PCΓ(ℵ0,ℵ0) class. Lemma 4.4
is the restriction of Theorem 4.3 for countable models. This result is reported
as folklore6 in Theorem 1.3.1(a) of [32]).) We haven’t found a published proof
so we give more details below which will motivate the proof for uncountable
models in Lemma 4.6.

For notational simplicity in this proof, we assume τ contains a single binary
relation R. As in [13], membership in a class of τ -structures X that is analyt-
ically definable can be coded as: there is a tree TX (contained in 2<ω × ω<ω)
such that M = (ω,R) ∈ X if and only if for some f ∈ ωω, (gR, f) ∈ [TX ] is a
path through TX , where gR ∈ 2ω codes the characteristic function of R. If U is
an m+ 1 ary relation symbol, U(M,a) denotes the set of elements b of M such
that M |= U(b,a).

Lemma 4.4. The countable τ -models of an analytically presented class can be
represented as reducts to τ of a sentence in Lω1,ω(τ ′) for appropriate τ ′ ⊇ τ .
(i.e. as noted above, the countable models of a PCΓ(ℵ0,ℵ0).)

Moreover the class of countable pairs (M,N) such that M ≺K N is also a
PCΓ(ℵ0,ℵ0)-class.

Proof. Extend τ to τ ′ by adding unary functions s, f, g, a constant symbol
0 and for each n, a 2n-ary relation symbol Sn. Let θ0 be an Lω1,ω(τ ′) sentence
such that if M is a model of θ0:

6Lopez-Escobar [27] describes Scott’s role in understanding the connection between
invariant-Borel and Lω1,ω-definability but the analytic set version doesn’t appear there.
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1. Every element of M is equal to a unique expression of the form sn(0), for
some n ∈ ω.

Notation: For a finite sequence σ (of length n) of natural numbers, we
will write σ̂ to denote the sequence sσ(0)(0) . . . sσ(n−1)(0) of elements of
M . When convenient we will write n for sn(0).

2. g and f map M into M .

3. g is the characteristic function of R via a pairing function.

4. Sn(σ̂, σ̂′) if and only if (σ, σ′) ∈ TX .

5. For every n, Sn(gR�n, f�n).

Now, checking through the definitions one sees that (M,R) is in X if and
only if (M,R) can be expanded to a model of θ0. Namely, if (ω,R) ∈ X,
choose gR as just before the statement of Lemma 4.4; interpret 0 as 0 and s
as the successor function on M . Choose f with (gR, f) ∈ TX . Interpret Sn by
condition 4. Conversely, suppose

(ω,R, s, 0, g, f) |= θ. Identifying sn(0) with n, if g and f are maps from
M to N , we can identify f and g with maps from ω to ω. Suppose under this
indentification, (g, f) ∈ [TX ]. So g is a code for a relation R∗ with (ω,R∗) ∈ X.
But (ω,R∗) is isomorphic to (ω,R) and X is invariant so (ω,R) ∈ X = p[T ].

To complete the proof of Lemma 4.4 we need to show that

Y = {(M,N,R) : M ≺K N, |M | = |N | = ℵ0}

is also defined as a PCΓ(ℵ0,ℵ0)-class. A pair of models (M,W,R) (W denotes
the submodel, R is the relation) is coded by a characteristic function pR,W ∈
[2<ω × 2<ω]. In this case we begin with a vocabulary τ̂ obtained by adding
a unary predicate W for the smaller model to τ . We expand τ̂ to τ̂ ′ as we
expanded τ to τ ′. Again, there is a tree TY (contained in 2<ω × 2<ω × ω<ω )
such that M = (ω,W,R) ∈ Y if and only if for some h ∈ ωω, (pR,W , h) ∈ [TY ] (is
a path through TY ). The argument is exactly as before in this larger vocabulary;
add now a set of 2n-ary predicates Wn to code the tree TY . Let θ1 be the τ̂ ′

sentence expressing this. 4.4

4.5 Remark. We could just prove the second part of Lemma 4.4 by applying
the first part to the class of models (M,W,R). But we want to prepare for the
next argument.

