Maximal models up to the first measurable in ZFC

John T. Baldwin
University of Illinois at Chicago*
Saharon Shelah ${ }^{\dagger}$
Hebrew University of Jerusalem

December 26, 2018

In this paper we prove in ZFC the existence of a complete sentence ϕ of $L_{\omega_{1}, \omega}$ such that ϕ has maximal models in a set of cardinals λ that is cofinal in the first measurable μ while ϕ has no maximal models in any $\chi \geq \mu$. In [BS17a], we proved a theorem with the same conclusion as the main result here; the earlier proof required that $\lambda=\lambda^{<\lambda}$, and that there is an $S \subseteq S_{\aleph_{0}}^{\lambda}$, that is stationary non-reflecting, and ∇_{S} holds. Here, we show in ZFC that the sentence ϕ defined in [BS17a] has maximal models cofinally in μ. The additional hypotheses in [BS17a] allow one to demand that if N is a submodel with cardinality $<\lambda$ of the P_{0}-maximal model, N is \boldsymbol{K}_{1}-free (Definition 2.2); that property fails for the example here. The existence of such a ϕ which is not complete is well-known (e.g. [Mag16]).

This paper contributes to the study of Hanf numbers for infintary logics. Works such as [BKS09, BKS16, BS17b, KLH16] study the spectrum of maximal models in the context where the class has a bounded number of models. We list now some properties that are true in every cardinality for first order logic but are true only eventually for complete sentences of $L_{\omega_{1}, \omega}$ or, more generally, for abstract elementary classes, and compare the cardinalities (the Hanf number) at which the eventual behavior must begin. Every model of a first order theory has a proper elementary extension and so each theory has arbitrarily large models. Moreover, the amalgamation property holds for every complete first order theory. Morley [Mor65] showed that every sentence of $L_{\omega_{1}, \omega}$ that has models up to $\beth_{\omega_{1}}$ has arbitrarily large models and provided counterexamples showing that cardinal was minimal. Thus he showed the Hanf number for existence of $L_{\omega_{1}, \omega}$ is $\beth_{\omega_{1}}$. Hjorth [HjOO2], by a much more complicated argument, showed there are complete sentences ϕ_{α} for $\alpha<\omega_{1}$ such that ϕ_{α} has a model in \aleph_{α} and no larger so the Hanf number for complete sentences is $\aleph_{\omega_{1}}$. Boney and Unger [BU17], building on [She13] show that the Hanf number 'for all AEC's are tame' is the first strongly compact cardinal. They also show the analogous property for various variants on tameness is equivalent to the existence of almost (weakly compact, measurable, strongly

[^0]compact). The result here shows in ZFC that the Hanf number for extendability (every model of a complete sentence has a proper $L_{\omega_{1}, \omega}$-elementary extension) is the first measurable cardinal. However, [BB17] show that an upper bound on the Hanf number for amalgamation is the first strongly compact. The actual value remains open.

The first section of the paper defines the class of models \boldsymbol{K}_{-1} and explains the connections with [BS17a]. In Section 2 we construct in ZFC, for cofinally many λ less than the first measurable, a P_{0}-maximal model $M_{*} \in \boldsymbol{K}_{-1}$. Subsection 2.1 is a set theoretic argument for the existence of a Boolean algebra with certain specified properties in any cardinal λ of the form $\lambda=2^{\mu}$ that is less than the first measurable; this construction is completely independent of the model theoretic notation established in Section 1. Subsection 2.2 builds on this result to find a P_{0}-maximal model in \boldsymbol{K}_{-1} with cardinality λ satisfying certain further restrictions. Finally in Section 3, this model is converted to the maximal model of \boldsymbol{K}_{2}, the class of model of the comoplete sentence (ϕ) from [BS17a].

The first author acknowledges helpful conversations with Will Boney, Ioannis Souldatos, and especially Sherwood Hachtman.

1 Preliminaries

We include as needed definitions of the classes of model $\boldsymbol{K}_{-1}, \boldsymbol{K}_{1}, \boldsymbol{K}_{2}$ introduced in [BS17a]. For each $i, \boldsymbol{K}_{<\aleph_{0}}^{i}$ denotes the class of finitely generated members of \boldsymbol{K}_{i}. Occasionally we fall into the notation $\hat{\boldsymbol{K}}$ for the direct limits of a class \boldsymbol{K} of finitely generated models.

Definition 1.1τ is a vocabulary with unary predicates $P_{0}, P_{1}, P_{2}, P_{4}$, binary R, E, \wedge, \vee, \leq unary functions ${ }^{-}, G_{1}, H_{1}, n$ unary functions $g_{n, i}$ for each n, constants 0,1 and unary functions F_{n}, for $n<\omega$. \leq is a partial order on P_{1}^{M} and the Boolean algebra can be defined from it.

We occasionally use the notations $\left(\forall^{\infty} n\right)$ and $\left(\exists^{\infty} n\right)$ to mean 'for all but finitely many' and 'for infinitely many' respectively. It is easy to see that \boldsymbol{K}_{-1} is $L_{\omega_{1}, \omega^{-}}$ axiomatizable but far from complete. We denote the power set of X by $\mathcal{P}(X)$.

Definition $1.2\left(K_{-1}\right) M \in K_{<\aleph_{0}}^{-1}$ is the class of finitely generated structures M satisfying the following conditions.

Note that b_{*} is not a function symbol in τ.

1. $P_{0}^{M}, P_{1}^{M}, P_{2}^{M}$ partition M.
2. $\left(P_{1}^{M}, 0,1, \wedge, \vee, \leq,^{-}\right)$is a Boolean algebra (${ }^{-}$is complement). We may also write \boldsymbol{B}_{M} or $\boldsymbol{B}[M]$ for P_{1}^{M}. We also consider ideals and restrictions to them of the relations/operations except for complement.
3. $R \subset P_{0}^{M} \times P_{1}^{M}$ with $R(M, b)=\left\{a: R^{M}(a, b)\right\}$ and the set of $\{R(M, b): b \in$ $\left.P_{1}^{M}\right\}$ is a Boolean algebra. $f^{M}: P_{1}^{M} \mapsto \mathcal{P}\left(P_{0}^{M}\right)$ by $f^{M}(b)=R(M, b)$ is a Boolean algebra homomorphism into $\mathbb{P}\left(P_{0}^{M}\right)$.

Note that f is not ${ }^{1}$ in τ; it is simply a convenient abbreviation for the relation between the Boolean algebra P_{1}^{M} and the set algebra on P_{0} by the map $b \mapsto$ $R(M, b)$.
4. $P_{4, n}^{M}$ is the set containing each join of n distinct atoms from $M ; P_{4}^{M}$ is the union of the $P_{4, n}^{M}$ and so is an ideal. That is, P_{4}^{M} is the set of all finite joins of atoms.
There is an element $b^{*} \in P_{1}^{M}$ and for each $n, P_{4, n}^{M}=\left\{c: c \leq^{M} b_{*}\right\}$.
5. G_{1}^{M} is a bijection from P_{0}^{M} onto $P_{4,1}^{M}$ such that $R\left(M, G_{1}^{M}(a)\right)=\{a\}$. (Note that $P_{0}^{M}=\emptyset$ is allowed.
6. P_{2}^{M} is finite (and may be empty). Further, for each $c \in P_{2}^{M}$ the $F_{n}^{M}(c)$ are functions from P_{2}^{M} into P_{1}^{M}. Note that it is allowed that for all but finitely many $n, F_{n}^{M}(c)=0_{P_{1}^{M}}$.
7. If $a \in P_{4,1}^{M}$ and $c \in P_{2}^{M}$ then $\left(\forall^{\infty} n\right) a \not \star_{M} F_{n}^{M}(c)$. This implies $\bigcap_{n}\left\{x:\left(G_{1}(x) \in F_{n}^{M}(c)\right\}=\emptyset\right.$.
8. P_{1}^{M} is generated as a Boolean algebra by $P_{4}^{M} \cup\left\{F_{n}^{M}(c): c \in P_{2}^{M}, n \in \omega\right\} \cup X$ where X is a finite subset of P_{1}^{M}.

Definition 1.3 1. K_{-1} is the class of τ structures M such that every finitely generated substructure of M is in $\boldsymbol{K}_{<\aleph_{0}}^{-1} . K_{\mu}^{-1}$ is the members of K_{-1} with cardinality μ.
2. We say $M \in K_{-1}$ is atomic if P_{1}^{M} is atomic as a Boolean algebra. That is, P_{4}^{M} is dense in \boldsymbol{B}_{M}.

2 The first approximation

In this section we construct in ZFC, for cofinally many λ less than the first measurable, a P_{0}-maximal model $M_{*} \in \boldsymbol{K}_{-1}$. In Section 3 we 'correct' that model to a model of the complete sentence ϕ of $L_{\omega_{1}, \omega}$ defined in [BS17a]. Subsection 2.1 can be read completely independently; it has no reliance on Section 1. In particular, there is no requirement here that the A_{n} are independent.

2.1 Set theoretic construction of a Boolean algebra

The goal of this subsection is to prove the property \boxplus in ZFC . The class \boldsymbol{K}_{-1} plays no role in section. The arguments here are similar to those around page 7 of [GS05]. In Subsection 2.2 we deduce Theorem 2.2.4 from \boxplus, showing there is a nicely free P_{0}-maximal (Definition 2.1) model in \boldsymbol{K}_{-1}.

Definition 2.1.1 $(\boxplus(\lambda))$ denotes: There are a Boolean algebra $\mathbb{B} \subset \mathcal{P}(\lambda)$ with $|\mathbb{B}|=$ \{boxplus $\}$ λ and a set $\mathcal{A} \subseteq{ }^{\omega} \mathbb{B}$ such that:

[^1]i) \mathcal{A} has cardinality λ and if $\bar{A}=\left\{A_{n}: n \in \omega\right\} \in \mathcal{A}$ then for $\alpha<\lambda$ for all but finitely many $n, \alpha \notin A_{n}$.
ii) \mathbb{B} includes the finite subsets of λ; but is such that for every non-principal ultrafilter D of λ (equivalently of \mathbb{B} and disjoint from $\lambda^{<\omega}$) for some sequence $\left\langle A_{n}: n \in \omega\right\rangle \in \mathcal{A}$, there are infinitely many n with $A_{n} \in D$.

We may say that $(\mathbb{B}, \mathcal{A})$ witness uniform \aleph_{1}-incompleteness.
Lemma 2.1.2 (ZFC) Assume for some $\mu, \lambda=2^{\mu}$ and $\lambda<$ first measurable, then $\boxplus(\lambda)$ from 2.1.1 holds.

We need the following structure.
Definition 2.1.3 1. Fix the vocabulary σ with unary predicates P, U, a binary predicate C, and a binary function F_{2}.
2. Let $\left\langle C_{\alpha}: \alpha<\lambda\right\rangle$ list without repetitions $\mathcal{P}(\mu)$ such that $C_{0}=\emptyset$ and also let $\left\langle f_{\alpha}: \mu \leq \alpha<\lambda\right\rangle$ list ${ }^{\mu} \omega$.
3. Define the σ-structure M by:
(a) The universe of M is λ;
(b) $P^{M}=\omega ; U^{M}=\mu$,
(c) $C(x, y)$ is binary relation on $U \times M$ defined by $C(x, \alpha)$ if and only $x \in C_{\alpha}$. Note that C is extensional. I.e., elements of M uniquely code subsets of U^{M}.
(d) Let $F_{2}^{M}(\alpha, \beta)$ map $M \times U^{M} \rightarrow P^{M}$ by $F_{2}^{M}(\alpha, \beta)=f_{\alpha}(\beta)$ for $\alpha<\lambda$, $\beta<\mu$;
(e) $F_{2}^{M}(\alpha, \beta)=0$ for $\alpha<\lambda$ and $\beta \in[\mu, \lambda)$.

We use the following, likely well-known, fact pointed out to us by Sherwood Hachtman.

Fact 2.1.4 Let $D \subseteq \mathcal{P}(X)$ and suppose that for each partition $Y \subseteq \mathcal{P}(X)$ of X into at most countably many sets, $|D \cap Y|=1$. Then, D is a countably complete ultrafilter.

We need the following lemma about M before finding in M a representative of \boxplus.
Lemma 2.1.5 If λ is less than the first measurable cardinal and $\lambda=2^{\mu}$ for some μ there is a model M, with $|M|=\lambda$, and a countable vocabulary with P^{M} denoting the natural numbers such that every first order proper elementary extension N of M properly extends P^{M}.

