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Zilber’s hope

The initial hope of this author in [Zil84] that any uncountably
categorical structure comes from a classical context (the
trichotomy conjecture), was based on the belief that logically
perfect structures could not be overlooked in the natural
progression of mathematics.
[PS98]. ([Zil05])

We show some exotics are a bit more classical than expected.
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Overview

1 Classifying strongly minimal sets and their geometries

2 Coordinatization by varieties of algebras

3 Interactions with Combinatorics
Cyclic graphs in Steiner triple systems
Sparse Steiner systems

Thanks to Joel Berman, Gianluca Paolini, and Omer Mermelstein.
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Classifying strongly minimal sets and their geometries
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The trichotomy

Zilber Conjecture
The acl-geometry of every model of a strongly minimal first order
theory is

1 disintegrated (lattice of subspaces distributive)
2 vector space-like (lattice of subspaces modular)
3 non-locally modular : ‘bi-interpretable’ with an algebraically closed

field.

Hrushovski’s example showed there are non-locally modular which are
far from being fields; the examples don’t even admit a group structure.
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Classify non-locally modular geometries of SM sets

Definition: Flat geometries
A geometry given by a dimension function d is flat if the dimension of
any set E covered by d-closed sets E1, . . .En is bounded by applying
the inclusion exclusion principle to the Ei .

Fact
If the geometry of a strongly minimal set M is flat.

1 Forking on M is not 2-ample. (I.e., is CM-trivial)
2 M does not interpret an infinite group.
3 Thus, the geometry is not locally modular and so not disintegrated.
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Classifying Hrushovski Construction

The acl-geometry associated with Hrushovski constructions
Work of Evans, Ferreira, Hasson, Mermelstein suggests that up to arity
or more precisely, purity, (and modulo some natural conditions)
any two geometries associated with Hrushovski constructions are
locally isomorphic.
Locally isomorphic means that after localizing one or both at a finite
set, the geometries are isomorphic.
[EF11, EF12, HM18]

We are concerned not with the acl-geometry but with the Object
language geometry.
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‘Object Language’ geometries

Strong minimality asserts the ‘rank’ of the universe is one and imposes
a combinatorial geometry whose dimension varies with the model.
We study here structures which are ‘geometries’ in the object
language. E.g.

Projective Planes: [Bal94]
There is an almost strongly minimal (rank 2) projective plane.
An example with the least possible structure in the Lenz-Barlotti class
was constructed [Bal95].
In particular, the ternary function of the coordinatizing field cannot be
decomposed into an ‘addition’ and a ‘multiplication’.
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Reformulating the problem
What was the Zilber conjecture?
Conditions on the acl-geometry imply conditions on the algebra of the
structure.

Even if the flat acl-geometries are all very similar here are some
conditions that can distinguish them (or not)

1 Satisfy combinatorial conditions: Steiner systems, various types of
designs;

2 Coordinatizability
3 Existence of a definable binary function.
4 Interprets a (variety of) quasigroups (or other universal algebra)

A quasigroup is a structure (A, ∗) such that specification of any
two of x , y , z in the equation x ∗ y = z determines the third
uniquely. [Smi07]

5 properties arising in finite/infinite combinatorics.
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How is algebraic structure lost?
Algebraic view

1 field
2 integral domain (lose inverses)
3 matrix ring (lose commutativity)
4 alternative ring (weaken associativity)

geometric view
1 field (Pappian plane)
2 division ring(Desarguesian plane: lose commutativity)
3 nearfield (lose left distributive)
4 quasifield( multiplication is a quasigroup with identity)
5 alternative algebra (Moufang plane: lose full associativity)
6 ternary ring (lose associativity and distributivity and even

compatible binary functions, but still have inverse)

John T. Baldwin University of Illinois at ChicagoStrongly Minimal Steiner Systems Neo-Stability Conference, OaxacaOctober 18, 2018 9 / 48



How is algebraic structure lost?
Algebraic view

1 field
2 integral domain (lose inverses)
3 matrix ring (lose commutativity)
4 alternative ring (weaken associativity)

geometric view
1 field (Pappian plane)
2 division ring(Desarguesian plane: lose commutativity)
3 nearfield (lose left distributive)
4 quasifield( multiplication is a quasigroup with identity)
5 alternative algebra (Moufang plane: lose full associativity)
6 ternary ring (lose associativity and distributivity and even

compatible binary functions, but still have inverse)

John T. Baldwin University of Illinois at ChicagoStrongly Minimal Steiner Systems Neo-Stability Conference, OaxacaOctober 18, 2018 9 / 48



Coordinatizability

(Trial Definition)
A class of structures (specifically geometries) is coordinatizable if there
is 1-1 correspondence between it and a well-behaved class of
algebras. (Ganter-Werner) [GW75, GW80]

impediments
1 How is the correspondence established? (Makowsky) [Mak18]
2 ‘well-behaved’?

