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In this paper we prove in ZFC the existence of a complete sentence φ of Lω1,ω such
that φ has maximal models in a set of cardinals λ that is cofinal in the first measurable
µwhile φ has no maximal models in any χ ≥ µ. In [BS17a], we proved a theorem with
the same conclusion as the main result here; the earlier proof required that λ = λ<λ,
and that there is an S ⊆ Sλℵ0 , that is stationary non-reflecting, and �S holds. Here, we
show in ZFC that the sentence φ defined in [BS17a] has maximal models cofinally in
µ. The additional hypotheses in [BS17a] allow one to demand that if N is a submodel
with cardinality < λ of the P0-maximal model, N is K1-free (Definition 2.2); that
property fails for the example here. The existence of such a φ which is not complete is
well-known (e.g. [Mag16]).

This paper contributes to the study of Hanf numbers for infintary logics. Works
such as [BKS09, BKS16, BS17b, KLH16] study the spectrum of maximal models in
the context where the class has a bounded number of models. We list now some proper-
ties that are true in every cardinality for first order logic but are true only eventually for
complete sentences of Lω1,ω or, more generally, for abstract elementary classes, and
compare the cardinalities (the Hanf number) at which the eventual behavior must be-
gin. Every model of a first order theory has a proper elementary extension and so each
theory has arbitrarily large models. Moreover, the amalgamation property holds for ev-
ery complete first order theory. Morley [Mor65] showed that every sentence of Lω1,ω

that has models up to iω1
has arbitrarily large models and provided counterexamples

showing that cardinal was minimal. Thus he showed the Hanf number for existence of
Lω1,ω is iω1 . Hjorth [Hjo02], by a much more complicated argument, showed there
are complete sentences φα for α < ω1 such that φα has a model in ℵα and no larger
so the Hanf number for complete sentences is ℵω1

. Boney and Unger [BU17], building
on [She13] show that the Hanf number ‘for all AEC’s are tame’ is the first strongly
compact cardinal. They also show the analogous property for various variants on tame-
ness is equivalent to the existence of almost (weakly compact, measurable, strongly
∗Research partially supported by Simons travel grant G5402, G3535.
†Item 1147 on Shelah’s publication list. Partially supported by European Research Council grant 338821,

and by National Science Foundation grant 136974.
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compact). The result here shows in ZFC that the Hanf number for extendability (ev-
ery model of a complete sentence has a proper Lω1,ω-elementary extension) is the first
measurable cardinal. However, [BB17] show that an upper bound on the Hanf number
for amalgamation is the first strongly compact. The actual value remains open.

The first section of the paper defines the class of models K−1 and explains the
connections with [BS17a]. In Section 2 we construct in ZFC, for cofinally many λ
less than the first measurable, a P0-maximal model M∗ ∈ K−1. Subsection 2.1 is
a set theoretic argument for the existence of a Boolean algebra with certain specified
properties in any cardinal λ of the form λ = 2µ that is less than the first measurable;
this construction is completely independent of the model theoretic notation established
in Section 1. Subsection 2.2 builds on this result to find a P0-maximal model in K−1
with cardinality λ satisfying certain further restrictions. Finally in Section 3, this model
is converted to the maximal model of K2, the class of model of the comoplete sentence
(φ) from [BS17a].

The first author acknowledges helpful conversations with Will Boney, Ioannis
Souldatos, and especially Sherwood Hachtman.

1 Preliminaries
{prelim}

We include as needed definitions of the classes of model K−1,K1,K2 introduced in
[BS17a]. For each i, Ki

<ℵ0 denotes the class of finitely generated members of Ki.
Occasionally we fall into the notation K̂ for the direct limits of a class K of finitely
generated models.

{deftau}
Definition 1.1 τ is a vocabulary with unary predicates P0, P1, P2, P4, binary R, E,
∧,∨, ≤ unary functions −, G1, H1, n unary functions gn,i for each n, constants 0,1
and unary functions Fn, for n < ω. ≤ is a partial order on PM1 and the Boolean
algebra can be defined from it.

We occasionally use the notations (∀∞n) and (∃∞n) to mean ‘for all but finitely
many’ and ‘for infinitely many’ respectively. It is easy to see that K−1 is Lω1,ω-
axiomatizable but far from complete. We denote the power set of X by P(X).

{f1}
Definition 1.2 (K−1) M ∈ K−1<ℵ0 is the class of finitely generated structures M sat-
isfying the following conditions.

Note that b∗ is not a function symbol in τ .

1. PM0 , PM1 , PM2 partition M .

2. (PM1 , 0, 1,∧,∨,≤,− ) is a Boolean algebra (− is complement). We may also
write BM or B[M ] for PM1 . We also consider ideals and restrictions to them of
the relations/operations except for complement.

3. R ⊂ PM0 × PM1 with R(M, b) = {a : RM (a, b)} and the set of {R(M, b) : b ∈
PM1 } is a Boolean algebra. fM : PM1 7→ P(PM0 ) by fM (b) = R(M, b) is a
Boolean algebra homomorphism into P(PM0 ).
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Note that f is not1 in τ ; it is simply a convenient abbreviation for the relation
between the Boolean algebra PM1 and the set algebra on P0 by the map b 7→
R(M, b).

4. PM4,n is the set containing each join of n distinct atoms from M ; PM4 is the union
of the PM4,n and so is an ideal. That is, PM4 is the set of all finite joins of atoms.

There is an element b∗ ∈ PM1 and for each n, PM4,n = {c : c ≤M b∗}.

5. GM1 is a bijection from PM0 onto PM4,1 such that R(M,GM1 (a)) = {a}. (Note
that PM0 = ∅ is allowed.

6. PM2 is finite (and may be empty). Further, for each c ∈ PM2 the FMn (c) are
functions from PM2 into PM1 . Note that it is allowed that for all but finitely many
n, FMn (c) = 0PM1 .

7. If a ∈ PM4,1 and c ∈ PM2 then (∀∞n) a 
M FMn (c). This implies⋂
n{x : (G1(x) ∈ FMn (c)} = ∅.

8. PM1 is generated as a Boolean algebra by PM4 ∪{FMn (c) :c ∈ PM2 , n ∈ ω}∪X
where X is a finite subset of PM1 .

{f2}
Definition 1.3 1. K−1 is the class of τ structures M such that every finitely gener-

ated substructure ofM is in K−1<ℵ0 . K−1µ is the members ofK−1 with cardinality
µ.

2. We say M ∈ K−1 is atomic if PM1 is atomic as a Boolean algebra. That is, PM4
is dense in BM .

2 The first approximation
{1approx}

In this section we construct in ZFC, for cofinally many λ less than the first measurable,
a P0-maximal model M∗ ∈ K−1. In Section 3 we ’correct’ that model to a model
of the complete sentence φ of Lω1,ω defined in [BS17a]. Subsection 2.1 can be read
completely independently; it has no reliance on Section 1. In particular, there is no
requirement here that the An are independent.

2.1 Set theoretic construction of a Boolean algebra
{stba}

The goal of this subsection is to prove the property � in ZFC. The class K−1 plays
no role in section. The arguments here are similar to those around page 7 of [GS05].
In Subsection 2.2 we deduce Theorem 2.2.4 from �, showing there is a nicely free
P0-maximal (Definition 2.1) model in K−1.

Definition 2.1.1 (�(λ)) denotes: There are a Boolean algebra B ⊂ P(λ) with |B| = {boxplus}
λ and a set A ⊆ ωB such that:

1The subsets of PM
0 are not elements of M .
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i) A has cardinality λ and if A = {An : n ∈ ω} ∈ A then for α < λ for all but
finitely many n, α 6∈ An.

ii) B includes the finite subsets of λ; but is such that for every non-principal ul-
trafilter D of λ (equivalently of B and disjoint from λ<ω) for some sequence
〈An : n ∈ ω〉 ∈ A, there are infinitely many n with An ∈ D.

