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In this article we first provide some background on why (Sections 1 and 2) the
applications of model theory across mathematics are reasonable. Section 3 describe
some of these applications. While we allude to a number of well-known results over
the last seventy years, we focus on three areas that have developed in the last five.
We survey the parallel developments of certain combinatorial notions in learning
theory (Section 3.1) and in functional analysis (Section 3.2) with fundamental no-
tions of stability theory. Section 4 applies the study of trivial weakly minimal sets,
structures very near the base of the stability hierarchy, to count the number of
finite models of classes of models closed under substructure.

1. Introduction

In his famous article, The Unreasonable Effectiveness of Mathematics in the
Natural Sciences [Wig60], Eugene Wigner asserts, ‘The first point is that the
enormous usefulness of mathematics in the natural sciences is something bordering
on the mysterious and that there is no rational explanation for it.’ In contrast, we
will argue that applications of model theory across mathematics are not mysterious
but are easily understood in terms of the basic methodology and motivations of
model theory1. In his Introduction to Logic and the Methodology of the Deductive
Sciences, Tarski aimed

to present to the educated layman . . . that powerful trend . . . modern
logic . . . [which] seeks to create a common basis for the whole human
knowledge. ([Tar65], xi)

In his 1950 address to the International Conference of Mathematicians, Robinson
[Rob52] made this more goal more specific, ‘. . . we shall be concerned with the
effective application of symbolic logic to mathematics proper, more particularly to
abstract algebra. Thus, we may hope to find the answer to a genuine mathematical
problem by applying a decision procedure to a certain formalized statement.’

After more than a half century of development, we argue that specific formal-
izations of areas of mathematics are fruitful for those areas and the technology of
classification theory provides a common effective basis, not for all mathematics, but
to obtain results in many different contexts extending well beyond the Robinson’s
innovations in abstract algebra. There are three key reasons for this effectiveness.
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The first is representing an area of mathematics as the study of a collection of simi-
lar structures for a fixed vocabulary. So one attempts local (area dependent) rather
than global foundations for mathematics Second, rather than examining all subsets
of those structures, restricting to those defined in a formal logic and thus providing
a principled way to isolate of tame mathematics. Thirdly, the classification of theo-
ries introduced by Shelah [She78], brings to the fore certain combinatorial features
that play significant roles in widely distinct areas of mathematics.

At [Bal18, page 2], I wrote,

In short, the paradigm around 1950 concerned the study of logics;
the principal results were completeness, compactness, interpola-
tion and joint consistency theorems. Various semantic properties
of theories were given syntactic characterizations but there was no
notion of partitioning all theories by a family of properties. After
the paradigm shift there is a systematic search for a finite set of
syntactic conditions which divide first order theories into disjoint
classes such that models of different theories in the same class have
similar mathematical properties.

The finer analysis in the last ten years of the unstable section of the classifica-
tion has converted the finite italicized in the quote to infinite. This analysis was
largely motivated by general model theoretic considerations [She15, MS15]. But as
we’ll see in Section 3, the combinatorial conditions discovered appear in traditional
mathematical settings.

Model theory analyzes the structure of definable sets in any model of theory
along two axes: the (quantifier)-complexity of the definition and the combinatorial
complexity of the class of definable sets.

Restriction to definable sets is historically very natural. Euclid and Eudoxus de-
veloped the method of exhaustion to provide a framework for studying the relations
among possibly incommensurable specific pairs of magnitudes such as the diagonal
and side of a square. But each example relates to objects which are definable in
the modern sense. It is Dedekind who posits the limit exists for arbitrary cuts.
Speaking polemically, studying only the ‘definable’ objects in a structure means,
‘studying the ones which actually arise’.

As noted, a natural way to ‘tame a structure’ is to look at definable subsets rather
than all sets. This happens automatically in algebraic geometry where the study of
solution sets of equations is exactly the study of all definable sets. Tarski [Tar31,
Rob52] saw this result in full generality as quantifier elimination or more generally
model completeness2 for an algebraically closed or real closed field, while Chevalley
described the key inductive step: constructible sets are closed under projection. This
method of quantifier elimination provides a general format unifying the Hilbert
Nullensatz for a wide range of algebraic applications.