Finally we show that there is a further vocabulary τ̃ which contains uniformly
definable analogs of the extra predicates in τ̂ and a τ̃ -sentence θ̃0 such that the
τ -reducts of θ̃0 (in all cardinalities) are exactly the members of K. Moreover
if we add a unary predicate W to τ̃ ( as we extended τ̂ to τ̂ ′) to get τ̃ ′, there
is a sentence θ̃1 such that the τ̃ ′-structure (M,N, . . .) satisfies θ̃1 if and only
if its τ ∪ {W}-reduct satisfies M ≺K N . For this extension to uncountable
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models think of each model as a direct limit7 of finitely generated (and hence
countable) submodels and use the idea of the proof of Lemma 4.4 to verify
that these finitely generated submodels reduct to members of K and that the
submodel relation is ≺K. We need to rewrite and extend the argument rather
than merely quote Lemma 4.4, because we appeal to the analyticity on every (at
least λ of them) finitely generated (hence countable) τ -substructure of a model
M with cardinality λ. Thus we introduce parameterized versions of the functions
in Lemma 4.4. This argument is inspired by the proof of Shelah’s presentation
theorem (Theorem 4.15 of [1]): we use the functions ta to artificially create
infinite finitely generated substructures. For example, the pR,W of Lemma 4.4
becomes the parameterized family of functions pc,d to represent a model pair
(Uc, Uc,d) consisting of the finitely generated substructures indexed by c and
cd respectively.

Lemma 4.6. All τ -models of an analytically presented AEC K can be repre-
sented as reducts to τ of a sentence θ̃0 in Lω1,ω(τ̃) for appropriate τ̃ ⊇ τ .

Moreover, if M̃ is a τ̃ -substructure of Ñ and both M̃ and Ñ satisfy θ̃0 then
M̃�τ ≺K Ñ�τ .

Further, the class of pairs of τ -structures (M,N) such that M ≺K N is the
class of reducts to τ ∪ {W} of models of θ̃1, where θ̃1 is θ̃0 ∧ θ̃0�W .

Proof. The countable models of K are τ -structures coded by a tree TX as in
the paragraph before Lemma 4.4. Extend τ to τ̃ by adding a unary predicate N ,
constant symbol 0 and unary function symbol s, for each m an m+1-ary relation
symbol Um(x,y), m+ 1-ary function symbols tm(x,x), fm(x,x), gm(x,x), 1 +
k + `-ary functions pm(x,x,y), hm(x,x,y), W (x,x,y) and m+ 1-ary relations
Um(x,x), 1 + k + `-ary relations W k,`(x,x,y) and for each n, 2n-ary relation
symbols Sn and Wn. (For ease of reading below, we often omit the superscripts
on Um, fm, gm, tm . . .; the reader should infer that the length of the parameter
sequence determines the suppressed superscript.)

Let θ̃0 be an Lω1,ω(τ ′) sentence such that if M is a model of θ̃0:

1. Every element of N(M) is equal to a unique expression of the form sn(0).

2. Every element of M is equal to an expression of the form tn(0,a), for some
n ∈ ω and a ∈ M with length m. Ua = U(M,a) = {(t(a))i(0) : i < ω}.
The map ta : n 7→ snm(0,a) is a bijection.

3. Each Ua is the universe of τ -structure.

Notation: For a finite sequence σ (of length n) of natural numbers, we
will write σ̂ to denote the sequence sσ(0)(0) . . . sσ(n−1)(0) of elements of
M . When convenient we will write n for sn(0).

For a finite sequence σ (of length n) of natural numbers, we will write σ̂a
to denote the sequence (t(a))σ(0)(0) . . . (t(a))σ(n−1)(0) of elements of M .

7Recall that although AEC’s are defined in terms of unions of chains, any AEC is closed
under ≺K-direct limits.

18



For each of the parameterized functions we abbreviate, e.g. λxg(x,a) by
ga : Ua 7→ N(M).

4. For any disjoint sequences c,d of length k and `, Wc,d = W k+`(M, c,d) =
Ukc .

5. If a has length k, ga and fa map Uk(M,a) into ω.

6. For any disjoint sequences c,d of length k and `, pc,d and hc,d map
Uk+`(M, c,d) into ω.

7. ga is the characteristic function of R�Ua via a pairing function.

8. For any disjoint sequences c,d of length k and `, pc,d is the characteristic
function of the model pair (W k+`

c , Uk+`cd ) and the relation R�Uk+`cd via a
pairing function.