We may say that (B,A) witness uniform ℵ1-incompleteness.
{boxthm}

Lemma 2.1.2 (ZFC) Assume for some µ, λ = 2µ and λ < first measurable, then
�(λ) from 2.1.1 holds.

We need the following structure.
{f12.5}

Definition 2.1.3 1. Fix the vocabulary σ with unary predicates P,U , a binary
predicate C, and a binary function F2.

2. Let 〈Cα : α < λ〉 list without repetitions P(µ) such that C0 = ∅ and also let
〈fα :µ ≤ α < λ〉 list µω.

3. Define the σ-structure M by:

(a) The universe of M is λ;

(b) PM = ω; UM = µ,

(c) C(x, y) is binary relation onU×M defined byC(x, α) if and only x ∈ Cα.
Note that C is extensional. I.e., elements of M uniquely code subsets of
UM .

(d) Let FM2 (α, β) map M × UM → PM by FM2 (α, β) = fα(β) for α < λ,
β < µ;

(e) FM2 (α, β) = 0 for α < λ and β ∈ [µ, λ).

We use the following, likely well-known, fact pointed out to us by Sherwood Hacht-
man.

{hacht}
Fact 2.1.4 Let D ⊆ P(X) and suppose that for each partition Y ⊆ P(X) of X into
at most countably many sets, |D∩Y | = 1. Then, D is a countably complete ultrafilter.

We need the following lemma about M before finding in M a representative of �.
{f12.7}

Lemma 2.1.5 If λ is less than the first measurable cardinal and λ = 2µ for some µ
there is a model M , with |M | = λ, and a countable vocabulary with PM denoting
the natural numbers such that every first order proper elementary extension N of M
properly extends PM .

Proof. Fix M as in Definition 2.1.3. We first show that any proper elementary
extension N of M extends UM . Suppose for contradiction there exists α′ ∈ N −M
but UN = UN . By the full listing of the Cα, there is a β ∈ VM with {x : N |=

4



C(x, β)} = {x : N |= C(x, α′)}. This contradicts extensionality of the relation C in
N ; but C is extensional in the elementary submodel M .

Now we show that if UM ( UN and PM = PN , then there is a countably com-
plete non-principal ultrafilter on µ, contradicting that µ is not measurable. Note that
the sequence 〈fα : µ ≤ α < λ〉 can be viewed as a list of all non-trivial partitions
of µ into at most countably many pieces. Let ν∗ ∈ UN − UM . For α ∈ N , denote
FN2 (α, ν∗) by nα. Since PM = PN , nα ∈M . By elementarity, for α ∈M,η ∈ UM ,
FN2 (α, η) = FM2 (α, η) = fα(η). Now, let

D = {x ⊆ UM : x 6= ∅ ∧ (∃α ∈M) x ⊇ f−1α (nα)}.

We show D satisfies the conditions from Fact 2.1.4. Let W be a partition, indexed
by fα. Then f−1α (nα) 6= ∅ and is in D. Suppose for contradiction there are x0 6= x1
in W that are both in D. Then, there are αi ∈ M such that xi ∈ W ∩ D contains
f−1αi (nαi) for i = 0, 1. So, N |= F2(αi, ν

∗) = nαi for i = 1, 2. Since αi ∈ M and
M ≺ N , M |= ∃x(F2(α0, x) = nα0 ∧ F2(α1, x) = nα1 . So, by Definition 2.1.3 (d),
for any witness a in M for this formula, a ∈ x0 ∩ x1; but x0 ∩ x1 = ∅ since W is a
partition.

Finally, D is non-principal on UM since if it were generated by an a ∈ UM ,

D = {x ⊆ U : (∃α) x ⊇ f−1α (nα)} = {x ⊆ U : a ∈ x}.

Since {a} ∈ D, for some α0 ∈ M , {a} = f−1α0
(nα0

). Note that α0 ∈ M , because
the definition of D is about the model M . That is, M |= ∃!yF2(α0, y) = nα0

. But
N |= F2(α0, a) = nα0

∧ F2(α0, ν
∗) = nα0

. This contradicts the assumption M ≺ N
and completes the proof. �2.1.5

The following claim completes the proof of Lemma 2.1.2
{f12.8}

Claim 2.1.6 If B is the boolean algebra of definable formulas in the M defined in
Definition 2.1.3, there is an A such that (B,A) is uniformly ℵ1-incomplete so �(λ)
holds.

Proof. We may assume τ has Skolem functions for M and then define B and A as
follows to satisfy �.b. Let B be the Boolean algebra of definable subsets of M . I.e.,

B = {X ⊆M : for some τ -formula φ(x,y) and b ∈ lg(y)M, φ(M,b) = X.}

Note B is a Boolean algebra of cardinality λ with the normal operations. We define
the Skolem functions a little differently than usual;:as maps σφ from Mn+1 to M for
formulas φ(x,w,y) such that φ(σφ(x,w,y)(b,a), b,a). Then, we specialize the Skolem
functions by considering the unary function arising from fixing the y entry of σφ(w,y)
to obtain σφ(w,a).

A
σφ(x,w,a)
n = {α < λ :: φ(σMφ (α,a), α,a) ∧ P (σMφ (α,a)) ∧ σMφ (α,a) 
 n}

∪ {α < λ :: n = 0 ∧ ¬P (σMφ (α,a)).
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and then let Aσφ(x,w,a) = 〈Aσφ(w,a)
n :n < ω〉 and

(∗) A = {Aσφ(x,a) : for some τM − term σφ(x,w,y) and a ∈ lg(y)M.}

Note |A| = λ as for each a ∈ M and each of the countably many terms
σφ(x,w,a). Aσφ(x,w,a) is a map from ω into B.

For each α, for each 0 < m < ω and A = Aσφ(x,α,b), the set {m : α ∈ Am} is
finite, bounded by σφ(α,a). Thus, clause i) of � is satisfied.

We now show Clause ii) of �. Let D be an arbitrary non-principal ultrafilter on λ
and where ψ(v,y) is a first order τ -formula such that y and a have the same length,
define the type pD(x) = p(x) as:

p(x) = {ψ(v,a) : {α ∈M : M |= φ(α,a)} ∈ D}.

Since D is an ultrafilter, p is a complete type over M . So there is an elementary
extensionN ofM where an element d realizes p. LetN be the Skolem hull ofM∪{d}.
Since D is non-principal, so is p; thus, N 6= M . By Lemma 2.1.5, we can choose
c ∈ PN − PM . Since, N is the Skolem hull of M ∪ {d} there is a Skolem term
σ(u,y) and a ∈ M such that c = σN (d,a). Since c 6∈ M , for each n ∈ PM ,
N |=

∧
k<n c 6= k so N |=

∧
k<n σ(d,a) 6= k so

∧
k<n σ(x,a) 6= k is in p. That is,

for each n, Aσφ(x,w,a)
n is in D.

2.2 A P0-maximal model in K−1
{mtconst}

In this section we prove Theorem 2.2.4, invoking Theorem 2.1.2. To even state the new
result, we need some new definitions as well as recalling Definition 1.2.7.

{f2*}
Definition 2.1 We say M ∈ K−1 is P0-maximal (in K−1) if M ⊆ N and N ∈ K−1
implies PM0 = PN0 .

We now introduce the requirement that the Boolean algebras constructed will, when
the atoms are factored out, be free. Moreover, different c ∈ PN2 generate disjoint
collections of FNn (c) as c varies. This strong requirement is used inductively in this
section to construct the first approximation. The correction in Section 3 loses this
disjointness (and thus freeness).

{b9}
Definition 2.2 (Nicely Free) We say M ∈ K−1 is nicely free when |PM1 | = λ and
there is a sequence b = 〈bα :α < λ〉 such that

(a) bα ∈ PM1 − PM4 ;

(b) 〈bα/PM4 :α < λ〉 generate PM1 /PM4 freely;

(c) there is a set Y ⊂ PM2 of cardinality λ and a sequence 〈uc : c ∈ Y 〉 of pairwise
disjoint sets of distinct ordinals such that, with uc = {FMn (c) : n < ω} the
collection of uc partitions a subset of the basis 〈bα :α < λ〉.
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{f5}
Definition 2.2.1 (uf(M)) For M ∈ K−1, let uf(M) be the set of ultrafilters D of the
Boolean Algebra PM1 such that D ∩ PM4,1 = ∅ and for each c ∈ PM2 only finitely many
of the FMn (c) are in D.