Proof. Fix M as in Definition 2.1.3. We first show that any proper elementary extension N of M extends U^{M}. Suppose for contradiction there exists $\alpha^{\prime} \in N-M$ but $U^{N}=U^{N}$. By the full listing of the C_{α}, there is a $\beta \in V^{M}$ with $\{x: N \models$
$C(x, \beta)\}=\left\{x: N \models C\left(x, \alpha^{\prime}\right)\right\}$. This contradicts extensionality of the relation C in N; but C is extensional in the elementary submodel M.

Now we show that if $U^{M} \subsetneq U^{N}$ and $P^{M}=P^{N}$, then there is a countably complete non-principal ultrafilter on μ, contradicting that μ is not measurable. Note that the sequence $\left\langle f_{\alpha}: \mu \leq \alpha<\lambda\right\rangle$ can be viewed as a list of all non-trivial partitions of μ into at most countably many pieces. Let $\nu^{*} \in U^{N}-U^{M}$. For $\alpha \in N$, denote $F_{2}^{N}\left(\alpha, \nu^{*}\right)$ by n_{α}. Since $P^{M}=P^{N}, n_{\alpha} \in M$. By elementarity, for $\alpha \in M, \eta \in U^{M}$, $F_{2}^{N}(\alpha, \eta)=F_{2}^{M}(\alpha, \eta)=f_{\alpha}(\eta)$. Now, let

$$
D=\left\{x \subseteq U^{M}: x \neq \emptyset \wedge(\exists \alpha \in M) x \supseteq f_{\alpha}^{-1}\left(n_{\alpha}\right)\right\}
$$

We show D satisfies the conditions from Fact 2.1.4. Let W be a partition, indexed by f_{α}. Then $f_{\alpha}^{-1}\left(n_{\alpha}\right) \neq \emptyset$ and is in D. Suppose for contradiction there are $x_{0} \neq x_{1}$ in W that are both in D. Then, there are $\alpha_{i} \in M$ such that $x_{i} \in W \cap D$ contains $f_{\alpha_{i}}^{-1}\left(n_{\alpha_{i}}\right)$ for $i=0,1$. So, $N \models F_{2}\left(\alpha_{i}, \nu^{*}\right)=n_{\alpha_{i}}$ for $i=1,2$. Since $\alpha_{i} \in M$ and $M \prec N, M \models \exists x\left(F_{2}\left(\alpha_{0}, x\right)=n_{\alpha_{0}} \wedge F_{2}\left(\alpha_{1}, x\right)=n_{\alpha_{1}}\right.$. So, by Definition 2.1.3 (d), for any witness a in M for this formula, $a \in x_{0} \cap x_{1}$; but $x_{0} \cap x_{1}=\emptyset$ since W is a partition.

Finally, D is non-principal on U^{M} since if it were generated by an $a \in U^{M}$,

$$
D=\left\{x \subseteq U:(\exists \alpha) x \supseteq f_{\alpha}^{-1}\left(n_{\alpha}\right)\right\}=\{x \subseteq U: a \in x\}
$$

Since $\{a\} \in D$, for some $\alpha_{0} \in M,\{a\}=f_{\alpha_{0}}^{-1}\left(n_{\alpha_{0}}\right)$. Note that $\alpha_{0} \in M$, because the definition of D is about the model M. That is, $M \models \exists!y F_{2}\left(\alpha_{0}, y\right)=n_{\alpha_{0}}$. But $N \models F_{2}\left(\alpha_{0}, a\right)=n_{\alpha_{0}} \wedge F_{2}\left(\alpha_{0}, \nu^{*}\right)=n_{\alpha_{0}}$. This contradicts the assumption $M \prec N$ and completes the proof.
$\square \square_{2.1 .5}$
The following claim completes the proof of Lemma 2.1.2
Claim 2.1.6 If \mathbb{B} is the boolean algebra of definable formulas in the M defined in Definition 2.1.3, there is an \mathcal{A} such that $(\mathbb{B}, \mathcal{A})$ is uniformly \aleph_{1}-incomplete so $\boxplus(\lambda)$ holds.

Proof. We may assume τ has Skolem functions for M and then define \mathbb{B} and \mathcal{A} as follows to satisfy \boxplus.b. Let \mathbb{B} be the Boolean algebra of definable subsets of M. I.e.,

$$
\mathbb{B}=\left\{X \subseteq M: \text { for some } \tau \text {-formula } \phi(\mathbf{x}, \mathbf{y}) \text { and } \mathbf{b} \in{ }^{\lg (\mathbf{y})} M, \phi(M, \mathbf{b})=X .\right\}
$$

Note \mathbb{B} is a Boolean algebra of cardinality λ with the normal operations. We define the Skolem functions a little differently than usual;:as maps σ_{ϕ} from M^{n+1} to M for formulas $\phi(x, w, \mathbf{y})$ such that $\phi\left(\sigma_{\phi(x, w, \mathbf{y})}(b, \boldsymbol{a}), b, \boldsymbol{a}\right)$. Then, we specialize the Skolem functions by considering the unary function arising from fixing the \mathbf{y} entry of $\sigma_{\phi}(w, \mathbf{y})$ to obtain $\sigma_{\phi}(w, \boldsymbol{a})$.

$$
\begin{aligned}
A_{n}^{\sigma_{\phi}(x, w, \boldsymbol{a})} & =\left\{\alpha<\lambda: \phi\left(\sigma_{\phi}^{M}(\alpha, \boldsymbol{a}), \alpha, \boldsymbol{a}\right) \wedge P\left(\sigma_{\phi}^{M}(\alpha, \boldsymbol{a})\right) \wedge \sigma_{\phi}^{M}(\alpha, \boldsymbol{a}) \nless n\right\} \\
& \cup\left\{\alpha<\lambda: n=0 \wedge \neg P\left(\sigma_{\phi}^{M}(\alpha, \boldsymbol{a})\right) .\right.
\end{aligned}
$$

and then let $\bar{A}_{\sigma_{\phi}(x, w, \boldsymbol{a})}=\left\langle A_{n}^{\sigma_{\phi}(w, \boldsymbol{a})}: n<\omega\right\rangle$ and
(*) $\mathcal{A}=\left\{\bar{A}_{\sigma_{\phi}(x, \boldsymbol{a})}:\right.$ for some $\tau_{M}-\operatorname{term} \sigma_{\phi}(x, w, \mathbf{y})$ and $\left.\boldsymbol{a} \in{ }^{\lg (\mathbf{y})} M.\right\}$
Note $|\mathcal{A}|=\lambda$ as for each $\boldsymbol{a} \in M$ and each of the countably many terms $\sigma_{\phi}(x, w, \boldsymbol{a}) . \bar{A}_{\sigma_{\phi}(x, w, \boldsymbol{a})}$ is a map from ω into \mathbb{B}.

For each α, for each $0<m<\omega$ and $\bar{A}=\bar{A}_{\sigma_{\phi}(x, \alpha, \mathbf{b})}$, the set $\left\{m: \alpha \in A_{m}\right\}$ is finite, bounded by $\sigma_{\phi}(\alpha, \boldsymbol{a})$. Thus, clause i) of \boxplus is satisfied.

We now show Clause ii) of \boxplus. Let D be an arbitrary non-principal ultrafilter on λ and where $\psi(v, \mathbf{y})$ is a first order τ-formula such that \mathbf{y} and \boldsymbol{a} have the same length, define the type $p_{D}(x)=p(x)$ as:

$$
p(x)=\{\psi(v, \boldsymbol{a}):\{\alpha \in M: M \models \phi(\alpha, \boldsymbol{a})\} \in D\} .
$$

Since D is an ultrafilter, p is a complete type over M. So there is an elementary extension N of M where an element d realizes p. Let N be the Skolem hull of $M \cup\{d\}$. Since D is non-principal, so is p; thus, $N \neq M$. By Lemma 2.1.5, we can choose $c \in P^{N}-P^{M}$. Since, N is the Skolem hull of $M \cup\{d\}$ there is a Skolem term $\sigma(u, \mathbf{y})$ and $\boldsymbol{a} \in M$ such that $c=\sigma^{N}(d, \boldsymbol{a})$. Since $c \notin M$, for each $n \in P^{M}$, $N \models \bigwedge_{k<n} c \neq k$ so $N \models \bigwedge_{k<n} \sigma(d, \boldsymbol{a}) \neq k$ so $\bigwedge_{k<n} \sigma(x, \boldsymbol{a}) \neq k$ is in p. That is, for each $n, A_{n}^{\sigma_{\phi}(x, w, \boldsymbol{a})}$ is in D.

2.2 A P_{0}-maximal model in \boldsymbol{K}_{-1}

In this section we prove Theorem 2.2.4, invoking Theorem 2.1.2. To even state the new result, we need some new definitions as well as recalling Definition 1.2.7.

Definition 2.1 We say $M \in K_{-1}$ is P_{0}-maximal (in K_{-1}) if $M \subseteq N$ and $N \in K_{-1}$ implies $P_{0}^{M}=P_{0}^{N}$.

We now introduce the requirement that the Boolean algebras constructed will, when the atoms are factored out, be free. Moreover, different $c \in P_{2}^{N}$ generate disjoint collections of $F_{n}^{N}(c)$ as c varies. This strong requirement is used inductively in this section to construct the first approximation. The correction in Section 3 loses this disjointness (and thus freeness).
Definition 2.2 (Nicely Free) We say $M \in K_{-1}$ is nicely free when $\left|P_{1}^{M}\right|=\lambda$ and there is a sequence $\mathbf{b}=\left\langle b_{\alpha}: \alpha<\lambda\right\rangle$ such that
(a) $b_{\alpha} \in P_{1}^{M}-P_{4}^{M}$;
(b) $\left\langle b_{\alpha} / P_{4}^{M}: \alpha<\lambda\right\rangle$ generate P_{1}^{M} / P_{4}^{M} freely;
(c) there is a set $Y \subset P_{2}^{M}$ of cardinality λ and a sequence $\left\langle u_{c}: c \in Y\right\rangle$ of pairwise disjoint sets of distinct ordinals such that, with $u_{c}=\left\{F_{n}^{M}(c): n<\omega\right\}$ the collection of u_{c} partitions a subset of the basis $\left\langle b_{\alpha}: \alpha<\lambda\right\rangle$.

Definition 2.2.1 (uf (M)) For $M \in K_{-1}$, let $\operatorname{uf}(M)$ be the set of ultrafilters D of the Boolean Algebra P_{1}^{M} such that $D \cap P_{4,1}^{M}=\emptyset$ and for each $c \in P_{2}^{M}$ only finitely many of the $F_{n}^{M}(c)$ are in D.

For applications we rephrase this notion with the following terminology. For any $M \in \boldsymbol{K}_{-1}$ and $d \in P_{2}^{M}$, let $S_{d}^{M}(D)=\left\{n: F_{n}^{M}(d) \in D\right\}$. So $\mathrm{uf}(M)=\emptyset$ if and only iffor every ultrafilter D on P_{1}^{M}, there exists a $d \in P_{2}^{M}$ such that $S_{d}^{M}(D)$ is infinite.

We use the following standard properties of a Boolean algebra B and ideal I in proving Lemma 2.2.3 and Claim 2.2.7 from Definition 2.2.6.

Fact 2.2.2 $1 . b \wedge c \in I$ implies b / I and c / I are disjoint.
2. $b \Delta c \in I$ implies $b / I=c / I$.
3. $b-c \in I$ implies $b / I \leq c / I$.

For our collection of structures \boldsymbol{K}_{-1}, we can characterize P_{0}-maximality in terms of ultrafilters.

Lemma 2.2.3 An $M \in \boldsymbol{K}_{-1}$ is P_{0}-maximal if and only if $\operatorname{uf}(M)=\emptyset$.
Proof. Suppose $M \subset N$ with $N \in \boldsymbol{K}_{-1}$ and $d \in P_{0}^{N}-P_{0}^{M}$. Then $\{b \in M$: $\left.R^{N}(d, b)\right\}$ is an ultrafilter D_{0} of the Boolean algebra P_{1}^{M}. To see D_{0} is non-principal suppose there is a $b_{0} \in P_{1}^{M}$ such that $D_{0}=\left\{b \in M: b_{0} \leq b\right\}$. Note $b_{0}=G_{1}^{M}(a)$ for some $a \in P_{0}^{M}$. But $N \models G_{1}^{N}(d) \nsupseteq b_{0}$, contradicting $\{d\} \in D$.

For each $c \in P_{2}^{M}$, since $N \in \boldsymbol{K}_{-1}$, by clause 7 of Definition 1.2, for all $a \in P_{0}^{N}$ and all but finitely many $n, G_{1}^{N}(a) \not \leq F_{n}^{N}(c)$. Since $F_{n}^{N}(c)=F_{n}^{M}(c)$, only finitely many of the $F_{n}^{M}(c)$ can be in D_{0}, which implies $D_{0} \in \operatorname{uf}(M)$. By contraposition we have the right to left.