Combinatorial is not quite the right word for the second axis. The central idea
is (non)-existence of certain configurations among the definable sets. One such
configuration is simply an infinite decreasing sequence of definable sets. On the
combinatorial side, replacing the (ascending) descending chain condition (no such
sequence exists) on subgroups (ideals) by the (ascending) descending chain condi-
tion on definable subgroups (ideals) provides a common framework across group

2A theory T is model complete if every formula is equivalent to one with only prenex existential
quantifiers.
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theory, differential algebra, ring theory, etc. Thus, the Wedderburn theorem that
certain rings satisfying the descending chain conditions on ideals are represented as
matrix rings can be proved for stable theories and so satisfy the dcc on principal
(1-generated) ideals [BR77]. The general picture is further clarified by noting that
similar variants on the chain condition (e.g., requiring infinite index at each step)
for different areas can be unified by recognizing the theory is stable, superstable or
ω-stable.

A particularly important example is Berline’s [Ber82] proof that Morley rank
on algebraically closed fields coincides with the algebraic ranks defined by Krull
(on ideals) and by Weil (on the associated algebraic varieties) and all definable
sets by (Robinson and Tarski). Surprisingly, the underlying topologies providing
the ranks are quite distinct. Morley works with a Stone topology which is totally
disconnected and Hausdorff, while the Zariski topology is never Hausdorf.

What I refer to as ‘traditional philosophy of mathematics’ is dubbed ‘philosophy
of Mathematics’ (Harris, page 30 of [Har15] or [Bal18, page 5]) or ‘Foundations of
Mathematics’ (Simpson in clarifying his view on the Foundations of Mathematics
Listserve)). This distinction is transcended in Maddy’s recent article, What do we
want a foundation to do? [Mad18]. She writes

So my suggestion is that we replace the claim that set theory is a
(or the) foundation for mathematics with a handful of more precise
observations: set theory provides Risk Assessment for mathemati-
cal theories, a Generous Arena where the branches of mathematics
can be pursued in a unified setting with a Shared Standard of Proof,
and a Meta-mathematical Corral so that formal techniques can be
applied to all of mathematics at once.

I write from a similar perspective. I am not emphasizing the search for a reliable
basis for all mathematics but investigating the organization of mathematics and
how particular organizations can productively impact mathematical practice. The
clarification of such concepts as function, cardinality, and continuity in the late
19th century had immediate positive impact on mathematics. This effect is usu-
ally viewed from the lens of reliability. But Coffa places the relationship between
‘reliability and clarity’ in historical perspective:

[We consider] the sense and purpose of foundationalist or reduc-
tionist projects such as the reduction of mathematics to arithmetic
or arithmetic to logic. It is widely thought that the principle inspir-
ing such reconstructive efforts were basically a search for certainty.
This is a serious error. It is true, of course, that most of those
engaging in these projects believed in the possibility of achieving
something in the neighborhood of Cartesian certainty for principles
of logic or arithmetic on which a priori knowledge was to based.
But it would be a gross misunderstanding to see in this belief the
basic aim of the enterprise. A no less important purpose was the
clarification of what was being said. . . .

The search for rigor might be, and often was, a search for cer-
tainty, for an unshakable ‘Grund’. But it was also a search for a
clear account of the basic notions of a discipline. ([Cof91], 26)

While the (at least theoretical) reduction of mathematics to set theory provided
Maddy’s Shared Standard of Proof, it did not (except in basic analysis) provide a
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fifth criterion that Maddy advances: essential guidance. We argue below that the
flexibility of model theoretic axiomatizations and the exposure and clarification of
common themes provides such essential guidance.

In the first part of this article we outline the paradigm of contemporary model
theory and explain why this paradigm might be expected to be useful for proving
results in traditional mathematics. In the second we sketch a number of such
applications.