9. We code Ua ∈ K:

(a) Sn(σ̂, σ̂′) if and only if (σ, σ′) ∈ TX .

(b) For every n, Sn(ga ◦ ta�n, fa ◦ ta�n).

10. For a ⊂ a′ we code Ua ≺K Ua′ :

(a) Wn(σ̂, σ̂′) if and only if (σ, σ′) ∈ TY .

(b) If c ⊂ d, for every n, Wn(pc,d ◦ tcd�n, hc,d ◦ tcd�n).

Now (*): M |= θ̃0 if and only if M is a direct limit of finitely generated
τ̃ -substructures, which are in K by clause 9. The direct limit is with respect to
the subsequence (�) ordering of the finite indexing sequences and a�a′ implies
Ua ≺K Ua′ by clause 10. To see (*) note: If M is a direct limit then M is
in K since K is closed under direct limits. To write M as a direct limit that
witnesses θ̃0, choose the Ua by induction on |a|. Demand that each Ua ≺K M
is enumerated by tna(0), and contains the Ub for each b � a and |b| < |a|.

Now we consider the moreover clause.
First we have M ′�τ is a direct limit of finitely generated partial τ̃ -structures

Ua and N ′�τ̃ is a ≺K-direct limit of Ua where Ua in the sense of M ′ equals
Ua in the sense of N ′ for a ∈ M because M ′ is a τ̃ -substructure of N ′. Each
Ua�τ ≺K N ′�τ so, since AEC’s are closed under direct limits, the direct limit
M ′�τ is a strong submodel of N ′�τ . For the ‘further’ clause, just be careful in
carrying out the expansion of N to a τ̃ structure in the previous paragraph,
that if a ∈M ′, Ua ⊆M . The claim about θ̃1 is now evident. 4.6

This completes the proof of Theorem 4.3. We have the following corollary.

4.7 Corollary. If the countable models of an AEC K with Löwenheim number
ℵ0 can be represented as a PCΓ(ℵ0,ℵ0) class then the class has a PCΓ(ℵ0,ℵ0)-
representation.
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Proof. By one direction of Theorem 4.3, the given representation of the
countable models of K implies it is analytically presented. By the other direc-
tion, the entire class has a PCΓ(ℵ0,ℵ0)-representation. 4.7

To see the effect of this corollary, suppose one has a sentence in Lω1,ω(Q)
which has countable models that form an AEC. The translations to order struc-
tures of Keisler (e.g. [20], Theorem 5.1.8 of [1]) give us the hypotheses of the
Corollary. But the class defined is not closed under unions of uncountable chains.
So this is not the proper axiomatization; the more complicated parameterization
in Lemma 4.6 is needed.

5 Galois types

In this section we review the notion of a Galois type and specify how to apply
descriptive set theoretic techniques to study Galois types in analytically pre-
sented AEC. We expound the use of Burgess’s theorem to provide a trichotomy
of stability classes for analytically presented AEC. In particular we explain the
relevance of work by Hyttinen-Kesala and Kueker on the one hand and [5] on the
other to describing the connections between ‘almost Galois ω-stable’ and ‘Ga-
lois ω-stable’.Then we prove a partial generalization of Keisler’s theorem that
many types imply many models to analytically presented classes. The general-
ization does not include Theorem 2.4 because L(aa)-classes are not analytically
presented.

Following [1] we define for K a reflexive and symmetric relation ∼0 on the
set of triples of the form (M,a,N), where M and N are countable structures in
K with M ≺K N , and a ∈ N \M . We say that (M0, a0, N0) ∼0 (M1, a1, N1) if
M0 = M1 and there exist a structure N ∈ K and strong embeddings f0 : N0 →
N and f1 : N1 → N such that f0�M0 = f1�M1 and f0(a0) = f1(a1). We let ∼
be the transitive closure of ∼0. The equivalence classes of ∼ are called Galois
types.

If an abstract elementary class is given syntactically the Galois types over
a countable M refine the syntactic types; in general there may be more Galois
types than syntactic types (e.g. [3]).