Conversely, if $D \in \operatorname{uf}(M)$, we can construct an extension by adding an element $d \in P_{0}^{N}$ satisfying $R^{N}(d, b)$ iff $b \in D$. Let P_{1}^{N} be the Boolean algebra generated by $P_{1}^{M} \cup\left\{G_{1}(d)\right\}$ modulo the ideal generated by $\left\{G_{1}^{N}(d)-b: b \in D\right\}$; this implies that in the quotient $G_{1}(d) \leq b$. (Compare Fact 2.2.2). Let $P_{2}^{N}=P_{2}^{M}$ and $F_{n}^{N}(c)=F_{n}^{M}(c)$. Since $D \in \operatorname{uf}(M)$, it is easy to check that $N \in \boldsymbol{K}_{-1}$.

Here is the main theorem of Section 2. The hypotheses $\lambda=2^{\mu}$ and λ is less than the first measurable cardinal were used essentially as the hypotheses for proving \boxplus, the existence of a uniformly \aleph_{1}-incomplete boolean algebra. But here we use \boxplus and don't rely again on these cardinal hypotheses. The argument here depends on $\lambda=\lambda^{\aleph_{0}}$, which follows from $\lambda=2^{\mu}$. Recall Definition 2.1 of P_{0}-maximal. By constructing a nicely free model, we introduce at this stage the independence requirements, needed in Section 3 to satisfy Definition 3.1.6, on the $F_{n}(c)$.

Theorem 2.2.4 If for some $\mu, \lambda=2^{\mu}$ and λ is less than the first measurable cardinal then there is a P_{0}-maximal model M in \boldsymbol{K}_{-1} such that $\left|P_{i}^{M}\right|=\lambda($ for $i=0,1,2)$, P_{1}^{M} is an atomic Boolean algebra, $\mathrm{uf}(M)=\emptyset$, and M is nicely free.

Proof. We first construct by induction a model in \boldsymbol{K}^{-1}. The hypothesis \boxplus appears in the construction in Specification f) and in the proof that the construction works in considering possibility 2 . We choose $M_{\epsilon}, D_{\epsilon}$ and other auxiliaries by induction for $\epsilon \leq \omega+1$ to satisfy the following specifications of the construction.

Construction 2.2.5 (Specifications) (a) For $\epsilon \leq \omega+1, M_{\epsilon}$ is a continuous increasing chain of members of K_{λ}^{-1} with each P_{1}^{M} atomic and $P_{1}^{M_{\omega+1}}=P_{1}^{M_{\omega}}$;
(b) For all $\epsilon \leq \omega,\left|P_{i}^{M_{\epsilon}}\right|=\lambda$ and $P_{i}^{M_{\omega}}=P_{i}^{M_{\omega+1}}$ for $i=0,1$;
(c) For all $\epsilon \leq \omega, P_{1}^{M_{\epsilon}} / P_{4}^{M_{\epsilon}}$ is a free Boolean algebra;
(d) (i) If $\epsilon<\omega, D_{\epsilon} \in \operatorname{uf}\left(M_{\epsilon}\right)$.
(ii) If $\epsilon=0$, then $\left\langle b_{-1, \alpha}: \alpha<\lambda\right\rangle$ is a free basis of $P_{1}^{M_{0}} / P_{4}^{M_{0}}$, listed without repetition, and $\left\langle F_{n}^{M_{0}}(c): n<\omega, c \in P_{2}^{M_{0}}\right\rangle$ lists $\left\langle b_{-1, \alpha}: \alpha<\lambda\right\rangle$ without repetition.
(iii) if $\epsilon=\zeta+1<\omega$ then there is a free basis $\left\langle b_{\zeta, \alpha} / P_{4}^{M_{\zeta}}: \alpha<\lambda\right\rangle$ of $P_{1}^{M_{\epsilon}} / P_{4}^{M_{\epsilon}}$ over $P_{1}^{M_{\zeta}} / P_{4}^{M_{\zeta}}$. Note $b_{\zeta, \alpha} \in P_{1}^{M_{\epsilon}}-P_{1}^{M_{\zeta}}$.
(e) if $\epsilon=\omega+1$, for each $\bar{d} \in{ }^{\omega}\left(P_{1}^{M_{\omega+1}}-P_{4}^{M_{\omega+1}}\right)$ such that for each $a \in P_{0}^{M_{\omega}}$ for all but finitely many $n, a \notin R\left(M_{\omega}, d_{n}\right)$, then for some $c \in P_{2}^{M_{\omega+1}}, F_{n}^{M_{\omega+1}}(c)=$ d_{n}; (We will in fact have that $P_{1}^{M_{\omega+1}}=P_{1}^{M_{\omega}}$ and $P_{4}^{M_{\omega+1}}=P_{4}^{M_{\omega}}$.)
(f) $\epsilon=\zeta+1<\omega$:

Let \mathbb{B} and \mathcal{A} be as in Definition 2.1.1. There is a $1-1$ function f_{ϵ} from λ onto $P_{4,1}^{M_{\epsilon}}$ such that:
i) for every $X \in \mathbb{B}$ (from $\boxplus)$ there is $a b=b_{X} \in P_{1}^{M_{\epsilon}}$ such that

$$
\left\{\alpha<\lambda: f_{\epsilon}(\alpha) \leq_{M_{\epsilon}} b_{X}\right\}=\{\alpha<\lambda: \alpha \in X\}
$$

ii) for each $\bar{A}=\left\langle A_{n}: n<\omega\right\rangle \in \mathcal{A}$ there is a $c \in P_{2}^{M_{\epsilon}}$ such that for each n :

$$
A_{n}=\left\{\alpha<\lambda: f_{\epsilon}(\alpha) \leq_{P_{1}^{M_{\epsilon}}} F_{n}^{M_{\epsilon}}(c)\right\}
$$

Carrying out the construction.

Below, the element $b_{\zeta, a_{\alpha}}$ is the $b_{A_{\alpha}}$ from Specification 2.2.5.f.(i).
case 1: When $\epsilon=0$, take $P_{1}^{M_{0}}$ as the Boolean algebra generated by a set $P_{4,1}^{M_{0}}$ of cardinality λ along with a set $\left\{b_{-1, \alpha}: \alpha<\lambda\right\}$ of independent subsets of $\mathcal{P}(\lambda)$. Let G_{1} be a bijection between a set $P_{0}^{M_{0}}$ and $P_{4,1}^{M_{0}}$. Set $P_{4}^{M_{0}}$ as the ideal generated by the image of G_{1}. For $a \in P_{0}^{M_{0}}$ and $b \in P_{1}^{M}$, define $R^{M_{0}}(a, b)$ to hold if $G_{1}(a) \leq b$. Set $P_{2}^{M_{0}}=\emptyset$ and so there are no F_{n}^{M} to define. Thus, any non-principal ultrafilter on $P_{1}^{M_{0}}$ is in $\operatorname{uf}\left(M_{0}\right)$.
case 2: For $\epsilon=\omega, M_{\omega}=\bigcup_{n<\omega} M_{n}$.
case 3: If $\epsilon=\zeta+1<\omega$, the main effort is to verify clauses (c), (d), and (f) of Specification 2.2.5.

Now, to construct M_{ϵ} :
i Recall that $D_{\zeta} \in \operatorname{uf}\left(M_{\zeta}\right)$.
ii choose a set $B_{\epsilon} \subseteq \mathcal{P}(\lambda)$; with $B_{\epsilon} \cap M_{\zeta}=\emptyset$ and $\left|B_{\epsilon}\right|=\lambda$ as the new atoms introduced at this stage.
iii Let f_{ϵ} be a one-to-one function from λ onto $B_{\epsilon} \cup P_{4,1}^{M_{\zeta}}$.
iv Let $\left\langle X_{\gamma}: \gamma<\lambda\right\rangle$ list the elements of \mathbb{B} from \boxplus.(ii) with $X_{0}=\emptyset$.
v Fix a sequence $\left\{b_{\zeta, \alpha}: \alpha<\lambda\right\}$, which are distinct and not in $M_{\zeta} \cup B_{\epsilon}$, and let $\mathbb{B}_{\zeta}^{\prime}$ be the Boolean Algebra generated freely by

$$
P_{1}^{M_{\zeta}} \cup\left\{b_{\zeta, \alpha}: \alpha<\lambda\right\} \cup\left\{f_{\epsilon}(\alpha): \alpha<\lambda\right\}
$$

Using Lemma 2.2.2, we apply the following definition at the successor stage.
Definition 2.2.6 (Ideal) Let I_{ζ} be the ideal of $\mathbb{B}_{\zeta}^{\prime}$ generated by:
(i) $\sigma\left(a_{0}, \ldots a_{m}\right)$ when $\sigma\left(x_{0}, \ldots x_{m}\right)$ is a Boolean term, $a_{0}, \ldots a_{m} \in P_{1}^{M_{\zeta}}$ and $P_{1}^{M_{\zeta}} \models \sigma\left(a_{0}, \ldots a_{m}\right)=0$.

The next two clauses aim to show that in M_{ζ} / I_{ζ}, the element $b_{\zeta, \gamma}$ is the $b_{X_{\gamma}}$ from Specification 2.2 .5 f.i). That is, $\left\{\alpha<\lambda: f_{\epsilon}(\alpha) \leq_{M_{\epsilon}} X_{\gamma}\right\}=\left\{\alpha<\lambda: \alpha \in X_{\gamma}\right\}$. Recall (Definition 2.1.1) that the X_{γ} enumerate \mathbb{B} and are subsets of λ.
(ii) $f_{\epsilon}(\alpha)-b_{\zeta, \gamma}$ when $\alpha \in X_{\gamma}$ and $\alpha, \gamma<\lambda$.
(iii) $b_{\zeta, \gamma} \wedge f_{\epsilon}(\alpha)$ when $\alpha \in \lambda-X_{\gamma}$ and $\alpha, \gamma<\lambda$.

To show the $f_{\epsilon}(\gamma)$ are disjoint atoms we add:
(iv) For any $f_{\epsilon}(\gamma)$ and any $b \in \mathbb{B}_{\zeta}^{\prime}$ either $\left(f_{\epsilon}(\gamma) \wedge b\right) \in I_{\zeta}$ or $\left(f_{\epsilon}(\gamma)-b\right) \in I_{\zeta}$.
(v) $f_{\epsilon}\left(\gamma_{1}\right) \wedge f_{\epsilon}\left(\gamma_{2}\right)$ when $\gamma_{1}<\gamma_{2}<\lambda$;
(vi) $f_{\epsilon}(\alpha)-b$ when $\alpha<\lambda, f_{\epsilon}(\alpha) \notin P_{4,1}^{M_{\zeta}}$ and $b \in D_{\zeta}$.

This asserts: Every new atom is below each $b \in D_{\zeta}$ and is used at the end of case 3 of the construction.

Let $\mathbb{B}_{\zeta}^{\prime \prime}=\mathbb{B}_{\zeta}^{\prime} / I_{\zeta}$. Applying Fact 2.2.2, we see from Definition 2.2.6:
Claim 2.2.7 The structure $P_{1}^{M_{\zeta}}$ is embedded as a Boolean algebra into $\mathbb{B}_{\zeta}^{\prime \prime}$ by the map $b \mapsto b / I_{\zeta}$ and

1. For $\gamma<\lambda, f_{\epsilon}(\gamma) / I_{\zeta}$ is an atom of $\mathbb{B}_{\zeta}^{\prime \prime}$;
2. If $b \in P_{1}^{M_{\zeta}}$ is non-zero, then $b I_{\zeta} \geq_{\mathbb{B}_{\zeta}^{\prime \prime}} f_{\epsilon}(\gamma)$ for some $\gamma<\lambda$.

We take a further quotient of $P_{1}^{M_{\zeta}}$. Let

$$
J_{\zeta}=\left\{b \in P_{1}^{M_{\zeta}}: b / I_{\zeta} \wedge_{\mathbb{B}_{\zeta}^{\prime \prime}} f_{\epsilon}(\gamma)=0 \text { for every } \gamma<\lambda\right\}
$$

Then J_{ζ} is an ideal of $P_{1}^{M_{\zeta}}$ extending I_{ζ} so $b \mapsto b / J_{\zeta}$ is a homomorphism. Further, $f_{\epsilon}(\gamma)$ is an atom of $P_{1}^{M_{\zeta}} / J_{\zeta}$ for $\gamma<\lambda$. These atoms are distinct and dense in $P_{1}^{M_{\zeta}} / J_{\zeta}$.