For applications we rephrase this notion with the following terminology. For any
M ∈K−1 and d ∈ PM2 , let SMd (D) = {n : FMn (d) ∈ D}. So uf(M) = ∅ if and only
if for every ultrafilter D on PM1 , there exists a d ∈ PM2 such that SMd (D) is infinite.

We use the following standard properties of a Boolean algebra B and ideal I in
proving Lemma 2.2.3 and Claim 2.2.7 from Definition 2.2.6.

{quotprop}
Fact 2.2.2 1. b ∧ c ∈ I implies b/I and c/I are disjoint.

2. b M c ∈ I implies b/I = c/I .

3. b− c ∈ I implies b/I ≤ c/I .

For our collection of structures K−1, we can characterize P0-maximality in terms
of ultrafilters.

{f8}
Lemma 2.2.3 An M ∈K−1 is P0-maximal if and only if uf(M) = ∅.

Proof. Suppose M ⊂ N with N ∈ K−1 and d ∈ PN0 − PM0 . Then {b ∈ M :
RN (d, b)} is an ultrafilter D0 of the Boolean algebra PM1 . To see D0 is non-principal
suppose there is a b0 ∈ PM1 such that D0 = {b ∈M : b0 ≤ b}. Note b0 = GM1 (a) for
some a ∈ PM0 . But N |= GN1 (d) � b0, contradicting {d} ∈ D.

For each c ∈ PM2 , since N ∈ K−1, by clause 7 of Definition 1.2, for all a ∈ PN0
and all but finitely many n, GN1 (a) 6≤ FNn (c). Since FNn (c) = FMn (c), only finitely
many of the FMn (c) can be in D0, which implies D0 ∈ uf(M). By contraposition we
have the right to left.

Conversely, if D ∈ uf(M), we can construct an extension by adding an element
d ∈ PN0 satisfying RN (d, b) iff b ∈ D. Let PN1 be the Boolean algebra generated by
PM1 ∪{G1(d)}modulo the ideal generated by {GN1 (d)−b : b ∈ D}; this implies that in
the quotient G1(d) ≤ b. (Compare Fact 2.2.2). Let PN2 = PM2 and FNn (c) = FMn (c).
Since D ∈ uf(M), it is easy to check that N ∈K−1. �2.2.3

Here is the main theorem of Section 2. The hypotheses λ = 2µ and λ is less than
the first measurable cardinal were used essentially as the hypotheses for proving �,
the existence of a uniformly ℵ1-incomplete boolean algebra. But here we use � and
don’t rely again on these cardinal hypotheses. The argument here depends on λ = λℵ0 ,
which follows from λ = 2µ. Recall Definition 2.1 of P0-maximal. By constructing a
nicely free model, we introduce at this stage the independence requirements, needed in
Section 3 to satisfy Definition 3.1.6, on the Fn(c).

{f11a}
Theorem 2.2.4 If for some µ, λ = 2µ and λ is less than the first measurable cardinal
then there is a P0-maximal model M in K−1 such that |PMi | = λ (for i = 0, 1, 2),
PM1 is an atomic Boolean algebra, uf(M) = ∅, and M is nicely free.
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Proof. We first construct by induction a model in K−1. The hypothesis � appears
in the construction in Specification f) and in the proof that the construction works in
considering possibility 2. We choose Mε, Dε and other auxiliaries by induction for
ε ≤ ω + 1 to satisfy the following specifications of the construction.

{oplus}
Construction 2.2.5 (Specifications) (a) For ε ≤ ω+1,Mε is a continuous increas-

ing chain of members of K−1λ with each PM1 atomic and PMω+1

1 = PMω
1 ;

{clb}
(b) For all ε ≤ ω, |PMε

i | = λ and PMω
i = P

Mω+1

i for i = 0, 1;
{clc}

(c) For all ε ≤ ω, PMε
1 /PMε

4 is a free Boolean algebra; {cld}
(d) (i) If ε < ω, Dε ∈ uf(Mε).

(ii) If ε = 0, then 〈b−1,α : α < λ〉 is a free basis of PM0
1 /PM0

4 , listed without
repetition, and 〈FM0

n (c) : n < ω, c ∈ PM0
2 〉 lists 〈b−1,α : α < λ〉 without

repetition.

(iii) if ε = ζ + 1 < ω then there is a free basis 〈bζ,α/P
Mζ

4 : α < λ〉 of
PMε
1 /PMε

4 over PMζ

1 /P
Mζ

4 . Note bζ,α ∈ PMε
1 − PMζ

1 .
{cle}

(e) if ε = ω + 1, for each d ∈ ω(P
Mω+1

1 − PMω+1

4 ) such that for each a ∈ PMω
0 for

all but finitely many n, a 6∈ R(Mω, dn), then for some c ∈ PMω+1

2 , FMω+1
n (c) =

dn; (We will in fact have that PMω+1

1 = PMω
1 and PMω+1

4 = PMω
4 .) {clf}

(f) ε = ζ + 1 < ω:

Let B and A be as in Definition 2.1.1. There is a 1-1 function fε from λ onto
PMε
4,1 such that:

i) for every X ∈ B (from �) there is a b = bX ∈ PMε
1 such that

{α < λ :fε(α) ≤Mε
bX} = {α < λ :α ∈ X};

ii) for each A = 〈An : n < ω〉 ∈ A there is a c ∈ PMε
2 such that for each n:

An = {α < λ :fε(α) ≤PMε1
FMε
n (c)}.

Carrying out the construction.

Below, the element bζ,aα is the bAα from Specification 2.2.5.f.(i).
case 1: When ε = 0, take PM0

1 as the Boolean algebra generated by a set PM0
4,1 of

cardinality λ along with a set {b−1,α : α < λ} of independent subsets of P(λ). Let
G1 be a bijection between a set PM0

0 and PM0
4,1 . Set PM0

4 as the ideal generated by the
image of G1. For a ∈ PM0

0 and b ∈ PM1 , define RM0(a, b) to hold if G1(a) ≤ b. Set
PM0
2 = ∅ and so there are no FMn to define. Thus, any non-principal ultrafilter on PM0

1

is in uf(M0).
case 2: For ε = ω, Mω =

⋃
n<ωMn.

case 3: If ε = ζ + 1 < ω, the main effort is to verify clauses (c), (d), and (f) of
Specification 2.2.5.

Now, to construct Mε:
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i Recall that Dζ ∈ uf(Mζ).

ii choose a set Bε ⊆ P(λ); with Bε ∩Mζ = ∅ and |Bε| = λ as the new atoms
introduced at this stage.

iii Let fε be a one-to-one function from λ onto Bε ∪ P
Mζ

4,1 .

iv Let 〈Xγ :γ < λ〉 list the elements of B from �.(ii) with X0 = ∅.

v Fix a sequence {bζ,α :α < λ}, which are distinct and not in Mζ ∪Bε, and let B′ζ
be the Boolean Algebra generated freely by

P
Mζ

1 ∪ {bζ,α :α < λ} ∪ {fε(α) : α < λ}.

Using Lemma 2.2.2, we apply the following definition at the successor stage.
{defI}

Definition 2.2.6 (Ideal) Let Iζ be the ideal of B′ζ generated by:

(i) σ(a0, . . . am) when σ(x0, . . . xm) is a Boolean term, a0, . . . am ∈ P
Mζ

1 and
P
Mζ

1 |= σ(a0, . . . am) = 0.

The next two clauses aim to show that inMζ/Iζ , the element bζ,γ is the bXγ from
Specification 2.2.5 f.i). That is, {α < λ :fε(α) ≤Mε

Xγ} = {α < λ :α ∈ Xγ}.
Recall (Definition 2.1.1) that the Xγ enumerate B and are subsets of λ.