Definition
A class of structures (specifically object geometries) is coordinatizable
if there is 1-1 definable correspondence between it and a first order
definable class of algebras.
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Linear Spaces
Definition
A linear space [BB93] is a collection of points and lines such that
2 points determine a line;
consequently two lines intersect in at most one point.

Let the vocabulary τ contain a single ternary predicate R,
interpreted as collinearity.
K ∗0 denotes the collection of finite 3-hypergraphs that are linear
systems. K ∗ includes infinite linear spaces.

1 R is a predicate of sets (hypergraph)
2 Two points determine a line

There are natural generalizations:
1 k -points determine a line.
2 allow a finite number of line lengths

Mermelstein and Hasson [HM17] have investigations along these lines.
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2-sorted vrs 1-sorted

In a two-sorted formulation, i.e. points and lines, clearly no strongly
minimal theory has both infinitely many points and infinitely many lines.

Even in 1-sort, there cannot be two lines with infinitely many points.

Note that this does not preclude bi-interpretability between 1-sorted
and 2-sorted descriptions. Because, interpretations do not need to
preserve Morley rank.
In this case the universe of the two-sorted structure is interpreted as a
set of pairs in the 1-sorted structure.

Theorem [BP18]
k∗0 and the class of two-sorted linear spaces are biinterpretable.
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Strongly minimal linear spaces I

Fact
Suppose (M,R) is a strongly minimal linear space where all lines have
at least 3 points. There can be no infinite lines.

Suppose ` is an infinite line. Choose A not on `. For each Bi ,Bj on `
the lines ABi and ABj intersect only in A. But each has a point not on `
and not equal to A. Thus ` has an infinite definable complement,
contradicting strong minimality.

Corollary
There can be no strongly minimal affine or projective plane, since in
such planes the number of lines must equal the number of planes.
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Strongly minimal linear spaces II

An easy compactness argument establishes

The fundamental corollary of strong minimality

If M is strongly minimal, then for every formula ϕ(x , y), there is an
integer k = kφ such that for any a ∈ M, (∃>kφx)ϕ(x ,a) implies there
are infinitely many solutions of ϕ(x ,a) and thus finitely many solutions
of ¬ϕ(x ,a).

Corollary
If (M,R) is a strongly minimal linear system, for some k , all lines have
length at most k . So it is a K -Steiner system.
K = {3,4 . . . k}.
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Specific Strongly minimal Steiner Systems

Definition
A Steiner (v ,2, k)-system is a linear system with v points such that
each line has k points.

Theorem (Baldwin-Paolini)[BP18]
For each k ≥ 3, there are an uncountable family Tµ of strongly minimal
(∞, k ,2) Steiner-systems.
The theory is 1-ample (not locally modular) and CM-trivial (not
2-ample).

IN ENGLISH
There is no infinite group definable in any Tµ. More strongly,
Associativity is forbidden.
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Not quite standard Hrushovski construction

K∗0 denotes the collection of finite linear systems in the vocabulary
τ = {R}.
A line in M is a maximal R-clique
L(A), the lines based in A, is the collections of lines in (M,R) that
contain 2 points from A.

Definition: Paolini’s δ

[Pao] For A ∈ K∗0, let:

δ(A) = |A| −
∑
`∈L(A)

(|`| − 2).

K 0 is the A ∈ K ∗ such that B ⊆ A implies δ(B) ≥ 0.

Mermelstein [Mer13] has independently investigated Hrushovki
functions based on the cardinality of maximal cliques.
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Amalgamation and Generic model
Definition

Let A ∩ B = C with A,B,C ∈ K 0. We define D := A⊕C B as follows:
(1) the domain of D is A ∪ B;
(2) a pair of a ∈ A− C and b ∈ B − C are on a line `′ in D if and only if

there is a line ` ⊆ D based in C such that a ∈ ` (in A) and b ∈ ` (in
B). Thus `′ = ` (in D).