Notation 2.2.8 Let \mathbb{B}_{ϵ} be $P_{1}^{M_{\zeta}} / J_{\zeta}$.
Now we define M_{ϵ} by setting $P_{1}^{M_{\epsilon}}=\mathbb{B}_{\epsilon}$ which contains $P_{1}^{M_{\zeta}} . P_{4,1}^{M_{\epsilon}}$ is the injective image in $P_{1}^{M_{\epsilon}}$ of $P_{4,1}^{M_{\epsilon}} \cup B_{\epsilon}$. For $a \in P_{4,1}^{M_{\epsilon}}$ and $b \in P_{1}^{M_{\epsilon}}$ set $R^{M_{\epsilon}}(a, b)$ if some γ, $a=f_{\epsilon}(\gamma) / J_{\epsilon}$ and $f_{\epsilon}(\gamma) / J_{\epsilon} \leq_{\mathbb{B}_{\epsilon}} b / J_{\zeta}$. Finally, let D_{ϵ} be the ultrafilter on $P_{1}^{M_{\epsilon}}$ generated by

$$
D_{\zeta} \cup\left\{j_{\epsilon}\left(-b_{\zeta, \gamma}\right): \gamma<\lambda\right\} \cup\left\{j_{\epsilon}\left(-f_{\epsilon}(\gamma)\right): \gamma<\lambda\right\}
$$

By Claim 2.2.7, we have the cardinality and atomicity conditions of Specification 2.2.5.(a) and (b); the definition of I guarantees, (c) and (d).(ii), (d).(iii). We verify $M_{\epsilon} \in \boldsymbol{K}_{-1}$ below. The first set of new elements in D_{ϵ} show along with (our later) definition of $F_{n}^{M_{\epsilon}}(c)$ show $D_{\epsilon} \in \operatorname{uf}\left(M_{\epsilon}\right)$ (as no new $F_{n}\left(c\right.$ is in $\left.D_{\epsilon}\right)$; the second set show D_{ϵ} is non-principal. Note that Specification 2.2.5.(e) does not apply except in the $\omega+1$ st stage of the construction.

For Specification 2.2 .5 (f) (i), let X be a set of atoms of M_{ϵ} and note that we can choose b_{X} by conditions ii) and iii) in Definition 2.2.6 of I_{ζ}.

We can choose $P_{2}^{M_{\epsilon}}$ and $F_{n}^{M_{\epsilon}}$ to satisfy Specification 2.2 .5 (f) (ii). Fix an $\bar{A} \in \mathcal{A}$ (as given by \boxplus). Fix a $c=c_{\bar{A}}$ and define, using the last paragraph, the $F_{n}^{M_{\epsilon}}(c)$ as $b_{A_{n}}$, so that for each $n, A_{n}=\left\{\alpha<\lambda: f_{\epsilon}(\alpha) \leq_{P_{1}^{M_{\epsilon}}} F_{n}^{M_{\epsilon}}(c)\right\}$. These are the only new $c \in P_{2}^{M_{\epsilon}}$.

Thus, it remains only to show that $M_{\epsilon} \in \boldsymbol{K}_{-1}$. I.e., that M_{ϵ} satisfies Definition 1.2.(7):
(\diamond) If $a \in P_{4,1}^{M_{\epsilon}}$ and $c \in P_{2}^{M_{\epsilon}}$ then $\left(\forall^{\infty} n\right) a \nexists_{M_{\epsilon}} F_{n}^{M_{\epsilon}}(c)$.
If $c \in P_{2}^{M_{\zeta}}, F_{c}^{M_{\epsilon}}=F_{c}^{M_{\zeta}} \in P_{1}^{M_{\zeta}}$ and we know by induction that holds for $a \in P_{4,1}^{M_{\zeta}}$. For $a \in P_{4,1}^{M_{\epsilon}}-P_{4,1}^{M_{\zeta}}$, Definition 1.2.5. and condition (v) on I_{ζ} (from Definition 2.2.6) imply $a \leq_{M_{\epsilon}} b$ for every $b \in D_{\zeta}$. As $c \in P_{2}^{M_{\zeta}}$ and $D_{\zeta} \in \operatorname{uf}\left(M_{\zeta}\right)$, all but finitely many $e_{n}=F_{n}^{\zeta}(c)$, are not in D_{ζ}. So $e_{n}^{-} \in D_{\zeta}$. That is, $a \leq_{M_{\epsilon}} e_{n}^{-}$; so $a \wedge_{M_{\epsilon}} e_{n}=\emptyset$ as required.

If $c \in P_{2}^{M_{\epsilon}}-P_{2}^{M_{\zeta}}$ then by our choice of $P_{2}^{M_{\epsilon}}$ and the $F_{2}^{M_{\epsilon}}$, there is an \bar{A}_{c} that is enumerated by the $F_{2}^{M_{\epsilon}}(c)$ and satisfies by (i) of \boxplus (Definition 2.1.1.(i)). This completes the verification of at stage ϵ and the M_{ϵ} satisfies all the specifications of the induction.
case 4: $\epsilon=\omega+1$:
Only clauses (b) and (e) of Specification 2.2 .5 are relevant. Define $P_{2}^{M_{\epsilon}}$ and $F_{n}^{M_{\epsilon}}$ to satisfy clause (e). Since $P_{i}^{M_{\epsilon}}=P_{i}^{M_{\omega}}$ for $i=0,1$, specification c) is immediate. This completes the construction.

The construction suffices.

Having completed the induction, let $M=M_{\omega+1}$. Using specifications c) and d) of 2.2.5, it is straightforward to verify that $M \in \boldsymbol{K}_{-1}$ and the Boolean algebra is atomic. By (b), $M_{i}^{M_{\omega}}$ for $i=0,1$ have cardinality λ. And by (f), the same holds for $M_{2}^{M_{\omega}+1}$.

We now show M is nicely free. Let $\mathbf{b}=\left\langle b_{\beta}^{\prime}: \beta<\lambda\right\rangle$ enumerate $\left\langle b_{n, \alpha}: n<\right.$ $\omega, \alpha<\lambda\rangle$ without repetition. We show \mathbf{b} satisfies the requirements in Definition 2.2 of nicely free. By Specifications 2.2.5. (c), (d) and since P_{1}^{M} is constructed as the union of the $P_{1}^{M_{n}}, P_{1}^{M} / P_{4}^{M}$ is generated freely by \mathbf{b} / P_{4}^{M}. Finally, clause c) of Definition 2.2 holds by clause (d).ii) of Specification 2.2.5.

The crux is to show $M=M_{\omega+1}$ is P_{0}-maximal. For this, assume for a contradiction:
(*) P_{0}^{M} is not maximal; by Lemma 2.2.3, there is a $D \in \operatorname{uf}\left(M_{\omega+1}\right)=\operatorname{uf}\left(M_{\omega}\right)$. For every $n<\omega$,: is there a $d \in D$ such that $R\left(M_{\omega}, d\right) \cap M_{n}=\emptyset$?
 for each $a \in P_{0}^{M_{n}}, a \notin R\left(M_{\omega}, d_{m}\right)$ for all $m \geq n$. So the sequence $\bar{d}=\left\langle d_{n}: n<\omega\right\rangle$ satisfies the hypothesis of Specification 2.2.5.(e) and so there is a $c \in P_{2}^{M}$ such that for each $n<\omega, F_{n}^{M}(c)=d_{n}$. Thus, recalling Definition 2.2.1, $D \notin \operatorname{uf}(M)$.

Possibility 2: For some $n<\omega$, there is no such d_{n}; without loss of generality, assume $n>0$. We apply specification f) with $\epsilon=n$. Recall that f_{n} is a 1-1 map from λ onto $P_{4,1}^{M_{n}}$. Let g_{1} be the following homomorphism from the Boolean algebra $P_{1}^{M_{\omega+1}}=P_{1}^{M_{\omega}}$ into $\mathcal{P}(\lambda): g_{1}(b)=\left\{\alpha<\lambda: f_{n}(\alpha) \leq_{\mathbb{B}_{M_{\omega}}} b\right\}$. By Specification f.i) of 2.2 .5 , the Boolean algebra \mathbb{B} provided by \boxplus is contained in the range of g_{1}.

Let \mathcal{I}_{n} denote the ideal of P_{1}^{M} generated by $P_{4,1}^{M}-P_{4,1}^{M_{n}}$. Since D is non-principal, $\mathcal{I}_{n} \cap D=\emptyset$. Now, g_{1} maps any $b \in P_{1}^{M_{\omega}}-P_{4}^{M_{\omega}}$ (and, thus, any $b \in P_{1}^{M_{\omega}}-\mathcal{I}_{n}$) to a nonempty subset of λ. Recalling $\mathcal{I}_{n} \cap D=\emptyset, g_{1}$ embeds the quotient algebra $P_{1}^{M_{\omega+1}} / \mathcal{I}_{n}$ into the Boolean Algebra $\mathcal{P}(\lambda)$. Hence, $D_{1}=g_{1}^{\prime \prime}(D)$ is an ultrafilter of the Boolean Algebra $\operatorname{rg}\left(\mathrm{g}_{1}\right)$ and so $D_{2}=D_{1} \cap \mathbb{B}$ is an ultrafilter of the Boolean algebra \mathbb{B}. We show, for any $\alpha<\lambda,\{\alpha\} \notin D_{2}$. As, $f_{n}(\alpha) \in P_{4,1}^{M_{\omega}}$ and so $\left\{f_{n}(\alpha)\right\}$ is not in D. So $\{\alpha\} \notin D_{1}$. Thus, $\lambda-\{\alpha\} \in D_{1}$ and so $\lambda-\{\alpha\} \in D_{2}$. So $\{\alpha\} \notin D_{2}$ as promised.

Now we apply the second clause of \boxplus to the ultrafilter D_{2}. Since we satisfied specification f.ii) in the construction, we can conclude there is $\bar{A}=\left\langle A_{n}: n<\omega\right\rangle \in \mathcal{A}$ such that for infinitely many k, A_{k} is in D_{2}. Thus, $u=\left\{k: A_{k} \in D\right\}$ is infinite. We will finish the proof by showing there is a c such that $u=u_{c}$ (Definition 2.2) is the set of images of the $F_{n}^{M}(c)$.

Since each $A_{k} \in \mathbb{B}, A_{k} \in \operatorname{rg}\left(\mathrm{~g}_{1}\right)$. So we can choose $d_{k} \in P_{1}^{M_{\omega}}$ with $g_{1}\left(d_{k}\right)=A_{k}$. As $A_{k} \in D_{2}$, by the choice of D_{1}, D_{2} we have d_{k} is in the ultrafilter D from the hypothesis for contradiction: $(*)$.

We show the sequence $\bar{d}=\left\langle d_{k}: k<\omega\right\rangle$ satisfies the hypothesis of clause e of Specification 2.2.5. First, $d_{k} \in P_{1}^{M_{\omega}}-P_{4}^{M_{\omega}}$ as D is a non-principal ultrafilter on $P_{1}^{M_{\omega}}$ so the first hypothesis is satisfied. Further, for every $a \in P_{0}^{M_{\omega}}$ all but finitely many $k, G_{1}^{M_{\omega}}(a) \not ڭ_{M_{\omega}} d_{k}$ because $\bar{A} \in \mathcal{A}$, which implies by \boxplus ii) that for every $\alpha<\lambda$, for some k_{α}, we have $k \geq k_{\alpha}$ implies $\alpha \notin A_{k}$. Now by the definition of g_{1}, recalling $g_{1}\left(d_{k}\right)=A_{k}$, we have $k \geq k_{\alpha}$ implies $f_{k}(\alpha) \nsubseteq d_{k}$ (in $P_{1}^{M_{\omega}}$). So by

Specification 2.2.5. f.ii), there is a $c \in P_{2}^{M_{n}}$ such that if for all $k<\omega, F_{k}^{M_{n}}(c)=d_{k}$. So, for each finite $k, d_{k} \in D$ and $F_{k}^{M_{\omega+1}}(c)=d_{k}$. This contradicts $D \in \operatorname{uf}\left(M_{\omega+1}\right)$ and we finish.

3 Correcting M_{*} to a model of \boldsymbol{K}_{2}

We now 'correct' the structure M_{*} constructed in Section 2 of a P_{0}-maximal model of \boldsymbol{K}_{-1} to to obtain a P_{0}-maximal model M (Definition 2.1) of the complete sentence constructed in [BS17a], i.e. $M \in \boldsymbol{K}_{2}$. In Theorem 3.18 we modify M_{*}, to construct a model $M \in \boldsymbol{K}_{2}$ with $P_{2}^{M} \subseteq P^{M_{*}}$ and redefining the F_{n}^{M}, but retaining $M \upharpoonright$ $\left(P_{0}^{M} \cup P_{1}^{M}\right)=M_{*} \upharpoonright\left(P_{0}^{M_{*}^{*}} \cup P_{1}^{M_{*}}\right)$. The old values of $F_{n}^{M_{*}}$ will be used to divide the work of ensuring each ultrafilter D is not in uf (M) by for each D attending to only those c with infinitely many $F_{n}(c)$ in D.