(ii) fε(α)− bζ,γ when α ∈ Xγ and α, γ < λ.

(iii) bζ,γ ∧ fε(α) when α ∈ λ−Xγ and α, γ < λ.

To show the fε(γ) are disjoint atoms we add:

(iv) For any fε(γ) and any b ∈ B′ζ either (fε(γ) ∧ b) ∈ Iζ or (fε(γ)− b) ∈ Iζ .

(v) fε(γ1) ∧ fε(γ2) when γ1 < γ2 < λ;

(vi) fε(α)− b when α < λ, fε(α) 6∈ PMζ

4,1 and b ∈ Dζ .

This asserts: Every new atom is below each b ∈ Dζ and is used at the end of
case 3 of the construction.

Let B′′ζ = B′ζ/Iζ . Applying Fact 2.2.2, we see from Definition 2.2.6:
{succ}

Claim 2.2.7 The structure PMζ

1 is embedded as a Boolean algebra into B′′ζ by the map
b 7→ b/Iζ and

1. For γ < λ, fε(γ)/Iζ is an atom of B′′ζ ;

2. If b ∈ PMζ

1 is non-zero, then bIζ ≥B′′ζ fε(γ) for some γ < λ.
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We take a further quotient of PMζ

1 . Let

Jζ = {b ∈ PMζ

1 :b/Iζ ∧B′′ζ fε(γ) = 0 for every γ < λ}.

Then Jζ is an ideal of PMζ

1 extending Iζ so b 7→ b/Jζ is a homomorphism. Further,
fε(γ) is an atom of PMζ

1 /Jζ for γ < λ. These atoms are distinct and dense in PMζ

1 /Jζ .

Notation 2.2.8 Let Bε be PMζ

1 /Jζ .

Now we defineMε by setting PMε
1 = Bε which contains PMζ

1 . PMε
4,1 is the injective

image in PMε
1 of PMζ

4,1 ∪ Bε. For a ∈ PMε
4,1 and b ∈ PMε

1 set RMε(a, b) if some γ,
a = fε(γ)/Jε and fε(γ)/Jε ≤Bε b/Jζ . Finally, let Dε be the ultrafilter on PMε

1

generated by

Dζ ∪ {jε(−bζ,γ) :γ < λ} ∪ {jε(−fε(γ)) :γ < λ}.

By Claim 2.2.7, we have the cardinality and atomicity conditions of Specifica-
tion 2.2.5.(a) and (b); the definition of I guarantees, (c) and (d).(ii), (d).(iii). We verify
Mε ∈ K−1 below. The first set of new elements in Dε show along with (our later)
definition of FMε

n (c) show Dε ∈ uf(Mε) (as no new Fn(c is in Dε); the second set
showDε is non-principal. Note that Specification 2.2.5.(e) does not apply except in the
ω + 1st stage of the construction.

For Specification 2.2.5 (f) (i), let X be a set of atoms of Mε and note that we can
choose bX by conditions ii) and iii) in Definition 2.2.6 of Iζ .

We can choose PMε
2 and FMε

n to satisfy Specification 2.2.5 (f) (ii). Fix an A ∈ A
(as given by �). Fix a c = cA and define, using the last paragraph, the FMε

n (c) as bAn ,
so that for each n, An = {α < λ : fε(α) ≤PMε1

FMε
n (c)}. These are the only new

c ∈ PMε
2 .

Thus, it remains only to show that Mε ∈ K−1. I.e., that Mε satisfies Defini-
tion 1.2.(7):

(�) If a ∈ PMε
4,1 and c ∈ PMε

2 then (∀∞n) a 
Mε
FMε
n (c).

If c ∈ PMζ

2 , FMε
c = F

Mζ
c ∈ PMζ

1 and we know by induction that� holds for a ∈ PMζ

4,1 .

For a ∈ PMε
4,1 − P

Mζ

4,1 , Definition 1.2.5. and condition (v) on Iζ (from Definition 2.2.6)

imply a ≤Mε
b for every b ∈ Dζ . As c ∈ P

Mζ

2 and Dζ ∈ uf(Mζ), all but finitely
many en = F ζn(c), are not in Dζ . So e−n ∈ Dζ . That is, a ≤Mε

e−n ; so a ∧Mε
en = ∅

as required.
If c ∈ PMε

2 − PMζ

2 then by our choice of PMε
2 and the FMε

2 , there is an Ac that
is enumerated by the FMε

2 (c) and satisfies � by (i) of � (Definition 2.1.1.(i)). This
completes the verification of � at stage ε and the Mε satisfies all the specifications of
the induction.

case 4: ε = ω + 1:
Only clauses (b) and (e) of Specification 2.2.5 are relevant. Define PMε

2 and FMε
n

to satisfy clause (e). Since PMε
i = PMω

i for i = 0, 1, specification c) is immediate.
This completes the construction.
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The construction suffices.
Having completed the induction, let M = Mω+1. Using specifications c) and d) of

2.2.5, it is straightforward to verify that M ∈K−1 and the Boolean algebra is atomic.
By (b), MMω

i for i = 0, 1 have cardinality λ. And by (f), the same holds for MMω+1
2 .

We now show M is nicely free. Let b = 〈b′β : β < λ〉 enumerate 〈bn,α : n <
ω, α < λ〉 without repetition. We show b satisfies the requirements in Definition 2.2 of
nicely free. By Specifications 2.2.5. (c), (d) and since PM1 is constructed as the union
of the PMn

1 , PM1 /PM4 is generated freely by b/PM4 . Finally, clause c) of Definition 2.2
holds by clause (d).ii) of Specification 2.2.5.

The crux is to show M = Mω+1 is P0-maximal. For this, assume for a contradic-
tion:

(*) PM0 is not maximal; by Lemma 2.2.3, there is a D ∈ uf(Mω+1) = uf(Mω).
For every n < ω, : is there a d ∈ D such that R(Mω, d) ∩Mn = ∅?

Possibility 1 : For every n < ω, the answer is yes, exemplified by dn ∈ D. Now
for each a ∈ PMn

0 , a 6∈ R(Mω, dm) for all m ≥ n. So the sequence d = 〈dn : n < ω〉
satisfies the hypothesis of Specification 2.2.5.(e) and so there is a c ∈ PM2 such that for
each n < ω, FMn (c) = dn. Thus, recalling Definition 2.2.1, D 6∈ uf(M).

Possibility 2 : For some n < ω, there is no such dn; without loss of generality,
assume n > 0. We apply specification f) with ε = n. Recall that fn is a 1-1 map
from λ onto PMn

4,1 . Let g1 be the following homomorphism from the Boolean algebra

P
Mω+1

1 = PMω
1 into P(λ) : g1(b) = {α < λ : fn(α) ≤BMω b}. By Specification f.i)

of 2.2.5, the Boolean algebra B provided by � is contained in the range of g1.
Let In denote the ideal of PM1 generated by PM4,1−P

Mn
4,1 . SinceD is non-principal,

In ∩ D = ∅. Now, g1 maps any b ∈ PMω
1 − PMω

4 (and, thus, any b ∈ PMω
1 − In)

to a nonempty subset of λ. Recalling In ∩ D = ∅, g1 embeds the quotient algebra
P
Mω+1

1 /In into the Boolean Algebra P(λ). Hence, D1 = g′′1 (D) is an ultrafilter of the
Boolean Algebra rg(g1) and so D2 = D1 ∩ B is an ultrafilter of the Boolean algebra
B. We show, for any α < λ, {α} 6∈ D2. As, fn(α) ∈ PMω

4,1 and so {fn(α)} is not
in D. So {α} 6∈ D1. Thus, λ − {α} ∈ D1 and so λ − {α} ∈ D2. So {α} 6∈ D2 as
promised.