There is a natural coding of triples (M,a,N) as above by elements of 2ω,
where, for instance, M is taken to be a structure whose domain is the even
elements of ω, N has domain ω, and a is an odd integer. For analytically
presented AEC, the set B consisting of those x ∈ 2ω coding such a triple is
an analytic set. We let E be the equivalence relation on B where xEy if and
only if x and y code (respectively) triples (M0, a0, N0) and (M1, a1, N1) for
which there exists an isomorphism π : N0 → N ′0 (for some N ′0 ∈ K) such that
(M1, π(a0), N ′0) ∼ (M1, a1, N1) (the need for π and N ′0 arises from the fact that
the definition of ∼ requires the first models in each triple to be literally the same;
this way of defining E allows us to ignore the details of the coding). Then E
is analytic. Given a countable M ∈ K, we let EM be the equivalence relation
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E restricted to the set BM consisting of codes for triples whose first element is
isomorphic to M . Then EM is also analytic.

Given a real x ∈ B and a K-structure N∗, we say that N∗ realizes the Galois
type coded by x if there is a triple (M,a,N) coded by x such that N ≺K N∗. If
in addition M0 is countable and M0 ≺K N∗, we say that N∗ realizes the Galois
type coded by x over M0 if there is a triple (M0, a,N) coded by x such that
N ≺K N∗.

By Burgess’s Trichotomy, for each countable M ∈ K there are either at most
ℵ1 many EM -equivalence classes, or a perfect set of EM -inequivalent reals8 For
the syntactic types discussed in the earlier sections the intermediate possibility
of ℵ1-types without there being a perfect set of types is impossible, as for each
countable fragment of (Lω1,ω, Lω1,ω(Q), Lω1,ω(aa)) the set of types is Borel
(See 4.4.13 in [28].) Note that this intermediate possibility is obscured in the
presence of the CH if this notion is described in terms of the number of classes.

But even for analytically presented AEC all three parts of the trichotomy
can occur (see Example 5.3 below) and Theorem 0.2 does not generalize in full.
Following [30], we use the following definitions.

5.1 Definition. The abstract elementary class (K,≺) is said to be Galois ω-
stable if for every countable M ∈ K, EM has countably many equivalence
classes, and almost Galois ω-stable if for each countable M ∈ K, EM does not
have a perfect set of equivalence classes.9

The analog for Galois types of the first order theorem that ω-stability implies
stability in all powers fails except under very restrictive conditions. Baldwin and
Kolesnikov [3] exhibit complete sentences that are ω-Galois stable but not Galois
stable in ℵ1.

Example 5.2. Consider the abstract elementary class (K,≺) where K is the
class of well-order types of length ≤ ω1 and ≺ is initial segment. (K,≺) has
amalgamation and joint embedding in ℵ0, is almost Galois ω-stable, but not
Galois ω-stable despite being ℵ1-categorical.

In view of Example 5.2, there is no hope of a direct generalization of The-
orem 0.2 to arbitrary Abstract Elementary Classes. The existence of almost
Galois ω-stable but not Galois ω-stable classes is one obstruction. This ex-
ample seems extreme as there are no models beyond ℵ1 and no nice syntactic
description of the class. In particular it is not analytically presented. But,
we can find apparently more tractable examples of almost ω-Galois stability
(without ω-Galois stability).

A linear order L is 1-transitive (equivalently, groupable, i.e admits a compat-
ible group structure) if for any a, b in L, there is an automorphism of L taking
a to b. The class of groupable linear orders has exactly ℵ1 countable models.

8This is basically folklore for PCΓ(ℵ0,ℵ0) since as we noticed in Section 4, such classes
are easily seen to be analytically presented so Burgess applies.

9We make the definition this way to avoid the awkwardness that if almost Galois ω-stable
is defined as having only ℵ1 classes, then under CH every AEC is almost Galois ω-stable. It
is not clear to us which notion is more natural for larger κ.
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(See Corollary 8.6 of [29].) The following example is a variant by Jarden of a
somewhat less natural version in Chapter 1 of [30].

Example 5.3. Let (K,≺) be the class of partially ordered sets such that each
connected component is a countable 1-transitive linear order with M ≺ N if M ⊆
N and no component is extended. Since there are only ℵ1-isomorphism types
of components this class is almost Galois ω-stable. This AEC is analytically
presented and definable as a reduct of a class in L(Q). But it has 2ℵ1 models in
ℵ1 and 2ℵ0 models in ℵ0.