For this we need to introduce some terminology from [BS17a]. We first describe the finitely generated models.
Definition 3.1 ($\boldsymbol{K}_{<\aleph_{0}}^{1}$ Defined) M is in the class of structures $\boldsymbol{K}_{<\aleph_{0}}^{1}$ if $M \in \boldsymbol{K}_{\aleph_{0}}^{-1}$ and there is a witness $\left\langle n_{*}, \boldsymbol{B}, b_{*}\right\rangle$ such that:

1. $b_{*} \in P_{1}^{M}$ is the supremum of the finite joins of atoms in P_{1}^{M}. Further, for some $k, \bigcup_{j \leq k} P_{4, j}^{M}=\left\{c: c \leq b_{*}\right\}$ and for all $n>k, P_{4, n}^{M}=\emptyset$.
2. $\boldsymbol{B}=\left\langle B_{n}: n \geq n_{*}\right\rangle$ is an increasing sequence of finite Boolean subalgebras of P_{1}^{M}.
3. $B_{n_{*}} \supsetneq\left\{c \in P_{1}^{M}: c \leq b_{*}\right\}=P_{4}^{M}$; it is generated by the subset $P_{4}^{M} \cup$ $\left\{F_{n}^{M}(c): n<n_{*}, c \in P_{2}^{M}\right\}$.
Moreover, the Boolean algebra $B_{n_{*}}$ is free over the ideal P_{4}^{M} (equivalently, $B_{n_{*}} / P_{4}^{M}$ is a free Boolean algebra ${ }^{2}$).
4. $\bigcup_{n \geq n_{*}} B_{n}=P_{1}^{M}$.
5. P_{2}^{M} is finite and not empty. Further, for each $c \in P_{2}^{M}$ the $F_{n}^{M}(c)$ for $n<\omega$ are independent over $\{0\}$.
6. The set $\left\{F_{m}(c): m \geq n_{*}, c \in P_{2}^{M}\right\}$ (the enumeration is without repetition) is free from $B_{n_{*}}$ over $\{0\} . B_{n_{*}} \supsetneq P_{4}^{M}$ and $F_{m}(c) \wedge b_{*}=0$ for $m \geq n_{*}$. (In this definition, $0=0^{P_{1}^{M}}$.)
In detail, let $\sigma\left(\ldots x_{c_{i}} \ldots\right)$ be a Boolean algebra term in the variables $x_{c_{i}}$ (where the c_{i} are in P_{2}^{M} which is not identically 0 . Then, for finitely many $n_{i} \geq n_{*}$ and a finite sequence of $c_{i} \in P_{2}^{M}$:

$$
\sigma\left(\ldots F_{n}\left(c_{i}\right) \ldots\right)>0
$$

and some $n<\omega$. Further, for any non-zero $d \in B_{n_{*}}$ with $d \wedge b_{*}=0$, (i.e. $\left.d \in B_{n}-P_{M}^{4}\right)$,

$$
\sigma\left(\ldots F_{n_{i}}(c) \ldots\right) \wedge d>0
$$

[^2]7. For every $n \geq n_{*}, B_{n}$ is generated by $B_{n_{*}} \cup\left\{F_{m}(c): n>m \geq n_{*}, c \in P_{2}^{M}\right\}$. Thus P_{1}^{M} and so M is generated by $B_{n_{*}} \cup P_{2}^{M}$.

Note that the free generation in item 6 of Definition 3.1 is not preserved by arbitrary direct limits and so is not a property of each model in \boldsymbol{K}_{1}. In particular, as M_{*} is corrected to a model of \boldsymbol{K}_{1}, we check this property only for finitely generated submodels as it will be false in general.

Recall some terminology from [BS17a].

Definition $3.2\left(\boldsymbol{K}_{2}\right.$ Defined) 1. \boldsymbol{K}_{1} denotes the collection of all direct limits of models in $\boldsymbol{K}_{<\aleph_{0}}^{1}$.
2. We say a model M in \boldsymbol{K}_{1} is rich iffor any $N_{1}, N_{2} \in \boldsymbol{K}_{<\aleph_{0}}^{1}$ with $N_{1} \subseteq N_{2}$ and $N_{1} \subseteq M$, there is an embedding of N_{2} into M over N_{1}.
3. \boldsymbol{K}_{2} is the class of rich models.

Since $\boldsymbol{K}_{<\aleph_{0}}^{1}$ has joint embedding, amalgamation and only countably many finitely generated models, we construct in the usual way a generic model, thus \boldsymbol{K}_{2} is not empty.

Fact 3.3 There is a countable generic model M for \boldsymbol{K}_{0} (Corollary 3.2.19 of [BS17a]). We denote its Scott sentence by $\phi . \boldsymbol{K}_{2}$ is the class of models of this ϕ; it can also be thought of as the class of rich models in \boldsymbol{K}_{1}.

We now describe some of the salient properties of the model M obtained by 'correcting' the M_{*} of Section 2.

Remark 3.4 (The Corrections) 1. The structures constructed in this Section are

 subsets of M_{*}; the F_{n} are redefined so the new structures are substructures only of the reduct of M_{*} to $\tau-\left\{F_{n}: n<\omega\right\}$.2. In particular, for all the M considered here $P_{1}^{M}=P_{1}^{M_{*}}$ and these Boolean algebras have the same set of ultrafilters. However, $\operatorname{uf}(M) \neq \operatorname{uf}\left(M^{*}\right)$ as the definition of uf depends on properties of the F_{n}.
3. The set $\left\{F_{n}^{M}(c): c \in P_{2}^{M}\right\}$ is not required to be an independent subset in \boldsymbol{K}_{-1}; the final constructed model is not nicely free.
4. Claim 3.15 demands a sequence of finite Boolean algebras B_{n} to witness membership in \boldsymbol{K}_{1} (not required for \boldsymbol{K}_{-1}) in Section 2 and [BS17a].
5. In [BS17a], the proof that a non-maximal model in λ makes λ measurable depends on \diamond.

The main task of this section is to prove:
Theorem 3.5 If λ is less that the first measurable cardinal and for some $\mu, 2^{\mu}=\lambda$ and $2^{\aleph_{0}}<\lambda$, then there is a P_{0}-maximal model in \boldsymbol{K}_{2} of cardinality λ.

Context 3.6, summarises the results of the construction in Theorem 2.2.4, specifically to fix our assumptions for this section. The requirement that for some $\mu, 2^{\mu}=\lambda$ is needed only to guarantee (by Theorem 2.2.4) there is a model M_{*} in λ satisfying Context 3.6.

Context 3.6 1. $P_{1}^{M_{*}}$ is an atomic Boolean algebra and M_{*} is P_{0}-maximal. Further, $\left|P_{i}^{M_{*}}\right|=\lambda$ for $i=0,1$.
2. $P_{4,1}^{M_{*}}$ is the set of atoms of M_{*}.
3. M_{*} is nicely free (Definition 2.2); in particular, $P_{1}^{M_{*}} / P_{4}^{M_{*}}$ is a free Boolean algebra of cardinality λ.

In order to 'correct' M_{*} to a model in \boldsymbol{K}_{2}, we lay out some notation for the generating set of $P_{1}^{M_{*}}$, the free basis of the boolean algebra $P_{1}^{M_{*}} / P_{4}^{M_{*}}$, and the indexing of the tasks performed in the construction.

Notation 3.7 We define a family of trees of sequences:

1. Let $\mathcal{T}_{\alpha}=\{\langle \rangle\} \cup\left\{\widehat{\alpha \eta} ; \eta \in{ }^{<\omega} 3\right\}$ and $\mathcal{T}=\bigcup_{\alpha<\lambda} \mathcal{T}_{\alpha}$.
2. $\lim \left(\mathcal{T}_{\alpha}\right)$ is the collection of paths through \mathcal{T}_{α}.

Combining the specifications for constructing M_{*} (Specification 2.2.5) and the Definition 2.2 of nicely free,

Claim 3.8 (Fixing Notation) Without loss of generality, we may assume:

1. The universe of M_{*} is λ and the 0 of $P_{1}^{M_{*}}$ is the ordinal 0.
2. We can choose sequences of elements of $P_{1}^{M_{*}}, \mathbf{b}=\left\langle b_{\eta}: \eta \in \mathcal{T}\right\rangle$ so that their images in the natural projection of $P_{1}^{M_{*}}$ on $P_{1}^{M_{*}} / P_{4}^{M_{*}}$ freely generate $P_{1}^{M_{*}} / P_{4}^{M_{*}}$.
3. For every $a \in P_{4,1}^{M_{*}}$ and the even ordinals $\alpha<\lambda$, for some n, for any $\nu, \rho \in \mathcal{T}_{\alpha}$ with $\lg (\eta) \geq n$ and $\lg (\rho) \geq n, a \leq_{P_{1}^{M_{*}}} b_{\nu}$ if and only if $a \leq_{P_{1}^{M_{*}}} b_{\rho}$.

Proof. The only difficulty is deducing from c) of Definition 2.2 (nicely free) that 3) holds. For that, for even α, let $\left\{b_{\omega \alpha+n}^{\prime}: n<\omega\right\}$ enumerate $u_{c}=\left\{F_{n}^{M_{*}}(c): n<\omega\right\}$ (from Definition 2.2.c) for the α th c in some enumeration of $P_{2}^{M_{*}}$. Now for $\alpha>0$, let $\left\langle b_{\eta}: \eta \in \mathcal{T}_{\alpha} \backslash\{\langle \rangle\}\right\rangle$ list $\left\{b_{\omega \alpha+n}^{\prime}: n<\omega\right\}$ without repetition and $\left\langle b_{\eta}: \eta \in \mathcal{T}_{0}\right\rangle$ list $\left\{b_{n}^{\prime}: n<\omega\right\}$.

By Definition 1.2 .7 we have. For every $a \in P_{4,1}^{M_{*}}$ for all but finitely many n, $a \cap b_{\omega \alpha+n}^{\prime}=0_{P_{4,1}^{M_{*}}}$; whence for even α all but finitely many of the $\nu \in \mathcal{T}_{\alpha}$ with $\nu(\alpha) \neq 0, a \cap b_{\nu}=0_{P_{4,1} M_{*}}$. Since for each n, the intersection of the $F_{n}(c)$ is empty, clause (3) follows as for all sufficiently large $n, a \not \leq F_{n}(c)$.

Note that Claim 3.8 provides a 1-1 map from $P_{2}^{M_{*}}$ to ordinals less than λ. We introduce the collection of models which is the starting point for the following construction.

Definition 3.9 $\left(\mathbb{M}_{1}\right.$ Defined) Let $\mathbb{M}^{1}=\mathbb{M}_{\lambda}^{1}$ be the set of $M \in K_{-1}$ such that the universe of M is contained in λ, the universe of M_{*}, and for $i<2, P_{i}^{M}=P_{i}^{M_{*}}$, $M \upharpoonright\left(P_{0}^{M} \cup P_{1}^{M}\right)=M_{*} \upharpoonright\left(P_{0}^{M_{*}} \cup P_{1}^{M_{*}}\right)$ while $P_{2}^{M} \subseteq P_{2}^{M_{*}}$.

The posited M_{*} differs from any $M \in \mathbb{M}_{1}$ only in that P_{2}^{M} may be a proper subset of $P_{2}^{M *}$ and the $F_{n}^{M}(c)$ need not equal the $F_{n}^{M_{*}}(c)$.

We now spell out the tasks which must be completed to correct M_{*} to the required member of \boldsymbol{K}_{2}. The $F_{n}^{M_{*}}(c)$ are used as oracles.

Definition 3.10 1. Let \boldsymbol{T}_{1}, the set of 1-tasks, be the set of pairs $\left(N_{1}, N_{2}\right)$ such that:
(a) $N_{1} \subseteq N_{2} \subseteq \lambda$
(b) $N_{1}, N_{2} \in \boldsymbol{K}_{<\aleph_{0}}^{1}$
(c) $N_{1} \subset M$ for some $M \in \mathbb{M}_{1}$.
2. Let \boldsymbol{T}_{2}, the set of 2-tasks, be the set of $c \in P_{2}^{M_{*}}$.
3. $\boldsymbol{T}=\boldsymbol{T}_{1} \cup \boldsymbol{T}_{2}$.
4. Let $\left\langle\mathbf{t}_{\alpha}: \alpha<\lambda\right\rangle$ enumerate \boldsymbol{T}.