Definition

The countable model M ∈ K̂ 0 is (K 0,≤)-generic if
(1) If A ≤ M,A ≤ B ∈ K 0, then there exists B′ ≤ M such that B ∼=A B′,
(2) M is a union of finite closed subsets (Ai ≤ M).

Theorem: Paolini [Pao]
There is a generic model for K ∗0; it is ω-stable with Morley rank ω.
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The strongly minimal case

Definition: A is strong in B
A ≤ B if A ⊆ B and there is no B0, A ( B0 ( B with δ(B0/A) < 0.

Goal
Force that if δ(B/A) ≤ 0 then B ⊆ acl(A).
Automatic if δ(B) < δ(A).

Focus on simplest case: (A,B) is a good pair if it is minimal example
δ(A) = δ(B)

Example: α is the iso type of ({a,b}, {c}) where R(a,b, c).
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Overview of construction

1 K ∗0: all finite linear τ -spaces.
2 K 0 ⊆ K ∗0: δ(A) hereditarily ≥ 0.
3 Kµ ⊆ K 0: µ bounds number of ‘good pairs’.
4 Kµ,d = mod(Tµ) strongly minimal.
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Primitive Extensions and Good Pairs

Definition

Let A,B,C ∈ K0.
(1) A ≤ B if A ⊆ B and there is no B0, A ( B0 ( B with δ(B0/A) < 0.
(2) B is a 0-primitive extension of A if A ≤ B and there is no

A ( B0 ( B such that A ≤ B0 ≤ B and δ(B/A) = 0.
(3) We say that the 0-primitive pair B/A is good if for every A′ ( A we

have that δ(B′/A) > 0.
(4) For any good pair (A,B), χM(A,B) is the number of copies of B

over A appearing in M.
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K µ

Definition

1 µ is a function from isomorphism types of good pairs into natural
numbers such that

1 µ(α) ≥ 1
2 if β is a good pair C/B in K 0 with |C − B| ≥ 2,
µ(B,C) = µ(β) ≥ δ(B) then µ ∈ U .

2 For µ ∈ U , Kµ is the collection of M ∈ K 0 such that
χM(A,B) ≤ µ(A,B) for every good pair (A,B).

3 X is d-closed in M if d(a/X ) = 0 implies a ∈ X (Equivalently, for
all finite Y ⊂ M − X , d(Y/X ) > 0.).

4 Let Kµ
d consist of those M ∈ Kµ such that M ≤ N and N ∈ K̂µ

implies M is d-closed in N.
Moreover, if M ∈ Kµ

d , and B ≤ M, for any good pair (A,B),
χM(A,B) = µ(A,B).
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Main existence theorem

Theorem (Baldwin-Paolini)[BP18]
For any µ ∈ U , there is a generic strongly minimal structure Gµ with
theory Tµ.
If µ(α) = k , all lines in any model of Tµ have cardinality k + 2.
Thus each model of Tµ is a Steiner k -system and µ(α) is a
fundamental invariant.

Proof follows Holland’s [Hol99] variant of Hrushovski’s original
argument.
New ingredients: choice of amalgamation, analysis of primitives,
treatment of good pairs as invariants (e.g. α).
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Tools

1 Tool0: Study theories not ad hoc structures
Techniques for varying the theory.

1 Tool1: Constrict the class K 0. [Hru93, Bal95]
2 Tool2: Impose conditions on µ to require or avoid certain

configurations.[Bal18]
3 Tool3: expand the vocabulary [Bal18]
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2-transitivity of models of Tµ: Consequences

Lemma (Tool0)

For any µ ∈ U , if (M,R) |= Tµ, A ⊂ Gµ and |A| = 2 implies A ≤ Gµ then
the automorphism group of (M,R) acts 2-transitively on (M,R).

Proof.
Since all pairs (a,b) are isomorphic and each sits strongly in the
generic G, the result is immediate for G. But this property extends to all
models since if one model of a complete theory has a single 2-type, all
models do. And each model of a strongly minimal theory is finitely
homogeneous.
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[Tool1]:Getting n-transitivity of models of Tµ:

Lemma (Tool1)

If for any B ∈ K 0 with |B| ≥ n, δ(B) ≥ n then, for any µ the number of
n-types in Gµ is bounded by the number of quantifier free n-types.

Corollary: [Hru93]

If every B ∈ K−0 (don’t assume two point determine a line) satisfies
|B| ≥ 3, δ(B) ≥ 3, then every model of Tµ is a 2-transitive Steiner triple
system.