Now we apply the second clause of � to the ultrafilter D2. Since we satisfied
specification f.ii) in the construction, we can conclude there is A = 〈An :n < ω〉 ∈ A
such that for infinitely many k, Ak is in D2. Thus, u = {k : Ak ∈ D} is infinite. We
will finish the proof by showing there is a c such that u = uc (Definition 2.2) is the set
of images of the FMn (c).

Since eachAk ∈ B,Ak ∈ rg(g1). So we can choose dk ∈ PMω
1 with g1(dk) = Ak.

As Ak ∈ D2, by the choice of D1, D2 we have dk is in the ultrafilter D from the
hypothesis for contradiction: (*).

We show the sequence d = 〈dk : k < ω〉 satisfies the hypothesis of clause e of
Specification 2.2.5. First, dk ∈ PMω

1 − PMω
4 as D is a non-principal ultrafilter on

PMω
1 so the first hypothesis is satisfied. Further, for every a ∈ PMω

0 all but finitely
many k, GMω

1 (a) �Mω dk because A ∈ A, which implies by � ii) that for every
α < λ, for some kα, we have k ≥ kα implies α 6∈ Ak. Now by the definition of
g1, recalling g1(dk) = Ak, we have k ≥ kα implies fk(α) * dk (in PMω

1 ). So by

11



Specification 2.2.5. f.ii), there is a c ∈ PMn
2 such that if for all k < ω, FMn

k (c) = dk.
So, for each finite k, dk ∈ D and FMω+1

k (c) = dk. This contradicts D ∈ uf(Mω+1)
and we finish. �2.2.4

3 Correcting M∗ to a model of K2
{corr}

We now ‘correct’ the structure M∗ constructed in Section 2 of a P0-maximal model of
K−1 to to obtain a P0-maximal model M (Definition 2.1) of the complete sentence
constructed in [BS17a], i.e. M ∈ K2. In Theorem 3.18 we modify M∗, to construct
a model M ∈ K2 with PM2 ⊆ PM∗ and redefining the FMn , but retaining M �
(PM0 ∪ PM1 ) = M∗ � (PM∗0 ∪ PM∗1 ). The old values of FM∗n will be used to divide
the work of ensuring each ultrafilter D is not in uf(M) by for each D attending to only
those c with infinitely many Fn(c) in D.

For this we need to introduce some terminology from [BS17a]. We first describe
the finitely generated models.

{k0}
Definition 3.1 (K1

<ℵ0 Defined) M is in the class of structures K1
<ℵ0 if M ∈ K−1ℵ0

and there is a witness 〈n∗,B, b∗〉 such that:

1. b∗ ∈ PM1 is the supremum of the finite joins of atoms in PM1 . Further, for some
k,

⋃
j≤k P

M
4,j = {c : c ≤ b∗} and for all n > k, PM4,n = ∅.

2. B = 〈Bn : n ≥ n∗〉 is an increasing sequence of finite Boolean subalgebras of
PM1 .

3. Bn∗ ) {c ∈ PM1 : c ≤ b∗} = PM4 ; it is generated by the subset PM4 ∪
{FMn (c) : n < n∗, c ∈ PM2 }.
Moreover, the Boolean algebra Bn∗ is free over the ideal PM4 (equivalently,
Bn∗/P

M
4 is a free Boolean algebra2).

4.
⋃
n≥n∗ Bn = PM1 .

5. PM2 is finite and not empty. Further, for each c ∈ PM2 the FMn (c) for n < ω are
independent over {0}.

6. The set {Fm(c) : m ≥ n∗, c ∈ PM2 } (the enumeration is without repetition) is
free from Bn∗ over {0}. Bn∗ ) PM4 and Fm(c) ∧ b∗ = 0 for m ≥ n∗. (In this
definition, 0 = 0P

M
1 .)

In detail, let σ(. . . xci . . .) be a Boolean algebra term in the variables xci (where
the ci are in PM2 which is not identically 0. Then, for finitely many ni ≥ n∗ and
a finite sequence of ci ∈ PM2 :

σ(. . . Fn(ci) . . .) > 0

and some n < ω. Further, for any non-zero d ∈ Bn∗ with d ∧ b∗ = 0, (i.e.
d ∈ Bn − P 4

M ),
σ(. . . Fni(c) . . .) ∧ d > 0.

2A further equivalence: |Atom(Bn∗ )| − |PM
4,1| is a power of two.
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7. For every n ≥ n∗, Bn is generated by Bn∗ ∪ {Fm(c) : n > m ≥ n∗, c ∈ PM2 }.
Thus PM1 and so M is generated by Bn∗ ∪ PM2 .

Note that the free generation in item 6 of Definition 3.1 is not preserved by arbitrary
direct limits and so is not a property of each model in K1. In particular, as M∗ is cor-
rected to a model of K1, we check this property only for finitely generated submodels
as it will be false in general.

Recall some terminology from [BS17a].
{richname}

Definition 3.2 (K2 Defined) 1. K1 denotes the collection of all direct limits of
models in K1

<ℵ0 .

2. We say a model M in K1 is rich if for any N1, N2 ∈ K1
<ℵ0 with N1 ⊆ N2 and

N1 ⊆M , there is an embedding of N2 into M over N1.

3. K2 is the class of rich models.

Since K1
<ℵ0 has joint embedding, amalgamation and only countably many finitely

generated models, we construct in the usual way a generic model, thus K2 is not empty.
{getgen}

Fact 3.3 There is a countable generic modelM for K0 (Corollary 3.2.19 of [BS17a]).
We denote its Scott sentence by φ. K2 is the class of models of this φ; it can also be
thought of as the class of rich models in K1.

We now describe some of the salient properties of the model M obtained by ‘cor-
recting’ the M∗ of Section 2.

{correnum2}
Remark 3.4 (The Corrections) 1. The structures constructed in this Section are

subsets of M∗; the Fn are redefined so the new structures are substructures only
of the reduct of M∗ to τ − {Fn : n < ω}.

2. In particular, for all the M considered here PM1 = PM∗1 and these Boolean
algebras have the same set of ultrafilters. However, uf(M) 6= uf(M∗) as the
definition of uf depends on properties of the Fn.

3. The set {FMn (c) : c ∈ PM2 } is not required to be an independent subset in K−1;
the final constructed model is not nicely free.

4. Claim 3.15 demands a sequence of finite Boolean algebras Bn to witness mem-
bership in K1 (not required for K−1) in Section 2 and [BS17a].

5. In [BS17a], the proof that a non-maximal model in λ makes λ measurable de-
pends on �.

The main task of this section is to prove:
{realthm}

Theorem 3.5 If λ is less that the first measurable cardinal and for some µ, 2µ = λ
and 2ℵ0 < λ, then there is a P0-maximal model in K2 of cardinality λ.
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Context 3.6, summarises the results of the construction in Theorem 2.2.4, specifi-
cally to fix our assumptions for this section. The requirement that for some µ, 2µ = λ
is needed only to guarantee (by Theorem 2.2.4) there is a model M∗ in λ satisfying
Context 3.6.

{hyp}
Context 3.6 1. PM∗1 is an atomic Boolean algebra and M∗ is P0-maximal. Fur-

ther, |PM∗i | = λ for i = 0, 1.

2. PM∗4,1 is the set of atoms of M∗.

3. M∗ is nicely free (Definition 2.2); in particular, PM∗1 /PM∗4 is a free Boolean
algebra of cardinality λ.

In order to ‘correct’ M∗ to a model in K2, we lay out some notation for the gener-
ating set of PM∗1 , the free basis of the boolean algebra PM∗1 /PM∗4 , and the indexing of
the tasks performed in the construction.

{f33}
Notation 3.7 We define a family of trees of sequences:

1. Let Tα = {〈〉} ∪ {α̂ η; η ∈ <ω3} and T =
⋃
α<λ Tα.

2. lim(Tα) is the collection of paths through Tα.