We sketch an argument (told to us by Kesälä) that implies that every almost
ω-Galois stable sentence of Lω1,ω with the amalgamation property and jep is
ω-Galois stable. Hyttinen and Kesälä [15] introduced the important notions:
finite character and weak Galois type. An AEC K has finite character if for
M ⊆ N with M,N ∈ K: if for every finite a ∈M there is a K-embedding of M
into N fixing a, then M ≺K N . The key point is that any sentence of Lω1,ω has
finite character and any such AEC is very close to Lω1,ω. Generally speaking,
sentences of Lω1,ω(Q) do not have finite character. Two points have the same
weak Galois type over a model M if they have the same Galois type over every
finite subset of M .

It follows easily from work of Kueker [24] and Hyttinen-Kesälä [15] that
for countable models of an AEC with finite character satisfying the amalgama-
tion and joint embedding properties, almost Galois ω-stability implies Galois
ω-stability. Here is the argument. Hyttinen and Kesala call an AEC satisfying
these conditions weakly Galois ω-stable if there are only countably many weak
types over each countable model. For such classes, Hyttinen and Kesala show,
if two elements have the same weak Galois type over a countable model M
they have the same Galois type over M . Kueker proves (Corollary 4.9 of [24])
that for finitary AEC (with ap) points a and b have the same weak-Galois type
over a countable model M if and only if tp∞,ω(a/M) = tp∞,ω(a/M)10. Thus
for countable models of such sentences, syntactic ω-stability implies Galois ω-
stability. Since we noted above that almost Galois ω-stability implies syntactic
ω-stability (If there were a model M with uncountably many syntactic types,
it would have a perfect set of syntactic types and thus there would be a perfect
set of Galois types over M .), we get the following.

5.4 Fact. If a sentence in Lω1,ω-sentence, satisfying amalgamation and joint
embedding, is almost Galois ω-stable then it is Galois ω-stable.

Baldwin, Larson, and Shelah [5] have shown a related fact, which we apply
below:

Theorem 5.5.

We deal here with the case that there is a perfect set of EM -inequivalent reals,
for some M (i.e., the case where almost Galois ω-stability fails). This perfect

10Note this type is evaluated in a fixed Galois-saturated monster model.
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set plays roughly the role that the 2ℵ0 syntactic types played in Theorem 2.4.
Since a Galois type is not a real but a set of reals, we cannot reproduce the same
argument from an uncountable set of Galois types, but rather use this perfect
set to identify a sufficiently large set of Galois types with reals.

The following generalization of Keisler’s Theorem 2.4 gives a uniform proof of
the results for various logics. We do not assume that K satisfies amalgamation or
the joint embedding property. However, one would typically use amalgamation
to obtain hypothesis (4) of the theorem.

Theorem 5.6. Suppose that

1. K is an analytically presented abstract elementary class;

2. N is a K-structure of cardinality ℵ1, and N0 is countable, with N0 ≺K N ;

3. P is a perfect set of EN0
-inequivalent members of BN0

;

4. N realizes Galois types coded by uncountably many members of P over
N0.

Then there exists a family {Nα : α ∈ 2ℵ1} of K-structures of cardinality ℵ1
such that

• for each α ∈ 2ℵ1 , N0 ≺K Nα;

• for each α ∈ 2ℵ1 , Nα realizes Galois types coded by uncountably many
members of P over N0.

• for each distinct pair α, α′ from 2ℵ1 , the set of x ∈ P for which both Nα

and Nα′ realize the Galois type coded by x over N0 is countable.

Proof. Fix a regular κ > 22
ℵ1

, and let Y be a countable elementary submodel
of H(κ) with K ∩ H(ℵ1), N0, N and P in Y . Let M0 be a c.c.c. forcing
extension of M∗ satisfying MAℵ1 . By the elementarity of the collapsing map on
Y , there exists in M∗ a continuous increasing chain 〈N∗α : α < ωM

∗

1 〉 such that,
for each α ∈ ωM∗1 , N∗α is countable in M∗ and N∗α ≺K N∗. For each α ∈ ωM∗1 ,
let Xα be the set of reals of M0 ∩ P coding triples which are ∼-equivalent to
triples (N0, a,N

′) with N ′ ≺K N∗α. Let X =
⋃
α∈ωM∗1

Xα. Then X ∈M0, since

for each α, Xα is Σ1
1 in any real coding N∗α (such reals exist in M∗ since N∗α

is countable there), and M0, being well-founded, computes Σ1
1-truth correctly.