Note $\left|\boldsymbol{T}_{1}\right|=\left|\boldsymbol{T}_{2}\right|=|\boldsymbol{T}|$.
Definition 3.11 The task \mathbf{t} is relevant to the structure M if $M \in \mathbb{M}_{1}$ and i) if \mathbf{t} is 1-task $\left(N_{1}, N_{2}\right)$ then $N_{1} \subseteq M$ or ii) if t is a 2-task $\{c\}$ and $c \in P_{2}^{M_{*}}$.

We say $M \in \mathbb{M}_{1}$ satisfies the task \mathbf{t} if either:
A) $\mathbf{t}=\left(N_{1}, N_{2}\right) \in \boldsymbol{T}_{1}$ (so $N_{1} \subset M$) and there exists an embedding of N_{2} into M over N_{1}.
B) $\mathbf{t}=\{c\}$, where $c \in P_{2}^{M_{*}}$, is in \boldsymbol{T}_{2} and for every ultrafilter D on P_{1}^{M}, such that for infinitely many $n, F_{n}^{M_{*}}(c) \in D$, there is a $d \in P_{2}^{M}$ such that for infinitely many $n, F_{n}^{M}(d) \in D$.

Recall Definition 2.2.1 of $\operatorname{uf}(M)$ and Lemma 2.2.3 connecting $u f(M)$ with $P_{0^{-}}$ maximality of M.

Claim 3.12 If $M \in \mathbb{M}_{1}$ satisfies all tasks in \boldsymbol{T} and is in \boldsymbol{K}_{1} then M is P_{0}-maximal and, in particular, satisfying the tasks in \boldsymbol{T}_{1} guarantees it is in \boldsymbol{K}_{2}.

Proof. For P_{0}-maximality of M, it suffices, by Lemma 2.2.3, to show $u f(M)=\emptyset$. But, since $\operatorname{uf}\left(M_{*}\right)=\emptyset$, for every ultrafilter D on $P_{1}^{M_{*}}$ there is $c \in P_{2}^{M_{*}}$ with $S_{c}^{M *}(D)$ infinite and satisfying task c means there is $d \in P_{2}^{M}$ such that $S_{d}^{M}(D)$ is infinite and so not in $\operatorname{uf}(M)$. Since M and M^{*} have the same ultrafilters, this implies $\mathrm{uf}(M)=\emptyset$, as required. The second assertion follows by realizing that satisfying all the tasks in \boldsymbol{T}_{1} establishes the model is rich, which suffices by Fact 3.3.

Thus our job is reduced to showing each ultrafilter D is countably incomplete. Definition 3.13 lays out the use of the generating elements b_{η} in correcting the $F_{n}^{M *}$ to
require independence while maintaining that infinite intersections of members of the ultrafilter under consideration are empty. The infinite sequence η_{d} will guide the choice of possibilities for $F_{n}(d)$.

We define a class $\mathbb{M}_{2} \subseteq \mathbb{M}_{1}$ such that for each $d \in P_{2}^{M} \in \mathbb{M}_{2}$ there is an ordinal α_{d}, a tree of elements of P_{1}^{M}, indexed by sequences in $\mathcal{T}_{\alpha_{d}} \subseteq{ }^{<\omega} 3$, a target path η_{d} through that tree and a sequence $a_{d, n}$, whose indices are not in $\mathcal{T}_{\alpha_{d}}$, but which satisfy that each $a \in P_{4,1}^{M_{*}}=P_{4,1}^{M}$ is in at most finitely many $a_{d, n}$. Further, elements indexed by \mathcal{T}_{α} are combined with the $a_{d, n}$ to get values of the $F_{n}^{M}(d)$ which are both independent and satisfy $\bigcap_{n<\omega} F_{n}^{M}(d)=\emptyset$.

Definition $3.13\left(\mathbb{M}_{2}\right.$ Defined) Let \mathbb{M}_{2} be the set of $M \in \mathbb{M}_{1}$ such that there is a sequence $w=\left\langle\left(\alpha_{d}, \eta_{d}, a_{d, n}\right): d \in P_{2}^{M}, n<\omega\right\rangle$ witnessing the membership, which means:

A (a) For each $d \in P_{2}^{M}, \alpha_{d}<\lambda$ is even and $d_{1} \neq d_{2}$ implies $\eta_{d_{1}} \neq \eta_{d_{2}}$. (Note that it is possible that $d_{1} \neq d_{2}$ while $\alpha_{d_{1}}=\alpha_{d_{2}}$.)
(b) $\left\langle\alpha_{d}\right\rangle \triangleleft \eta_{d} \in \lim \left(\mathcal{T}_{\alpha_{d}}\right)$.
B The $a_{d, n}$ are in $P_{1}^{M_{*}}$ and for each $d \in P_{2}^{M}$ and $n<\omega$, there $\operatorname{are}^{3} \nu_{1}[d, n] \neq$ $\nu_{2}[d, n]$ in ${ }^{n+1} 3$ such that:
(a) For a fixed function $\mathbf{n}_{M}: P_{2}^{M} \rightarrow \omega$, we have, for every $n \geq \mathbf{n}_{M}(d)$:

$$
F_{n}^{M}(d)=\left(b_{\nu_{1}[d, n]} \Delta b_{\nu_{2}[d, n]}\right) \Delta a_{d, n}
$$

For $n<\mathbf{n}_{M}(d), F_{n}^{M}(d)=F_{n}^{M_{*}}(d)$.
(b) $\eta_{d} \upharpoonright n \triangleleft \nu_{1}[d, n]$ and $\eta_{d} \upharpoonright n \triangleleft \nu_{2}[d, n]$;
(c) for each $a \in P_{4,1}^{M_{*}}$ and each $d \in P_{2}^{M}$, there are only finitely many n with $a \leq_{P_{1}^{M_{*}}} a_{d, n}$.
C For each $Y \subseteq P_{2}^{M}$ there is a list $\left.\left\langle d_{\ell}: \ell<\right| Y \mid\right\}$ of Y such that: $(*)$ for every $\ell<|Y|$, letting α_{ℓ} abbreviate $\alpha_{d_{\ell}}$, we have

$$
\begin{array}{lcc}
W_{\ell}=\left\{a_{d_{k}, n}: k \leq \ell \wedge n<\omega\right\} & \cup & \left\{b_{\nu}: \nu(0) \neq \alpha_{\ell}, \alpha_{k} \neq \alpha_{\ell}\right\} \\
& \cup \quad\left\{F_{i}^{M}\left(d_{k}\right): i<\mathbf{n}_{M}\left(d_{k}\right), k \leq \ell, d_{k} \neq d_{\ell}\right\}
\end{array}
$$

is included in the subalgebra \mathbb{B}_{ℓ} of $P_{1}^{M_{*}}$ generated by

$$
\left\{b_{\nu}: \nu(0) \neq \alpha_{\ell} \wedge \nu \in \mathcal{T}\right\} \cup\left\{b_{\langle \rangle}\right\} \cup P_{4,1}^{M_{*}} .
$$

(a) The d_{ℓ} list Y without repetition.
(b) If $i_{1}<i_{2}<i_{3}<|Y|$ and $\alpha_{i_{1}}=\alpha_{i_{3}}$ then $\alpha_{i_{2}}=\alpha_{i_{1}}$.

The following facts about the relation of symmetric difference and ultrafilters are central for calculations below.

[^3]Remark 3.14 Recall that the operation of symmetric difference is associative.

1. (for 3.15) Suppose $\mathbb{B}_{1} \subseteq \mathbb{B}_{2}$ are Boolean algebras with $a \in \mathbb{B}_{1}$, and $b \neq c$ are in \mathbb{B}_{2}, and $\{b, c\}$ is independent over \mathbb{B}_{1} in \mathbb{B}_{2}. Then

The element $(b \Delta c) \Delta a \in \mathbb{B}_{2}$ is independent from \mathbb{B}_{1}.
Starting from infinite independent sequences $\mathbf{b}_{1}, \mathbf{b}_{2} \in P_{1}^{M_{*}}$ and an infinite independent sequence of $a_{d, n}$ we can prove by induction that the $F_{n}^{M}(d)$ (as defined in Definition 3.13. 2a) are independent.
2. (for 3.18) Let D be an ultrafilter on a Boolean algebra \mathbb{B}. Note:
$(a \in D$ iff $b \in D)$ if and only if $a \Delta b \notin D$.
If $a_{0}, a_{1}, a_{2} \in \mathbb{B}$ are distinct and $\left(a_{0} \in D\right.$ iff $\left.a_{1} \in D\right)$ then at least one of $a_{i} \Delta a_{j} \notin D$ (since the intersection over all pairs i, j of the $a_{i} \Delta a_{j}$ is empty).
More importantly for our use later, $\left(a_{0} \in D\right.$ iff $\left.a_{1} \in D\right)$ iff

$$
\left(a_{0} \Delta a_{1} \Delta a_{2}\right) \in D \leftrightarrow a_{2} \in D
$$

3. (for 3.18) 2) implies that if D is an ultrafilter of \mathbb{B}_{2} and $(b \in D \leftrightarrow c \in D)$ and $a \notin D$ then

- $b \triangle c \notin D$
- $(b \triangle c) \triangle a \notin D$.

We will show in Theorem 3.15 that members of \mathbb{M}_{2} are in \boldsymbol{K}_{1} and then in Theorem 3.18 that there are structures in \mathbb{M}_{2} that are in \boldsymbol{K}_{2}. Two main features distinguish \boldsymbol{K}_{1} from \boldsymbol{K}_{-1}. The $F_{n}(d)$ retain the intersection properties from \boldsymbol{K}_{-1} but also must be independent; membership of an M in \boldsymbol{K}_{1} from [BS17a] must be witnessed by the construction for a countable substructure $M^{\prime} \subset M$ of a family of finite Boolean algebras satisfying Definition 3.1.2 and .3.

Theorem 3.15 If $M \in \mathbb{M}_{2}$, then $M \in \boldsymbol{K}_{1}$.
Proof. Let $Y \subset P_{2}^{M}$ and $X \subset P_{1}^{M}$ be finite ; we shall find $N \in \boldsymbol{K}_{<\aleph_{0}}^{1}$ such that $Y \cup X \subseteq N \subseteq M$; this suffices. As, \boldsymbol{K}_{1} is defined to be the direct limits of of finitely generated structures in $\boldsymbol{K}_{<\aleph_{0}}^{1}$.

Our two main tasks are to find such an N in which i) the F_{n}^{N} satisfy property 6 of Definition 3.1 and ii) there is a sequence of finite Boolean algebras $\mathbb{B}_{k_{n}}$ witnessing 2 and 3 of Definition 3.1. First we attack i).

Let the sequence $\left\langle\left(\alpha_{d}, \eta_{d}, a_{d, k}\right): d \in P_{2}^{M}, k<\omega\right\rangle$ witness $M \in \mathbb{M}_{2}$ as in Definition 3.13. Let $\left\langle d_{i}: i<n\right\rangle$ enumerate Y without repetition and denote, for $i<n, \eta_{d_{i}}$ by η_{i} and $\alpha_{d_{i}}$ by α_{i}. Without loss, the $\left\langle\eta_{i}(0): i<n\right\rangle$ are non-decreasing. Fix k_{1} such that

- $k_{1} \geq n_{M}\left(d_{i}\right)$ (see Definition 3.13.B) for all $i<n$,
- $\left\langle\eta_{i} \upharpoonright k_{1}: i<n\right\rangle$ are distinct for $i<n$, and
- $X_{0}=X \cup\left\{F_{k}^{M}\left(d_{i}\right): i<|Y|=n, k \leq \mathbf{n}_{M}\left(d_{i}\right)\right\}$ is contained in the subalgebra generated by $\left\{b_{\nu}: \eta_{i} \upharpoonright k_{1} \nexists \nu\right.$ for $\left.i<|Y|\right\} \cup\left\{b_{\langle \rangle}\right\} \cup P_{4,1}^{M}$.
(By clause C of Definition 3.13, none of the $F_{k}^{M}\left(d_{i}\right)=b_{\sigma}$ where $\sigma(0)$ is equal to an α_{i} with $i<n$. We can avoid X by choosing k_{1} big enough.)

To establish task i) we need the following claim.
Claim 3.16 $A=\left\langle F_{k}^{M}\left(d_{i}\right): k \geq k_{1}\right.$ and $\left.i<n\right\rangle$ is independent in P_{1}^{M} over X_{0} modulo the atoms.