Corollary: [Bal18]
If for any B ∈ K 0 with |B| ≥ 2, δ(B) ≥ 2, every model of T is
2-transitive and every line is a set of indiscernible over ∅.

See earlier variant for projective planes in [Bal95].
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Coordinatization by varieties of algebras
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Coordinatizing Steiner Systems
Definition
A collection of algebras V ”weakly coordinatizes” a class S of
(2, k)-Steiner systems if

1 Each algebra in V expands definably to a member of S
2 The universe of each member of S is the underlying system of

some (perhaps many) algebras in V .

2 VARIABLE IDENTITIES: [Eva82]

Example
A Steiner quasigroup (squag) is a groupoid (one binary function) which
satisfies the equations:
x ◦ x = x , x ◦ y = y ◦ x , x ◦ (x ◦ y) = y .

Steiner triple systems and Steiner quasigroups are biinterpretable.
Proof: For distinct a,b, c:

R(a,b, c) if and only if a ∗ b = c
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Coordinatizing Steiner Systems II

Example
A Stein quasigroup is a groupoid (one binary function) which satisfies
the equations: x ◦ x = x , (x ◦ y) ◦ y = y ◦ x , (y ◦ x) ◦ y = x .

[GW75, GW80]

A Stein quasigroup can be imposed on any Steiner (v ,2,4)-system
Proof: For distinct a,b, c,d :
A set A with |A| = 4 is a maximal R-clique (line) if and only if for some
enumeration a1,a2,a3,a4 of A

a1 ◦ a2 = a3 ∧ a2 ◦ a1 = a4.

Clearly each Stein quasigroup gives a Steiner (v ,2,4)-system.

But, Steiner quadruple systems do not (in an obvious way) determine
the Stein quasigroup definably.
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More Precisely

Theorem
Every strongly minimal Steiner (2,3)-system given by Tµ with µ ∈ U is
coordinatized by the theory of a Steiner quasigroups definable in the
system.

Theorem
1 (Tool1,Tool2) There is a strongly minimal theory of Steiner

(2,4)-systems where the Stein quasigroup is not definable.
2 (Tool1, Tool2) There are strongly minimal theories of structures

(M,R,F ) where
1 (M,R) is a Steiner (2,4)-system, and
2 (M,F ) is a Stein quasigroup.

[S.K64]

Some theories are coordinatizable – some only weakly coordinatizable.
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Coordinatizing Steiner Systems: Summary

Fact
Let q be a prime power.
Given a (near)field (F ,+, ·,−,0,1) of cardinality q and an element
a ∈ F , define a multiplication ∗ of F by x ∗ y = y + (x − y)a. An
algebra (A, ∗) satisfying the 2-variable identities of (F , ∗) is a
block algebra over (F , ∗)
The (2,q) Steiner systems are weakly coordinatized by block algebras.
[GW80, page 6]

Question
For which k , µ are the models of Tµ definably coordinatized?
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Universal Algebra facts and questions

Fact
Steiner quasigroups are congruence permutable, regular, and uniform.
The variety of Steiner quasigroups is not residually small. Finite
members are directly decomposable.

We showed above that models of the Tµ are not locally finite.

Question
1 Are these ℵ1-categorical Steiner quasigroups subdirectly

irreducible or even simple? Surely they are not free?!
2 How does the variety associated with Tµ depend on µ?
3 There is a close correspondence between subgroups and

congruences for quasigroups that suggest something along the
descending chain condition for ω-stable groups might be
developed.
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III. Interactions with Combinatorics
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Infinite linear spaces
There is no theory of infinite linear spaces comparable to the
enormous amount known about finite linear spaces. This is
due to two contrasting factors. First, techniques which are
crucial in the finite case (notably counting) are not available.
Second, infinite linear spaces are too easy to construct;
instead of having to force our configurations to close up, we
just continue adding points and lines infinitely often! The
result is a proliferation of examples without any set of tools to
deal with them.
Cameron, [Cam94]

1 Find families (namely the models of a complete first order theory)
of infinite linear spaces that are similar both combinatorially and
model theoretically.

2 Import non-trivial constructions from model theory to construct
interesting linear spaces.
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III.1 Cyclic graphs in Steiner triple systems
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The graph of a Steiner triple system

This is a standard topic in finite combinatorics, extended to infinite
system by e.g. Cameron and Webb. [CW12]

Definition
1 Fix any two points a,b of a Steiner triple system S = (P,L). The

cycle graph G(a,b) has vertex set P − {a,b, c} where (a,b, c) is a
block. There is an edge coloured a (resp., b) joining x to y if and
only if axy is a block (resp., bxy is a block).