The set X is uncountable in M∗ by the elementarity of the collapsing map, and
therefore also uncountable in M0, as ωM0

1 = ωM
∗

1 . By Theorem 2.3, there are
2ℵ1 many iterates {Mα : α ∈ 2ℵ1} of M0 pairwise having just countably many
reals in common.

Let Mα be such an iterate via an iteration jα, and let Nα be the correspond-
ing image of N∗. Then in Mα, Nα realizes the Galois types of uncountably
many members of j(P ) over N0. Since j(P ) = [jα(S)]M

α

= [S]M
α

= [S] ∩Mα,
j(P ) ⊆ P . Furthermore, Mα is correct about uncountability, so Nα realizes
(in V ) the Galois types of uncountably many members of P over N0. For each
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countable N ′ ≺K Nα, there is a countable N ′′ ≺K Nα in Mα with N ′ ≺K N ′′.
In this case, if N0 ≺K N ′ and a ∈ N ′ \N0, then (N0, a,N

′) ∼0 (N0, a,N
′′) via

the identity map on N ′′. It follows then, by Lemma 3.3, that for each y ∈ P
coding a Galois type realized by Nα over N0, y ∈Mα. Since Mα and Mα′ have
just countably many reals in common for any distinct pair α, α′ in 2ℵ1 ,the set
of x ∈ P for which both Nα and Nα′ realize the Galois type of x over N0 is
countable.

5.7 Remark. The proof above gives a slightly stronger conclusion. One can
get, for instance, that the set of x ∈ P for which there exist N1 ∈ Mα and
N2 ∈Mα′ such that Nα realizes the Galois type of x over N1 and Nα′ realizes
the Galois type of x over N2 is countable.

5.8 Remark. The assumption in Theorem 5.6 that the set of reals coding count-
able structures in K be analytic can be relaxed to the requirement this set of
codes be universally Baire (see [12]), if one is willing to assume the existence of
a Woodin cardinal with a measurable cardinal above it (see [9, 10]). However,
the corresponding versions of Burgess’s Theorem are weaker (see [14]), which
means that the range of applications should be narrower.

6 Absoluteness of ℵ1-categoricity

In first order logic, the Baldwin-Lachlan equivalence between ‘ℵ1-categorical’
and ‘ω-stable with no two-cardinal models’ makes the notion of ℵ1-categoricity
Π1

1 and hence absolute. Shelah provided an example of an AEC, definable
in L(Q), which is ℵ1-categorical under MA and has 2ℵ1 models in ℵ1 under
2ℵ0 < 2ℵ1 . It is an open question whether there is such a non-absolute example
in Lω1,ω. Theorem 6.3.2 of [1] shows that if φ is an ℵ1-categorical sentence
of Lω1,ω (with an uncountable model) there is a complete ℵ1-categorical sen-
tence of Lω1,ω (with an uncountable model) which implies φ. The remainder of
the analysis in [1] and in Shelah’s work on which it is based restricts to com-
plete sentences. There is a simple argument at the end (25.19 of [1]) that the
categoricity characterization extends to incomplete sentences; but the charac-
terization is ostensibly very dependent on assuming 2ℵn < 2ℵn+1 for n < ω.
The importance of the completeness hypothesis manifests itself in considering
amalgamation. Theorem 0.1 implies in particular the consistency of: for a com-
plete Lω1,ω-sentence, ℵ1-categoricity implies amalgamation in ℵ0. But an easy
example in [4] shows (in ZFC) that there is an ℵ1-categorical Lω1,ω-sentence
which fails amalgamation in ℵ0. [2] shows that ℵ1-categoricity is absolute for
a complete sentence of Lω1,ω which satisfies amalgamation and jep in ℵ0 and
is ω-stable. In this statement the jep was redundant since such a sentence is
ℵ0-categorical. Moreover, for such complete sentences, since ω-stability implies
amalgamation in ℵ0 (Corollary 19.14.3 of [1]), the result yields absoluteness
of ℵ1-categoricity for ω-stable sentences of Lω1,ω. The notion of ω-stability in
that analysis of complete sentences (atomic classes) is a syntactic one. Here
we generalize this analysis to analytically presented AEC and (almost) Galois
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ω-stability; thus we do not need the completeness hypothesis. However, the
study of Galois ω-stability in AEC is not sufficiently advanced as to deduce
ℵ0-amalgamation from Galois ω-stability.