Proof. We prove this claim by showing by induction on $\ell \leq|Y|=n$:

$$
\left(\oplus_{\ell}\right) A_{\ell}=\left\langle F_{k}^{M}\left(d_{i}\right): k \geq k_{1} \text { and } i<\ell\right\rangle
$$

is independent in P_{1}^{M} over X_{ℓ} modulo the atoms, where we have defined X_{0} and for $0<\ell \leq|Y|$,

$$
X_{\ell+1}=X_{\ell} \cup\left\{F_{k}^{M}\left(d_{i}\right): k<k_{1}, i<\ell\right\} .
$$

Note that $A=A_{n}$. The independence of A_{ℓ} over all the $F_{k}^{M}\left(d_{i}\right)$ with $d_{i} \in Y$ for $k<n_{M}\left(d_{i}\right)$ is clear since they are in X_{0}. For $i<\ell \leq|Y|$, the induction on ℓ shows incrementally, at stage ℓ, the independence of the tail of the $F_{k}^{M}\left(d_{\ell}\right)$ over the $F_{k}^{M}\left(d_{i}\right)$ for $n_{M}\left(d_{i}\right) \leq k<k_{1}$.

Now by Definition 3.13.C, $X_{\ell} \subseteq W_{\ell}$ is contained in $\check{\mathbb{B}}_{\ell}$, the subalgebra generated by

$$
Z_{\ell}=\left\{b_{\nu}: \nu_{d_{\ell}} \upharpoonright k_{\ell+1} \nexists \nu\right\} \cup\left\{b_{\langle \rangle}\right\} \cup P_{4,1}^{M} .
$$

We verify this assertion by careful comparison of the definition of Z_{ℓ} with that of W_{ℓ} in Definition 3.13.C. Think of the $\mathscr{B}_{\ell} \subseteq \mathbb{B}_{\ell}$ as omitting certain cones among the b_{ν}. The crucial point is that $b_{\nu_{1}\left[d_{\ell}, n\right]}$ and $b_{\nu_{2}\left[d_{\ell}, n\right]}$ are not in \mathbb{B}_{ℓ}. Thus, Claim 3.8.2 and Definition 3.13.B imply the infinite set $\left\{b_{\nu_{i}\left[\eta_{\ell}, k\right]}: i \in\{0,1\}, k \geq k_{1},\right\rangle$ is independent over $\check{\mathbb{B}}_{\ell}$. For convenience we write $a_{k, i}$ for $a_{d_{k}, i}$. Looking at the first term in the union in Definition 3.13.C, and comparing X_{ℓ} with the generators of W_{ℓ} in that definition, each $a_{k, i}$, for $k<\ell, i<\omega$ is in $\check{\mathbb{B}}_{\ell}$, and for each $k<\ell$ and $i<\mathbf{n}\left(d_{\ell}\right), F_{i}^{M}\left(d_{k}\right) \in$ $\check{\mathbb{B}}_{\ell}$ (3rd term of the definition of Z_{ℓ}). Compare also the definition of $\eta_{d_{i}}$ in $\mathrm{A}(\mathrm{b})$ of Definition 3.13.

Using the crucial point, we also claim $F_{i}^{M}\left(d_{\ell}\right) \in \check{\mathbb{B}}_{\ell}$ when $\ell<k_{1}$ for $i \geq \mathbf{n}\left(d_{\ell}\right)$. As, setting $d=d_{k}$ for notational simplicity,

$$
F_{n}^{M}\left(d_{k}\right)=F_{n}^{M}(d)=\left(b_{\nu_{1}[d, n]} \Delta b_{\nu_{2}[d, n]}\right) \Delta a_{d, n},
$$

by Lemma 3.13.B.(b). For each i and $k, \nu_{i}\left[d_{i}, k\right]$ is \unlhd above $\left\langle\alpha_{d_{i}}\right\rangle$, so $V=$ $\left\{\nu_{i}\left[d_{i}, k\right] ; i<\ell, k<\omega\right\}$ is independent from \mathbb{B}_{ℓ} and $X_{\ell} \subset \mathbb{B}_{\ell} ;$ thus, V is independent from X_{ℓ}. Since we noticed the $a_{k, i} \in \mathbb{B}_{\ell}$, Lemma 3.14 implies $\left\{F_{k}^{M}\left(d_{\ell}\right): k \geq k_{2}\right\}$ is independent over \mathbb{B}_{ℓ}. By the induction hypothesis we finish.

Applying Claim 3.8.3, $a \lesseqgtr\left(b_{\nu_{1}[d, n]} \Delta b_{\nu_{2}[d, n]}\right)$, for $n \geq \mathbf{n}_{d}$, and by hypothesis, the $a_{d, n}$ satisfy the same condition. Thus, for sufficiently large $n, a \nless F_{n}^{M}\left(d_{\ell}\right)$.

This completes task i). To accomplish task ii) and finish the proof of Theorem 3.15 by satisfying conditions 2-4 of Definition 3.1, we must find a sequence of finite Boolean algebras B_{n} witnessing that $X \cup Y$ is contained in a member of $\boldsymbol{K}_{<\aleph_{0}}^{1}$.

Recall that M_{*} is generated by $\left\{b_{\nu}: \nu \in \mathcal{T}\right\} \cup P_{4,1}^{M_{*}} \cup\left\{b_{<>}\right\}$. As X is finite, there is a k_{2} such that X is contained in the finite subalgebra of $P_{1}^{M_{*}}$ generated by $\left\{b_{\nu}: \nu \in \mathcal{T}, \lg (\nu)<k_{2}\right\} \cup P_{4,1}^{M_{*}}$.

We now choose $N \subseteq M$ with $P_{1}^{N}=\bigcup_{m \geq k_{2}} B_{m}, P_{0}^{N}=\left\{G_{1}^{-1}(a): a \in P_{4,1}^{M} \cap\right.$ $\left.P_{1}^{N}\right\}$ and $P_{2}^{N}=Y$.

Define the B_{m} for $m \geq k_{2}, N \in \boldsymbol{K}_{1}$ as follows. Let $B_{k_{2}}$ be the subalgebra of M_{*} generated by $X \cup\left\{F_{k}^{M}\left(d_{\ell}\right): k \leq k_{2}, \ell<|Y|\right\}$. For $m \geq k_{2}$, let B_{m} be generated by $X \cup\left\{F_{k}^{M}\left(d_{\ell}\right): k<m, \ell<|Y|\right\}$. Without loss of generality (using the choice of \mathbf{b} from Claim 3.8), we can demand each $\mathbb{B}_{k_{i}}$ is a finite free Boolean algebra. This sequence witnesses that $M \in \boldsymbol{K}_{1}$.

Now we show \mathbb{M}_{2} is non-empty and at least one member satisfies all the tasks. In case 4) of this argument we address the requirement that $u f\left(M_{\alpha}\right)=\emptyset$ and so $u f(M)=$ \emptyset as well.

Notation 3.17 We can enumerate \boldsymbol{T} as $\left\langle t_{\alpha}: \alpha<\lambda\right\rangle$ such that each task appears λ times, as we assumed in Hypothesis 3.6 that $\lambda=\lambda^{\aleph_{0}}$.

For Theorem 3.18, realizing all the tasks, $\lambda>2^{\aleph_{0}}$ suffice; the requirement in Lemma 2.1.5 that $\lambda=2^{\mu}$ is used to get maximal models. The object of case 3) is to ensure that the final model is in \boldsymbol{K}_{2}; case 4) shows uf $(M)=\operatorname{uf}\left(M_{*}\right)=\emptyset$.

Theorem 3.18 There is an $M \in \mathbb{M}_{2}$ that satisfies all the tasks. Thus $M \in \boldsymbol{K}_{2}$ and is P_{0}-maximal.

Proof. We choose M_{α} by induction on $\alpha \leq \lambda$ such that:

1. \mathbf{w}_{α} witnesses $M_{\alpha} \in \mathbb{M}_{2}$ (Definition 3.13). And for $\beta<\alpha, w_{\alpha}$ extends w_{β}. That is, for $d \in P_{2}^{M_{\beta}}, \alpha_{d}\left[\mathbf{w}_{\alpha}\right]=\alpha_{d}\left[\mathbf{w}_{\beta}\right], \eta_{d}\left[\mathbf{w}_{\alpha}\right]=\eta_{d}\left[\mathbf{w}_{\beta}\right]$, etc..
2. $P_{2}^{M_{\alpha}} \subseteq P_{2}^{M_{*}}$ has cardinality at most $|\alpha|+2^{\aleph_{0}}$.
3. if $\alpha=\beta+1$ and t_{β} is relevant to M_{β}, M_{α} satisfies task \mathbf{t}_{β}.
case 1 If $\alpha=0$, set $M_{0}=M_{*} \upharpoonright\left(P_{0}^{M_{*}} \cup P_{1}^{M_{*}}\right)$.
case 2 Take unions at limits.
case $3 \alpha=\beta+1$ and $\mathbf{t}_{\beta} \in \boldsymbol{T}_{1}$; say, $\mathbf{t}_{\beta}=\left(N_{1}, N_{2}\right)$.
If N_{1} is not embedded in M_{β} then the task is irrelevant and let $M_{\alpha}=M_{\beta}$. Let $\left\langle c_{i}: i<m\right\rangle$ enumerate $P_{2}^{N_{2}}-P_{2}^{N_{1}}$ and $\left\langle d_{i}: i<m\right\rangle$ enumerate the first m elements of $P_{2}^{M_{*}}-P_{2}^{M_{\beta}}$.
By induction, since $M_{\beta} \in \mathbb{M}_{2}$ there are witnesses $w_{\beta}=\left\langle a_{d, k}, \eta_{d}, \alpha_{d}\right\rangle$ (formally $\left.\left\langle a_{d, k}^{\beta}, \eta_{d}, \alpha_{d}^{\beta}\right\rangle\right)$ for $d \in P_{2}^{M_{\beta}}$. By Definition 3.13.C, we can fix $U_{\alpha} \subseteq \lambda$ of cardinality $\leq|\alpha|+2^{\aleph_{0}}$ such that:

$$
(*)\left\{a_{d, k}: k<\omega, d \in P_{2}^{M_{\beta}}\right\} \cup\left\{b_{\nu}:\left(\exists d \in P_{2}^{M_{\beta}}\right)\left\langle\alpha_{d}\right\rangle \unlhd \nu \in \mathcal{T}_{\alpha_{d}}\right\} \cup P_{4,1}^{M_{*}}
$$

is included in the subalgebra of M_{*} generated by the

$$
\left\{b_{\rho}: \exists \beta \in U_{\alpha},\langle\beta\rangle \unlhd \rho \in \mathcal{T}_{\beta}\right\} \cup\left\{b_{\langle \rangle}\right\} \cup P_{4,1}^{M_{*}} .
$$

Let M_{α} extend the universe of M_{β} by adding $\left\langle d_{i}: i<m\right\rangle \subset P_{2}^{M_{*}}$. Note that the domain of M_{α} is a subset of M_{*}, but M_{α} is not a substructure of M_{*}; we are about to define the $F_{k}^{M_{\alpha}}$ at the d_{i} for $i<m$. Let k_{*} be large enough and let B be a finite Boolean sub-algebra of $P_{1}^{N_{2}}$ and $b_{*} \in B$ be as in Definition 3.1.3 of \boldsymbol{K}_{1}. In particular b_{*} is a finite union of atoms of $P_{1}^{M *}$, which are in $P_{1}^{N_{2}}$, and $P_{1}^{N_{2}}$ is generated freely over $P_{1}^{N_{1}} \cup B$ by $\left\{F_{k}^{N_{2}}\left(c_{i}\right): k_{*} \leq k<\omega, i<m\right\}$.
To extend the witnesses to M_{α}, let $\left\langle\left(\beta_{i}, \eta_{i}\right): i<m\right\rangle$ be such that the β_{i} are a strictly increasing list of the first m even members of $\lambda-U_{\alpha}$ with $\eta_{i} \in \mathcal{T}_{\beta_{i}}$. Let $a_{d_{i}, k}$ be the 0 of $P_{1}^{M_{*}}$ for $i<m, k<\omega$.
We first map B into M_{β}; map atoms $a \in P_{4,1}^{N_{2}}-P_{4,1}^{N_{1}}$ into atoms a^{\prime} in $P_{4,1}^{M_{\beta}}-$ $P_{4,1}^{N_{1}}$. Then map the finitely many $F_{k}^{N_{2}}\left(c_{i}\right)$ for $k<n_{*}, i<m$ to $b_{k, i}^{\prime}$ which are in $P_{1}^{N_{1}}$ and independent over $B_{n_{*}}$ for N_{1}. Now let $F_{k}^{M_{\alpha}}\left(d_{i}\right)$ be the join of $b_{k, i}^{\prime}$ with all the $a \in P_{4,1}^{N_{1}}$ that lie below $F_{k}^{N_{2}}\left(c_{i}\right)$ and the a^{\prime} such that $a^{\prime} \in P_{4,1}^{N_{2}}-P_{4,1}^{N_{1}}$ and $a^{\prime} \leq F_{k}^{N_{2}}\left(c_{i}\right)$.
Now, the $\left\{b_{\left(\eta_{i} \upharpoonright k\right)^{<}<0>} \Delta b_{\left(\eta_{i} \upharpoonright k\right)^{\curlyvee}<1>}: i<m\right\}$ are independent ${ }^{4}$ over $P_{1}^{N_{1}}$.
So we can define h_{β} to embed the Boolean algebra $P_{1}^{N_{2}}$ into $P_{1}^{M_{*}}$ over $P_{1}^{N_{1}}$ such that $k \geq k_{*}$ implies

$$
h_{\beta}\left(F_{k}^{N_{2}}\left(c_{j}\right)\right)=b_{\eta_{j} \upharpoonright k \bigcirc 0} \Delta b_{\left.\eta_{j} \upharpoonright k\right\urcorner} .
$$