Combining the specifications for constructingM∗ (Specification 2.2.5) and the Def-
inition 2.2 of nicely free,

{f34}
Claim 3.8 (Fixing Notation) Without loss of generality, we may assume:

1. The universe of M∗ is λ and the 0 of PM∗1 is the ordinal 0.

2. We can choose sequences of elements of PM∗1 , b = 〈bη : η ∈ T 〉 so that their im-
ages in the natural projection of PM∗1 on PM∗1 /PM∗4 freely generate PM∗1 /PM∗4 .

3. For every a ∈ PM∗4,1 and the even ordinals α < λ, for some n, for any ν, ρ ∈ Tα
with lg(η) ≥ n and lg(ρ) ≥ n, a ≤PM∗1

bν if and only if a ≤PM∗1
bρ.

Proof. The only difficulty is deducing from c) of Definition 2.2 (nicely free) that 3)
holds. For that, for even α, let {b′ωα+n : n < ω} enumerate uc = {FM∗n (c) : n < ω}
(from Definition 2.2.c) for the αth c in some enumeration of PM∗2 . Now for α > 0,
let 〈bη : η ∈ Tα \ {〈〉}〉 list {b′ωα+n : n < ω} without repetition and 〈bη : η ∈ T0〉 list
{b′n : n < ω}.

By Definition 1.2.7 we have. For every a ∈ PM∗4,1 for all but finitely many n,
a ∩ b′ωα+n = 0PM∗4,1

; whence for even α all but finitely many of the ν ∈ Tα with
ν(α) 6= 0, a ∩ bν = 0PM∗4,1

. Since for each n, the intersection of the Fn(c) is empty,
clause (3) follows as for all sufficiently large n, a 6≤ Fn(c). �3.8

Note that Claim 3.8 provides a 1-1 map from PM∗2 to ordinals less than λ. We intro-
duce the collection of models which is the starting point for the following construction.
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{f37}
Definition 3.9 (M1 Defined) Let M1

= M1
λ be the set of M ∈ K−1 such that the

universe of M is contained in λ, the universe of M∗, and for i < 2, PMi = PM∗i ,
M � (PM0 ∪ PM1 ) = M∗ � (PM∗0 ∪ PM∗1 ) while PM2 ⊆ P

M∗
2 .

The posited M∗ differs from any M ∈M1 only in that PM2 may be a proper subset
of PM∗2 and the FMn (c) need not equal the FM∗n (c).

We now spell out the tasks which must be completed to correct M∗ to the required
member of K2. The FM∗n (c) are used as oracles.

{f39}
Definition 3.10 1. Let T 1, the set of 1-tasks, be the set of pairs (N1, N2) such that:

(a) N1 ⊆ N2 ⊆ λ
(b) N1, N2 ∈K1

<ℵ0
(c) N1 ⊂M for some M ∈M1.

2. Let T 2, the set of 2-tasks, be the set of c ∈ PM∗2 .

3. T = T 1 ∪ T 2.

4. Let 〈tα : α < λ〉 enumerate T .

Note |T 1| = |T 2| = |T |.
{f41}

Definition 3.11 The task t is relevant to the structure M if M ∈ M1 and i) if t is
1-task (N1, N2) then N1 ⊆M or ii) if t is a 2-task {c} and c ∈ PM∗2 .

We say M ∈M1 satisfies the task t if either:

A) t = (N1, N2) ∈ T 1 (so N1 ⊂ M ) and there exists an embedding of N2 into M
over N1.

B) t = {c}, where c ∈ PM∗2 , is in T 2 and for every ultrafilter D on PM1 , such that
for infinitely many n, FM∗n (c) ∈ D, there is a d ∈ PM2 such that for infinitely
many n, FMn (d) ∈ D.

Recall Definition 2.2.1 of uf(M) and Lemma 2.2.3 connecting uf(M) with P0-
maximality of M .

{f44}
Claim 3.12 If M ∈ M1 satisfies all tasks in T and is in K1 then M is P0-maximal
and, in particular, satisfying the tasks in T 1 guarantees it is in K2.

Proof. For P0-maximality of M , it suffices, by Lemma 2.2.3, to show uf(M) = ∅.
But, since uf(M∗) = ∅, for every ultrafilterD on PM∗1 there is c ∈ PM∗2 with SM∗c (D)
infinite and satisfying task c means there is d ∈ PM2 such that SMd (D) is infinite and
so not in uf(M). Since M and M∗ have the same ultrafilters, this implies uf(M) = ∅,
as required. The second assertion follows by realizing that satisfying all the tasks in
T 1 establishes the model is rich, which suffices by Fact 3.3. �3.12.

Thus our job is reduced to showing each ultrafilter D is countably incomplete.
Definition 3.13 lays out the use of the generating elements bη in correcting the FM∗n to

15



require independence while maintaining that infinite intersections of members of the
ultrafilter under consideration are empty. The infinite sequence ηd will guide the choice
of possibilities for Fn(d).

We define a classM2 ⊆M1 such that for each d ∈ PM2 ∈M2 there is an ordinal
αd, a tree of elements of PM1 , indexed by sequences in Tαd ⊆ <ω3, a target path
ηd through that tree and a sequence ad,n, whose indices are not in Tαd , but which
satisfy that each a ∈ PM∗4,1 = PM4,1 is in at most finitely many ad,n. Further, elements
indexed by Tα are combined with the ad,n to get values of the FMn (d) which are both
independent and satisfy

⋂
n<ω F

M
n (d) = ∅.

{f50}
Definition 3.13 (M2 Defined) Let M2 be the set of M ∈ M1 such that there is a
sequence w = 〈(αd, ηd, ad,n) : d ∈ PM2 , n < ω〉 witnessing the membership, which
means:

A (a) For each d ∈ PM2 , αd < λ is even and d1 6= d2 implies ηd1 6= ηd2 . (Note
that it is possible that d1 6= d2 while αd1 = αd2 .)

(b) 〈αd〉C ηd ∈ lim(Tαd).

B The ad,n are in PM∗1 and for each d ∈ PM2 and n < ω, there are3 ν1[d, n] 6=
ν2[d, n] in n+13 such that:

(a) For a fixed function nM : PM2 → ω, we have, for every n ≥ nM (d):

FMn (d) = (bν1[d,n] M bν2[d,n]) M ad,n;

For n < nM (d), FMn (d) = FM∗n (d).

(b) ηd � nC ν1[d, n] and ηd � nC ν2[d, n];

(c) for each a ∈ PM∗4,1 and each d ∈ PM2 , there are only finitely many n with
a ≤PM∗1

ad,n.

C For each Y ⊆ PM2 there is a list 〈d` : ` < |Y |} of Y such that: (∗) for every
` < |Y |, letting α` abbreviate αd` , we have

W` = {adk,n : k ≤ ` ∧ n < ω} ∪ {bν : ν(0) 6= α`, αk 6= α`}
∪ {FMi (dk) : i < nM (dk), k ≤ `, dk 6= d`}

is included in the subalgebra B` of PM∗1 generated by

{bν : ν(0) 6= α` ∧ ν ∈ T } ∪ {b〈〉} ∪ PM∗4,1 .

(a) The d` list Y without repetition.

(b) If i1 < i2 < i3 < |Y | and αi1 = αi3 then αi2 = αi1 .

The following facts about the relation of symmetric difference and ultrafilters are
central for calculations below.

3I.e., ν1[d, n] depends on d and n.
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{backgrbauf}
Remark 3.14 Recall that the operation of symmetric difference is associative.

1. (for 3.15) Suppose B1 ⊆ B2 are Boolean algebras with a ∈ B1, and b 6= c are
in B2, and {b, c} is independent over B1 in B2. Then

The element (b M c) M a ∈ B2 is independent from B1.

Starting from infinite independent sequences b1,b2 ∈ PM∗1 and an infinite inde-
pendent sequence of ad,n we can prove by induction that the FMn (d) (as defined
in Definition 3.13. 2a) are independent.

2. (for 3.18) Let D be an ultrafilter on a Boolean algebra B. Note:
(a ∈ D iff b ∈ D) if and only if a M b 6∈ D.