Shelah’s L(Q)-example fails amalgamation in ℵ0 and is not ω-stable. We fo-
cus here on showing amalgamation is enough to make ℵ1-categoricity absolute
for analytically presented AEC. The argument for Theorem 2.1 shows that the
existence of an uncountable model is Σ1

1 in a real parameter and therefore abso-
lute. Amalgamation for countable models in an analytically presented AEC is
Π1

2 and therefore also absolute. This claim should not extend to AEC which are
not analytically presented: if membership in K were Π1

1 or more complicated,
amalgamation would not automatically satisfy Shoenfield absoluteness.

Let us consider for a moment the case where K is almost Galois ω-stable and
satisfies amalgamation and the joint embedding property in ℵ0. In this case,
there is a model in K of size ℵ1 which realizes every Galois type over every one
of its countable substructures (i.e., it is ℵ1-Galois saturated). Furthermore, all
such saturated models are isomorphic. The question of ℵ1-categoricity for K
then just depends on whether K has a model of size ℵ1 omitting some Galois
type over some countable substructure.

The second part of the following statement is Σ∼
1
2 and thus absolute. The

relation ∼0 was defined near the beginning of Section 4, and the projection of
a tree was defined at the beginning of Section 3.

Theorem 6.1. Suppose that K is an analytically presented AEC. Then the
following statements are equivalent.

1. There exist a countable M ∈ K and an N ∈ K of cardinality ℵ1 such that

• M ≺K N ;

• the set of Galois types over M realized in N is countable;

• some Galois type over M is not realized in N .

2. There is a countable model P of ZFC◦ such that

• ωP1 is well-founded;

• P contains trees on ω projecting to the set of codes for countable
elements of K, and to the relations on reals corresponding to ≺K

and ∼0;

• P satisfies statement (1).

Proof. The implication from (1) to (2) just involves taking the transitive collapse
of an elementary submodel. For the reverse direction, fix M and N witnessing
(1) in P . In P , there exists a countable set S containing a member of each
Galois type over M realized in N , and a member t of a Galois type over M
not realized in N . Fixing elements of ωω ∩ P coding t and the elements of S,
the statement that t is not Galois-equivalent to any member of S is Π1

1 in these
codes. Since P believes this statement, and since ωP1 is well-founded, it is true
in V also that t is not Galois-equivalent to any member of S.
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Then, if P ′ is an iterate of P by an iteration of length ω1, and N ′ is the
corresponding image of N , P ′ thinks that every element of N ′ \M satisfies a
Galois type corresponding to a member of S, which, being countable in P , was
fixed by this iteration. It follows that no member of N ′ satisfies the Galois type
corresponding to t.

A similar argument shows that for an analytically presented AEC K, almost
Galois ω-stability is Π1

2 in a real number coding K, and therefore absolute.

Theorem 6.2. Suppose that K is an analytically presented AEC. Then the
following statements are equivalent.

1. K is not almost Galois ω-stable.

2. There is a countable model P of ZFC◦ such that

• ωP1 is well-founded;

• P contains trees on ω projecting to the set of codes for countable
elements of K, and to the relations on reals corresponding to ≺K

and ∼0;

• P thinks that K is not almost Galois ω-stable.

Proof. Again, the forward direction just involves taking the transitive collapse
of an elementary submodel. For the reverse direction, fix P , a countable M ∈
K ∩ P and a tree T ⊆ ω<ω in P without terminal nodes, such that the paths
through T code distinct Galois types over M . Since ωP1 is well-founded, P
correctly witnesses the fact that no two paths through T give EM -equivalent
reals. Furthermore, every path through T in a (P(ω1)/NSω1

)P -ultrapower of P
codes a Galois type over M , as witnessed in the ultrapower. The set of such
paths is an uncountable analytic set, and therefore contains a perfect set.