By Claim 3.8.3, since the β_{i} are even, for each $a \in P_{4,1}^{M_{*}}$, for some n, if $\nu, \rho \in \mathcal{T}_{\alpha}$ with $\lg (\eta) \geq n$ and $\lg (\rho) \geq n$ then $a \leq_{P_{1}^{M_{*}}} b_{\nu}$ if and only if $a \leq_{P_{1}^{M_{*}}} b_{\rho}$. For each j and $k, b_{\eta_{j} \upharpoonright k 0} \Delta b_{\eta_{j} \upharpoonright k \uparrow}=\left(b_{\eta_{j} \upharpoonright k 0} \Delta b_{\eta_{j} \upharpoonright \hat{k} 1}\right) \Delta 0_{P_{1}^{M_{*}}}$. So setting $a_{d_{i}, k}=0$ for $i<m$, we have:

$$
F_{k}^{M_{\alpha}}\left(d_{j}\right)=\left(b_{\eta_{j} \upharpoonright k \bigcirc 0} \Delta b_{\eta_{j} \upharpoonright k^{\wedge} \uparrow}\right) \Delta 0_{P_{1}^{M_{*}}},
$$

and for each $a \in P_{4,1}^{M_{\alpha}}$, for some n, $a \not \not_{P_{1}^{M_{*}}} F_{k}^{M_{\alpha}}\left(d_{j}\right)$. Thus, $M_{\alpha} \in \mathbb{M}_{1}$ and so in $M_{\alpha} \in \mathbb{M}_{2}$ as required.

[^4]case $4 \alpha=\beta+1$ and $\mathbf{t}_{\beta} \in \boldsymbol{T}_{2}$; say, $\mathbf{t}_{\beta}=c$.
We define M_{α}. Recalling Definition 3.7, we have a witness $\left\langle a_{d, k}^{\beta}, \eta_{d}^{\beta}, \alpha_{d}^{\beta}\right\rangle$ that $M_{\beta} \in \mathbb{M}_{2}$; we extend it to a witness for M_{α}. Let γ be an even ordinal such that $\gamma \neq \alpha_{d}$ for any $d \in P_{2}^{M_{\beta}}$ and $\nu(0) \neq \gamma$ if $b_{\nu}=a_{d, k}$ for some $k<\omega$ and $d \in P_{2}^{M_{\beta}}$. Let $\left\langle d_{\eta}: \eta \in \lim \mathcal{T}_{\gamma}\right\rangle$ be a set of pairwise distinct elements of $P_{2}^{M_{*}}-P_{2}^{M_{\beta}}$. And, let M_{α} be generated by $M_{\beta} \cup\left\{d_{\eta}: \eta \in \lim \left(\mathcal{T}_{\gamma}\right)\right\}$.
To define $F_{k}^{M_{\alpha}}\left(d_{\eta}\right)$, for each $\eta \in \lim \mathcal{T}_{\gamma}$ and $k<\omega$, choose $i_{0}<i_{1} \leq 2$ that are different from $\eta(k)$. Recalling $c=\mathbf{t}_{\beta}$, let
$$
F_{k}^{M_{\alpha}}\left(d_{\eta}\right)=\left(b_{\eta \upharpoonright \prec \prec i_{0}} \Delta b_{\eta \upharpoonright \widehat{k} i_{1}}\right) \Delta\left(F_{k}^{M_{*}}(c)\right) .
$$

Thus, for the $d \in P_{2}^{M_{\alpha}}-P_{2}^{M_{\beta}}$ chosen towards satisfying $\mathbf{t}_{\beta}=c$, we have set $\left\langle\alpha_{d}^{\alpha}, \eta_{d}^{\alpha}, \alpha_{d}^{\alpha}\right\rangle=\left\langle\gamma, d_{\eta}, F_{k}^{M_{*}}(c)\right\rangle$.
It is routine to show $M_{\alpha} \in \mathbb{M}_{2}$. We must show M_{α} satisfies task \mathbf{t}_{β}. For this, suppose D is an ultrafilter on $P_{1}^{M_{*}}$ such that the set $S_{c}^{M_{*}}(D)=\left\{n: F_{n}^{M_{*}}(c) \in\right.$ $D\}$ is infinite (Definition 2.2.1). Define $\eta^{D} \in \lim \left(\mathcal{T}_{\gamma}\right)$ by induction ${ }^{5}: \eta^{D}(0)=$ γ. By Remark 3.14.2 one of the three elements $b_{\langle\gamma, i\rangle} \triangle b_{\langle\gamma, j\rangle}$, for $i \neq j$ and $i, j<3$, must not be in D. Let $\eta^{D}(1)$ be the other member of $\{0,1,2\}$. For $k \geq 1$, suppose $\nu=\eta^{D} \upharpoonright k$ has been defined. Again, by Remark 3.14.2 one of the three elements $b_{\widehat{\nu}-i} \triangle b_{\nu \uparrow j}$, for $i \neq j$ and $i, j<3$, must not be in D. Let $\eta^{D}(k)$ be the other member of $\{0,1,2\}$. For the infinitely many n with $F_{n}^{M_{\alpha}}(c) \in D$, we have $F_{n}^{M_{\alpha}}\left(d_{\eta^{D}}\right) \in D$.
To show that \mathbf{t}_{β} is satisfied by $d_{\eta^{D}}$, we now verify Definition 1.2.7: for every $a \in P_{4,1}^{M_{\alpha}}$, for all but finitely many $n, F_{n}^{M_{\alpha}}\left(d_{\eta^{D}}\right) \wedge a=0_{P_{1}^{M_{\alpha}}}$. As $M_{*} \in$ \boldsymbol{K}_{-1}, by Definition 1.2 .7 we have for every large enough $n, P_{1}^{M_{\alpha}}=P_{1}^{M_{*}} \models$ $F_{n}^{M_{*}}(c) \wedge a=0_{P_{1}^{M_{\alpha}}}$. Now, recall from 3.8.3, that for every $a \in P_{4,1}^{M_{*}}$ and the even ordinals $\alpha<\lambda$, there is an n, such that for any $\nu, \rho \in \mathcal{T}_{\alpha}$ with $\lg (\eta) \geq n$ and $\lg (\rho) \geq n, a \leq_{P_{1}^{M_{*}}} b_{\nu}$ if and only if $a \leq_{P_{1}^{M_{*}}} b_{\rho}$. As γ is even, it follows that for every $a \in P_{4,1}^{M_{*}}$, and large enough $n, a \wedge F_{k}^{M_{\alpha}}\left(d_{\eta^{D}}\right)=0_{P_{1}^{M_{*}}}$. Since this argument holds for each D such that $S_{c}^{M_{*}}(D)=\left\{n: F_{n}^{M_{*}}(c) \in D\right\}$ is infinite, we have verified $\mathbf{t}_{\beta}=c$.

$$
\square_{3.18}
$$

Conclusion 3.19 We have found a P_{0}-maximal $M \in \boldsymbol{K}_{2}$ with all $\left|P_{i}^{M}\right|=\lambda$. As in [BS17a], for every λ less than the first measurable, since $M \in \boldsymbol{K}_{2}$ implies $|M| \leq$ $2^{P_{0}^{M}}$, there is a maximal model $M \in \boldsymbol{K}_{2}$ with $2^{\lambda} \leq|M|<2^{2^{\lambda}}$.

Remark 3.20 Note that the model M contains uncountably many elements $d_{\eta} \in P_{2}^{M}$, which were constructed in case 4 , such that for some α_{d}, each of the $\eta(0)=\alpha_{d}$, but η and η^{\prime} first differ at $k \geq k_{*}$ and $F_{k}^{M_{\alpha}}\left(d_{\eta}\right)=F_{k}^{M_{\alpha}}\left(d_{\eta}^{\prime}\right)$ as, $F_{k}^{M_{\alpha}}\left(d_{\eta}\right)=\left(b_{\eta \upharpoonright \kappa_{i} i_{0}} \Delta\right.$ $\left.b_{\eta \upharpoonright i_{1}}\right) \Delta\left(F_{k}^{M_{*}}(c)\right)$. This contradicts nice freeness. In contrast, the P_{0}-maximal model

[^5]constructed in [BS17a] using diamond, was \boldsymbol{K}_{1}-free for subalgebras of cardinality $<\lambda$.

Question 3.21 1. Is there $a \kappa<\mu$, where μ is the first measurable, such that if a complete sentence has a maximal model in cardinality κ, it has maximal models in cardinalities cofinal in μ ?
2. Is there a complete sentence that has maximal models cofinally in some κ with $\beth_{\omega_{1}}<\kappa<\mu$ where μ is the first measurable, but no larger models are maximal. Could the first inaccessible be such a κ ?

References

[BB17] John T. Baldwin and William Boney. Hanf numbers and presentation theorems in AEC. In Jose Iovino, editor, Beyond First Order Model Theory, pages 81-106. Chapman Hall, 2017.
[BKS09] John T. Baldwin, A. Kolesnikov, and S. Shelah. The amalgamation spectrum. Journal of Symbolic Logic, 74:914-928, 2009.
[BKS16] John T. Baldwin, M. Koerwien, and I. Souldatos. The joint embedding property and maximal models. Archive for Mathematical Logic, 55:545-565, 2016.
[BS17a] John T. Baldwin and S. Shelah. Hanf numbers for extendibility and related phenomena. submitted: Shelah number 1092, 2017.
[BS17b] John T. Baldwin and I. Souldatos. Complete $L_{\omega_{1}, \omega}$-sentences with maximal models in multiple cardinalities. submitted, 2017.
[BU17] W. Boney and S. Unger. Large cardinal axioms from tameness in AECs. Proceedings of the American Mathematical Society, 145:4517-4532, 2017.
[GS05] R. Göbel and S. Shelah. How rigid are reduced products. Journal of Pure and Applied Algebra, 202:230-258, 2005.
[Hjo02] Greg Hjorth. Knight's model, its automorphism group, and characterizing the uncountable cardinals. Journal of Mathematical Logic, pages 113-144, 2002.
[KLH16] Alexei Kolesnikov and Christopher Lambie-Hanson. The Hanf number for amalgamation of coloring classes. Journal of Symbolic Logic, 81:570-583, 2016.
[Mag16] M. Magidor. Large cardinals and strong logics: CRM tutorial lecture 1. http://www.crm.cat/en/Activities/Curs_2016-2017/ Documents/Tutorial
%20lecture\ะ201.pdf, 2016.
[Mor65] M. Morley. Omitting classes of elements. In Addison, Henkin, and Tarski, editors, The Theory of Models, pages 265-273. North-Holland, Amsterdam, 1965.
[She] S. Shelah. Black boxes. paper 309 archive.0812.0656.
[She13] S. Shelah. Maximal failures of sequence locality in a.e.c. preprint on archive: Sh index 932, 2013.

[^0]: *Research partially supported by Simons travel grant G5402, G3535.
 ${ }^{\dagger}$ Item 1147 on Shelah's publication list. Partially supported by European Research Council grant 338821, and by National Science Foundation grant 136974.

[^1]: ${ }^{1}$ The subsets of P_{0}^{M} are not elements of M.

[^2]: ${ }^{2} \mathrm{~A}$ further equivalence: $\left|\operatorname{Atom}\left(B_{n_{*}}\right)\right|-\left|P_{4,1}^{M}\right|$ is a power of two.

[^3]: ${ }^{3}$ I.e., $\nu_{1}[d, n]$ depends on d and n.

[^4]: ${ }^{4}$ Suppose one takes any partition of an independent set and chooses for each block one element which is a finite Boolean combination of elements from that block. Then, that set of elements is independent.

[^5]: ${ }^{5}$ This argument is patterned on the simple black box in Lemma 1.5 of [She], but even simpler.