2 a proper initial segment of an (a,b)-cycle is called an (a,b)-chain.
3 It is uniform if the graphs G(a,b) are pair-wise isomorphic.
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From combinatorics to model theory

Lemma

There are infinitely many mutually non-imbeddible primitives in K 0 over
a two element set. In fact, there are infinitely many mutually
non-embeddible primitives in K 0 over the empty set and similarly over
a 1-element set.

Proof.
Over any a,b for each k build an (a,b)-cycle Ck , c1, c2, . . . c4k of
length 4k with c1bc4k and c1ac2. Ck has 4k points and
({a,b},Ck ) ∈ K 0 has 4k 3-element lines. So
δ({a,b},Ck )) = 2 = δ({a,b}). Primitivity easily follows since if the
cycle is broken, the δ-rank goes up.
Minor variants for ∅ and singletons.
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What lengths of cycles are possible?

Fact
In any Steiner triple system, S, each G(a,b) is a disjoint union of
cycles. Finite cycles have order divisible by 4. The cycles partition
G(a,b). Each cycle is completely determined by a,b and the first
element c1.

Notation

In any Steiner triple system (M,R), for every finite k there is a
τ -formula γk (a,b, c1) which holds exactly when ac1x starts a cycle in
G(a,b) that returns to c1 as a 4k -cycle.

Note that when γk (a,b, c1) holds, so does γk (b,a, c1); the cycle is
traced in the other direction.
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The length of cycles

Definition

We denote the isomorphism type of ({a,b},Cn) by γn.

Since for any n, µ(γn) is finite, we have

Lemma

For any µ ∈ U and any M |= Tµ, for every n, and every (a,b) there are
only finitely many (a,b)-cycles of length n. Since G(a,b) is infinite,
there must be arbitrarily long finite (a,b)-chains. Since Gµ is saturated
there is also an infinite cycle.
More careful analysis shows only the prime model can omit infinite
chains.
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Avoiding Finite Cycles I

Definition

(Tool1,Tool2) Let B denote the set of µ such that for every n, µ(γn) = 0
and µ(α) = 1.
We denote by KB,µ the class of finite structures such that for all B:

(∗) |B| > 1 implies δ(B) > 1 and µ ∈ B.

When KB,µ, we call the associated theory TB,µ.

(∗) implies that every two element subset of the generic is strong and
so every model is 2-transitive.
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Avoiding Finite Cycles II

Lemma

If µ ∈ B, KB,µ has the amalgamation property.

If µ ∈ B then for any model, (M,R), of TB,µ and any (a,b),
all (a,b)-cycles are infinite
and (M,R) is uniform.

Setting finitely many of the µ(γi) = mi for finitely many i allows finitely
many cycles.
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III.1 Sparse Steiner systems
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plus ça change, plus c’est la même chose

Figure: Constructing the 4th proportional
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plus ça change, plus c’est la même chose
The projective form of Euclid’s construction of the 4th proportional. X
is the point at infinity.

Figure: Pasch configuration/group configuration
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Anti-Pasch Steiner triple system
The Pasch configuration is omitted in the acl-geometry by flatness.
We now omit the group configuration aka as a (4,6)-configuration in
the object language.

Amalgamation
The subclass of Kµ that omit the Pasch configuration has the
amalgamation property.

Corollary
There is a strongly minimal anti-Pasch Steiner triple systems

Definition
[CGGW10] A Steiner triple system is∞-sparse if for every n ≥ 4 there
is no set A of size n + 2 with δ(A) = 2. (no configuration on n + 2
points with n lines)..

We have a 4-sparse; [CGGW10] have an∞-sparse example. But
using δ can we explain this better.
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Questions

1 For which k , µ are the models of Tµ (definably) coordinatized?
2 Which strongly minimal sets whose acl-geometry is non-trivial,

admit a quasigroup (not necessarily definable)?
Or even a definable binary function?
Can one do anything for those k where there is no associated
variety of universal algebras in the finite?

3 Can one develop something like the cycle analysis for other (2, k)
Steiner systems?

4 Can these methods help with finite systems?
1 The function δ concerns finite structures. Can the notions of

primitive and the amalgamation be useful tools?
2 Problem: Almost none of the elements of K 0,µ where µ(α) = k are

Steiner systems.
Is there a way to pull back properties of the infinite structure to the
finite?
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