In the case that the set of codes for countable models in K is Borel (for
instance, the set of countable models of a sentence of Lω1,ω), almost Galois ω-
stability of K is more easily seen to be Π1

2 relative to a code for K, as it asserts
that for any countable M ∈ K and any subtree of ω<ω without terminal nodes,
either there is a path through the tree not coding a Galois type over M , or there
exist distinct EM -equivalent paths through the tree.

On its surface, Galois ω-stability for an analytically presented AEC K is
Π1

4 in a code for K, as it says that for every M , if M ∈ K then there are
countably many reals such that every suitable real is EM -equivalent to one
of them. Statements of this type are also forcing-absolute in the presence of
suitable large cardinals, though not in ZFC. For all we know, there exists an
analytically presented almost Galois ω-stable AEC whose Galois ω-stability (or
lack thereof) is not absolute.

The proof of Theorem 5.5, as given in [5], however, shows that if an ana-
lytically presented K satisfies amalgamation and is almost Galois ω-stable but
not Galois ω-stable, then K contains uncountable small models of uncount-
ably many distinct Scott ranks. The existence of two (or any number up to ω
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many) uncountable small models in K of distinct Scott ranks is equivalent, by
the iteration construction of this paper, to the existence of a countable model
of ZFC◦ which is well-founded up to the supremum of these ranks and thinks
there are such models. Again, this latter statement is Σ1

2 and therefore absolute.
Summarizing, we have the following.

Theorem 6.3. Let K be an analytically presented almost Galois ω-stable AEC
satisfying amalgamation in ℵ0, and having an uncountable model. Then the
ℵ1-categoricity of K is equivalent to a Π1

2-sentence, and therefore absolute.

Proof. In this situation, ℵ1-categoricity is equivalent to the conjunction of three
conditions:

1. Joint embedding of any two countable models that have uncountable ex-
tensions.

2. All uncountable small models in K have the same Scott rank.

3. Part (1) of Theorem 6.1 fails.

Clearly ℵ1-categoricity implies the first two conditions. The second condition
implies that K is Galois ω-stable, by Theorem 5.5 and the argument of the last
paragraph before Theorem 6.3. Then ℵ1-categoricity also implies the third
condition, as Galois ω-stability and amalgamation in ℵ0 imply the existence of
a Galois-saturated model in ℵ1 which realizes only countably many Galois types
over each countable submodel.

Conversely, if condition 2) holds then as in the first paragraph K is Galois ω-
stable. Condition 1), Galois ω-stability and amalgamation imply the existence
of Galois-saturated model in ℵ1 which realizes only countably many Galois types
over each countable submodel. Condition 3) asserts that each model in ℵ1 has
this property.

Finally, these conditions are absolute. The negation of Condition 1) is Σ1
2,

using the idea behind Theorem 2.1 to verify the uncountable extensions. As
remarked in the preceding paragraph, the negation of Condition 2) is equivalent
to the existence of two small models in K of distinct Scott ranks and thus is
absolute. Finally, by Theorem 6.1, condition 3) is equivalent to 2 of Theorem
6.1, which is absolute.

6.4 Remark. We should point out that our absoluteness results in this section
and the previous one relied only on the fact that the Galois types are induced by
an analytic equivalence relation. In the same way, the results of Section 2 were
analyzing Borel equivalence relations. Each approach then can be applied much
more generally, though we have no applications for this degree of generality at
this time.
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7 Questions

The following questions have been left unresolved.

7.1 Question. It is shown in [5] that if an almost Galois ω-stable PCΓ(ℵ0,ℵ0)
class satisfying amalgamation has only countably many models in ℵ1, then it is
Galois ω-stable. By Theorem 0.1, Theorem 0.5 and the main theorem of [5], the
amalgamation hypothesis is not needed if 2ℵ0 < 2ℵ1 .

Can amalgamation be eliminated from the hypotheses? More strongly, is it
consistent with ZFC that there is an analytically presented AEC with amalga-
mation and joint embedding in ℵ0, that is almost Galois ω-stable but not Galois
ω-stable, despite being ℵ1-categorical?

Even assuming amalgamation, can the assumption of only countably many
models in ℵ1 be weakened to assuming less than 2ℵ1 many?

7.2 Question. Can there be an almost Galois ω-stable analytically presented
AEC whose Galois ω-stability (or lack thereof) is not absolute?
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