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I have grouped the cites by various categories. I couldn’t figure out how to make my comments appear
with the actual bibliographic entries.

Certainly some article belong in two groups and others didn’t have a natural place with my categories.
I haven’t listed my own papers which are on http://homepages.math.uic.edu/˜jbaldwin/

model11.html

1 background
These contain general background works generally in the style of the philosophy of mathematical practice.

[Zalamea, 2009] [Zalamea, 2012]
The only book to attempt a philosophical analysis of a 8 major 20th century mathematicians: Grothendieck,

Shelah ...
[Ferreirós and Gray, 2008] The introduction gives another overview of what philosophy of mathematical

practice means.
[Gillies, 2008]
[Corfield, 2003] One of the pioneers.
[Mancosu, 2008] The suggested book for the seminar.
[Lakatos, 1976] The original: analysis of the 200 year development of defining Euler characteristic.

2 Axiomatics
[Hilbert, 2005] [Giovannini, 2016][Grosholz, 1985]

[Tarski, 1959] What did Descartes really mean?
[Schlimm, 2013]
[Schlimm, 1985]
Both papers by Schlimm are excellent.
[Detlefsen, 2014]

3 Case Studies
[Arana and Mancosu, 2012] geometry

[Wilson, 1992] Geometry Frege’s background in geometry and the origins of Projective Geometry. What
are points at infinity?
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[Schliemer, 2016] a) justifying duality; b) Were Hilbert’s interpretaions semantic or syntactic? I have
preprint.

[Marquis, 2008] epistemology and homotopy theory
[Pambuccian, 2005] geometry
[Vaught, 1961] Not philosophy but a paper every logician should read –on my web site

3.1 What is the continuum
[Ehrlich, 2012][Ehrlich, 1997] [Feferman, 2008]

3.2 Computer Proof
I haven’t had a chance to look in to this but here http://www.phil.cmu.edu/˜avigad/formal/

is Jeremy Avigad’s website for a course on formal verification with includes downloadable papers by
him, which have further bibliography.

3.3 Number theory and Algebra
[Avigad and Morris, 2014]

[McLarty, 2010][Macintyre, 2003]
[Kazhdan, 2006]
[Eklof, 1976] Not philosophy but as accessible as it gets
Motivic integration and model theory

3.4 set theory
[Maddy, 2011] Philosophy of Set theory from someone who knows some set theory.

[Väänänen, 2012] Internal categoricity - a modern view of Quine’s quip that 2nd order logic is set theory
in sheep’s clothing

4 Category Theory and Univalent Foundations
[Awodey et al., 2013] [Tsementzis, 2016]

no univalent foundations in the following
[Carter, 2008]
[Carter, 2004] Despite the title, this is about K-theory. online

5 Epistemology
[Manders, 1987] [Manders, 1984][Manders, 1989] Insightful look into how model theory clarifies.

[Grosholz, 2007] productive ambiguity in reading mathematics: the many uses of equality and the minus
sign. Plus deeper issues

[Kennedy, 2013] Mathematics: formal or informal?
[Crippa, 2014] What is an impossibility proof?
[Werndl, 2009] definition
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6 Programmatic
Most of these are ICM addresses by model theorist talking about connections with the rest of mathematics.

[Bourbaki, 1950] An amusing attempt by Bourbaki.
[Pillay, 2010][Pillay, 1995][Scanlon, 2012] [Zil’ber, 1984]
[Scanlon, 2002] Differential algebra and model theory
[Teissier, 1997] what is tame mathematics?
[Weil, 1950] [Peterzil and Starchenko, 2010] [Hrushovski, 1997]

7 Purity
[Arana, 2008][Detlefsen and Arana, 2011] [Arana, 2014] [Hallett, 2008]

8 Structuralism
[Sieg and Morris, 2017] [Burgess, 2010]
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Obra Selecta. Editorial Univeridad National de Colombia, Bogota.

[Zalamea, 2012] Zalamea, F. (2012). Synthethic Philosophy of Contemporary Mathematics. Urba-
nomic/Sequence Press, London/New York.

[Zil’ber, 1984] Zil’ber, B. (1984). The structure of models of uncountably categorical theories. In Pro-
ceedings of the International Congress of Mathematicians August 16-23, 1983, Warszawa, pages 359–
68. Polish Scientific Publishers, Warszawa. http://www.mathunion.org/ICM/ICM1983.1/
Main/icm1983.1.0359.0368.ocr.pdf.

6