If a0, a1, a2 ∈ B are distinct and (a0 ∈ D iff a1 ∈ D) then at least one of
ai M aj 6∈ D (since the intersection over all pairs i, j of the ai M aj is empty).

More importantly for our use later, (a0 ∈ D iff a1 ∈ D) iff

(a0 M a1 M a2) ∈ D ↔ a2 ∈ D.

3. (for 3.18) 2) implies that if D is an ultrafilter of B2 and (b ∈ D ↔ c ∈ D) and
a 6∈ D then

• b4c 6∈ D
• (b4c)4a 6∈ D.

We will show in Theorem 3.15 that members of M2 are in K1 and then in Theo-
rem 3.18 that there are structures inM2 that are in K2. Two main features distinguish
K1 from K−1. The Fn(d) retain the intersection properties from K−1 but also must
be independent; membership of an M in K1 from [BS17a] must be witnessed by the
construction for a countable substructure M ′ ⊂ M of a family of finite Boolean alge-
bras satisfying Definition 3.1.2 and .3.

{f53}
Theorem 3.15 If M ∈M2, then M ∈K1.

Proof. Let Y ⊂ PM2 and X ⊂ PM1 be finite ; we shall find N ∈ K1
<ℵ0 such that

Y ∪X ⊆ N ⊆M ; this suffices. As, K1 is defined to be the direct limits of of finitely
generated structures in K1

<ℵ0 .
Our two main tasks are to find such an N in which i) the FNn satisfy property 6 of

Definition 3.1 and ii) there is a sequence of finite Boolean algebras Bkn witnessing 2
and 3 of Definition 3.1. First we attack i).

Let the sequence 〈(αd, ηd, ad,k) : d ∈ PM2 , k < ω〉 witness M ∈M2 as in Defini-
tion 3.13. Let 〈di : i < n〉 enumerate Y without repetition and denote, for i < n, ηdi
by ηi and αdi by αi. Without loss, the 〈ηi(0) : i < n〉 are non-decreasing. Fix k1 such
that

• k1 ≥ nM (di) (see Definition 3.13.B) for all i < n,

• 〈ηi � k1 : i < n〉 are distinct for i < n, and
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• X0 = X ∪{FMk (di) : i < |Y | = n, k ≤ nM (di)} is contained in the subalgebra
generated by {bν : ηi � k1 5 ν for i < |Y |} ∪ {b〈〉} ∪ PM4,1.

(By clause C of Definition 3.13, none of the FMk (di) = bσ where σ(0) is equal to an
αi with i < n. We can avoid X by choosing k1 big enough.)

To establish task i) we need the following claim.
{f53.5}

Claim 3.16 A = 〈FMk (di) : k ≥ k1 and i < n〉 is independent in PM1 over X0 mod-
ulo the atoms.

Proof. We prove this claim by showing by induction on ` ≤ |Y | = n:

(⊕`) A` = 〈FMk (di) : k ≥ k1 and i < `〉

is independent in PM1 over X` modulo the atoms, where we have defined X0 and for
0 < ` ≤ |Y |,

X`+1 = X` ∪ {FMk (di) : k < k1, i < `}.

Note that A = An. The independence of A` over all the FMk (di) with di ∈ Y for
k < nM (di) is clear since they are in X0. For i < ` ≤ |Y |, the induction on ` shows
incrementally, at stage `, the independence of the tail of the FMk (d`) over the FMk (di)
for nM (di) ≤ k < k1.

Now by Definition 3.13.C, X` ⊆ W` is contained in B̌`, the subalgebra generated
by

Z` = {bν : νd` � k`+1 5 ν} ∪ {b〈〉} ∪ PM4,1.

We verify this assertion by careful comparison of the definition of Z` with that of
W` in Definition 3.13.C. Think of the B̌` ⊆ B` as omitting certain cones among the
bν . The crucial point is that bν1[d`,n] and bν2[d`,n] are not in B̌`. Thus, Claim 3.8.2 and
Definition 3.13.B imply the infinite set {bνi[η`,k] : i ∈ {0, 1}, k ≥ k1, 〉 is independent
over B̌`. For convenience we write ak,i for adk,i. Looking at the first term in the union
in Definition 3.13.C, and comparing X` with the generators of W` in that definition,
each ak,i, for k < `, i < ω is in B̌`, and for each k < ` and i < n(d`), FMi (dk) ∈
B̌` (3rd term of the definition of Z`). Compare also the definition of ηdi in A(b) of
Definition 3.13.

Using the crucial point, we also claim FMi (d`) ∈ B̌` when ` < k1 for i ≥ n(d`).
As, setting d = dk for notational simplicity,

FMn (dk) = FMn (d) = (bν1[d,n] M bν2[d,n]) M ad,n,

by Lemma 3.13.B.(b). For each i and k, νi[di, k] is E above 〈αdi〉, so V =
{νi[di, k]; i < `, k < ω} is independent from B` and X` ⊂ B`; thus, V is independent
from X`. Since we noticed the ak,i ∈ B`, Lemma 3.14 implies {FMk (d`) : k ≥ k2} is
independent over B`. By the induction hypothesis we finish. �3.16

Applying Claim 3.8.3, a � (bν1[d,n] M bν2[d,n]), for n ≥ nd, and by hypothesis,
the ad,n satisfy the same condition. Thus, for sufficiently large n, a 
 FMn (d`).
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This completes task i). To accomplish task ii) and finish the proof of Theorem 3.15
by satisfying conditions 2-4 of Definition 3.1, we must find a sequence of finite Boolean
algebras Bn witnessing that X ∪ Y is contained in a member of K1

<ℵ0 .
Recall that M∗ is generated by {bν : ν ∈ T } ∪ PM∗4,1 ∪ {b<>}. As X is finite,

there is a k2 such that X is contained in the finite subalgebra of PM∗1 generated by
{bν : ν ∈ T , lg(ν) < k2} ∪ PM∗4,1 .

We now choose N ⊆ M with PN1 =
⋃
m≥k2 Bm, PN0 = {G−11 (a) : a ∈ PM4,1 ∩

PN1 } and PN2 = Y .
Define the Bm for m ≥ k2, N ∈K1 as follows. Let Bk2 be the subalgebra of M∗

generated by X ∪ {FMk (d`) : k ≤ k2, ` < |Y |}. For m ≥ k2, let Bm be generated
by X ∪ {FMk (d`) : k < m, ` < |Y |}. Without loss of generality (using the choice
of b from Claim 3.8), we can demand each Bki is a finite free Boolean algebra. This
sequence witnesses that M ∈K1. �3.15

Now we showM2 is non-empty and at least one member satisfies all the tasks. In
case 4) of this argument we address the requirement that uf(Mα) = ∅ and so uf(M) =
∅ as well.

Notation 3.17 We can enumerate T as 〈tα : α < λ〉 such that each task appears λ
times, as we assumed in Hypothesis 3.6 that λ = λℵ0 .

For Theorem 3.18, realizing all the tasks, λ > 2ℵ0 suffice; the requirement in
Lemma 2.1.5 that λ = 2µ is used to get maximal models. The object of case 3) is to
ensure that the final model is in K2; case 4) shows uf(M) = uf(M∗) = ∅.

{f56}
Theorem 3.18 There is an M ∈M2 that satisfies all the tasks. Thus M ∈ K2 and is
P0-maximal.

Proof. We choose Mα by induction on α ≤ λ such that:

1. wα witnesses Mα ∈ M2 (Definition 3.13). And for β < α, wα extends wβ .
That is, for d ∈ PMβ

2 , αd[wα] = αd[wβ ], ηd[wα] = ηd[wβ ], etc..

2. PMα
2 ⊆ PM∗2 has cardinality at most |α|+ 2ℵ0 .

3. if α = β + 1 and tβ is relevant to Mβ , Mα satisfies task tβ .

case 1 If α = 0, set M0 = M∗ � (PM∗0 ∪ PM∗1 ).

case 2 Take unions at limits.

case 3 α = β + 1 and tβ ∈ T 1; say, tβ = (N1, N2).

If N1 is not embedded in Mβ then the task is irrelevant and let Mα = Mβ . Let
〈ci : i < m〉 enumerate PN2

2 − PN1
2 and 〈di : i < m〉 enumerate the first m

elements of PM∗2 − PMβ

2 .

By induction, sinceMβ ∈M2 there are witnesseswβ = 〈ad,k, ηd, αd〉 (formally
〈aβd,k, ηd, α

β
d 〉) for d ∈ P

Mβ

2 . By Definition 3.13.C, we can fix Uα ⊆ λ of
cardinality ≤ |α|+ 2ℵ0 such that: {Ualph}
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(∗){ad,k : k < ω, d ∈ PMβ

2 } ∪ {bν : (∃d ∈ PMβ

2 )〈αd〉E ν ∈ Tαd} ∪ P
M∗
4,1

is included in the subalgebra of M∗ generated by the

{bρ : ∃β ∈ Uα, 〈β〉E ρ ∈ Tβ} ∪ {b〈〉} ∪ PM∗4,1 .

Let Mα extend the universe of Mβ by adding 〈di : i < m〉 ⊂ PM∗2 . Note that
the domain of Mα is a subset of M∗, but Mα is not a substructure of M∗; we are
about to define the FMα

k at the di for i < m. Let k∗ be large enough and let B
be a finite Boolean sub-algebra of PN2

1 and b∗ ∈ B be as in Definition 3.1.3 of
K1. In particular b∗ is a finite union of atoms of PM∗1 , which are in PN2

1 , and
PN2
1 is generated freely over PN1

1 ∪B by {FN2

k (ci) : k∗ ≤ k < ω, i < m}.
To extend the witnesses to Mα, let 〈(βi, ηi) : i < m〉 be such that the βi are a
strictly increasing list of the first m even members of λ− Uα with ηi ∈ Tβi . Let
adi,k be the 0 of PM∗1 for i < m, k < ω.

We first map B into Mβ ; map atoms a ∈ PN2
4,1 − P

N1
4,1 into atoms a′ in PMβ

4,1 −
PN1
4,1 . Then map the finitely many FN2

k (ci) for k < n∗, i < m to b′k,i which are
in PN1

1 and independent over Bn∗ for N1. Now let FMα

k (di) be the join of b′k,i
with all the a ∈ PN1

4,1 that lie below FN2

k (ci) and the a′ such that a′ ∈ PN2
4,1−P

N1
4,1

and a′ ≤ FN2

k (ci).

Now, the {b(ηi�k)̂ <0>4b(ηi�k)̂ <1> : i < m} are independent4 over PN1
1 .

So we can define hβ to embed the Boolean algebra PN2
1 into PM∗1 over PN1

1

such that k ≥ k∗ implies

hβ(FN2

k (cj)) = bηj�k̂ 0 M bηj�k̂ 1.

By Claim 3.8.3, since the βi are even, for each a ∈ PM∗4,1 , for some n, if ν, ρ ∈ Tα
with lg(η) ≥ n and lg(ρ) ≥ n then a ≤PM∗1

bν if and only if a ≤PM∗1
bρ. For

each j and k, bηj�k̂ 0 M bηj�k̂ 1 = (bηj�k̂ 0 M bηj�k̂ 1) M 0PM∗1
. So setting

adi,k = 0 for i < m, we have:

FMα

k (dj) = (bηj�k̂ 0 M bηj�k̂ 1) M 0PM∗1
,

and for each a ∈ PMα
4,1 , for some n, a �PM∗1

FMα

k (dj). Thus, Mα ∈M1 and so
in Mα ∈M2 as required.

4Suppose one takes any partition of an independent set and chooses for each block one element which is
a finite Boolean combination of elements from that block. Then, that set of elements is independent.
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case 4 α = β + 1 and tβ ∈ T 2; say, tβ = c.

We define Mα. Recalling Definition 3.7, we have a witness 〈aβd,k, η
β
d , α

β
d 〉 that

Mβ ∈ M2; we extend it to a witness for Mα. Let γ be an even ordinal such
that γ 6= αd for any d ∈ P

Mβ

2 and ν(0) 6= γ if bν = ad,k for some k < ω

and d ∈ P
Mβ

2 . Let 〈dη : η ∈ lim Tγ〉 be a set of pairwise distinct elements of
PM∗2 − PMβ

2 . And, let Mα be generated by Mβ ∪ {dη : η ∈ lim(Tγ)}.
To define FMα

k (dη), for each η ∈ lim Tγ and k < ω, choose i0 < i1 ≤ 2 that are
different from η(k). Recalling c = tβ , let

FMα

k (dη) = (bη�k̂ i0 M bη�k̂ i1) M (FM∗k (c)).

Thus, for the d ∈ PMα
2 − PMβ

2 chosen towards satisfying tβ = c, we have set
〈ααd , ηαd , ααd 〉 = 〈γ, dη, FM∗k (c)〉.
It is routine to show Mα ∈ M2. We must show Mα satisfies task tβ . For this,
suppose D is an ultrafilter on PM∗1 such that the set SM∗c (D) = {n : FM∗n (c) ∈
D} is infinite (Definition 2.2.1). Define ηD ∈ lim(Tγ) by induction5: ηD(0) =
γ. By Remark 3.14.2 one of the three elements b〈γ,i〉4b〈γ,j〉, for i 6= j and
i, j < 3, must not be in D. Let ηD(1) be the other member of {0, 1, 2}. For
k ≥ 1, suppose ν = ηD � k has been defined. Again, by Remark 3.14.2 one of
the three elements bν î4bν ĵ , for i 6= j and i, j < 3, must not be inD. Let ηD(k)
be the other member of {0, 1, 2}. For the infinitely many n with FMα

n (c) ∈ D,
we have FMα

n (dηD ) ∈ D.

To show that tβ is satisfied by dηD , we now verify Definition 1.2.7: for every
a ∈ PMα

4,1 , for all but finitely many n, FMα
n (dηD ) ∧ a = 0PMα1

. As M∗ ∈
K−1, by Definition 1.2.7 we have for every large enough n, PMα

1 = PM∗1 |=
FM∗n (c) ∧ a = 0PMα1

. Now, recall from 3.8.3, that for every a ∈ PM∗4,1 and the
even ordinals α < λ, there is an n, such that for any ν, ρ ∈ Tα with lg(η) ≥ n
and lg(ρ) ≥ n,a ≤PM∗1

bν if and only if a ≤PM∗1
bρ. As γ is even, it follows

that for every a ∈ PM∗4,1 , and large enough n, a∧FMα

k (dηD ) = 0PM∗1
. Since this

argument holds for each D such that SM∗c (D) = {n : FM∗n (c) ∈ D} is infinite,
we have verified tβ = c.

�3.18

Conclusion 3.19 We have found a P0-maximal M ∈ K2 with all |PMi | = λ. As in
[BS17a], for every λ less than the first measurable, since M ∈ K2 implies |M | ≤
2P

M
0 , there is a maximal model M ∈K2 with 2λ ≤ |M | < 22

λ

.

Remark 3.20 Note that the model M contains uncountably many elements dη ∈ PM2 ,
which were constructed in case 4, such that for some αd, each of the η(0) = αd, but
η and η′ first differ at k ≥ k∗ and FMα

k (dη) = FMα

k (d′η) as, FMα

k (dη) = (bη�k̂ i0 M

bη�̂ i1) M (FM∗k (c)). This contradicts nice freeness. In contrast, the P0-maximal model

5This argument is patterned on the simple black box in Lemma 1.5 of [She], but even simpler.
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constructed in [BS17a] using diamond, was K1-free for subalgebras of cardinality
< λ.

Question 3.21 1. Is there a κ < µ, where µ is the first measurable, such that if a
complete sentence has a maximal model in cardinality κ, it has maximal models
in cardinalities cofinal in µ?

2. Is there a complete sentence that has maximal models cofinally in some κ with
iω1

< κ < µ where µ is the first measurable, but no larger models are maximal.
Could the first inaccessible be such a κ?
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