2. The Model Theoretic Approach

The first two of the four theses of [Bal18]3 assert:

(1) Contemporary model theory makes formalization of specific mathematical
areas a powerful tool to investigate both mathematical problems and issues
in the philosophy of mathematics (e.g. methodology, axiomatization, purity,
categoricity and completeness).

(2) Contemporary model theory enables systematic comparison of local for-
malizations for distinct mathematical areas in order to organize and do
mathematics, and to analyze mathematical practice.

Tarski’s term, meta-mathematics summarises the underlying motif of model the-
ory. By meta-mathematics I mean both developing a general notion of a formal
theory as an object of mathematical theory and the study of particular areas of
mathematics by formalizing the area in an appropriate theory.

Definition 2.1. A full formalization involves the following components.

(1) Vocabulary: specification of primitive notions.
(2) Logic:

(a) Specify a class4 of well formed formulas.
(b) Specify truth of a formula from this class in a structure.
(c) Specify the notion of a formal deduction for these sentences

(3) Axioms: specify the basic properties of the situation in question by sentences
of the logic.

In other treatments of formalization we have downplayed the deduction system
(2c) because for much of model theory compactness (consistency of a set of sentences
X follows from consistency of finite subsets of X) is often more important than the
existence of a deduction. For ‘getting tight results’, the recursive deduction system
is important but not sufficient. Even primitive recursive upper bounds are far
too crude for mathematical’ applications. However, the more sophisticated model
theoretic techniques obtain mathematically interesting upper bounds.

I have chosen the word ‘vocabulary’ rather than such rough synonyms as lan-
guage, similarity type, signature or, even rougher, logic. Examining a particular
mathematical topic, the investigator selects certain concepts as fundamental. The
vocabulary is a set τ of relation symbols, function symbols, and constant symbols
is chosen to represent these basic concepts. A τ -structure with universe A assigns
(e.g., to each n-ary relation symbol R a subset RA of An). Thus, many situations in
mathematics have led to the now nearly ubiquitous notion of a group. This notion

3This introduction heralds many of the notions of the book; we refer to it for further details.
4In the instances treated here, this will be a set.
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can be formalized in such diverse vocabularies as a single binary function, a single
ternary relation, or augmenting, say the binary function with a unary function (in-
verse) and a constant symbol (identity). Or, returning to the early 19th century,
one might focus on somewhat more specific topic such as substitutions or permu-
tation groups. One of model theory’s contribution is making rigorous the notion of
interpretation which allows one to make clear when these different approaches are,
or are not, equivalent.

Crucially, fixing a vocabulary, even with suggestive names, has done little work.
It is necessary to provide axioms that reflect the topic being studied. Calling
a binary relation an order and then positing that it satisfies the axioms of an
equivalence relation is madness. But, there has been no strict formal error, just
an abuse of the mathematician’s right to name concepts arbitrarily. However, a
fruitful formalization will respect the previous terminology. Crucially, one must
choose an appropriate logic. Dedekind and Peano provided second order axioms
which shed great light on the internal structure of the arithmetic of the natural
numbers. While these axioms are particularly valued for determining a unique (up
to isomorphism5) structure, and give a uniform basis for various results in number
theory proved by induction, they have not been central in the great 20th century
advances in number theory. Rather, these advances are based on considering the
natural numbers as substructures of much more tame objects such as geometries
over algebraically closed fields. We provide some context in [Bal18, Chapter 5.6]
introducing such further sources as [Bou99, HHM07, Mar07, HP00, Sca12].

We focus here on first order logic (Lω,ω) which allows finite Boolean combina-
tions of formulas and quantification over finite strings of individuals. We will make
occasional comparisons with infinitary logic (Lκ,λ) which allows Boolean combina-
tions of < κ formulas and quantification over < λ individuals. But second order
logic will get short shrift. On the one hand, first order set theory is a useful avatar
of second order logic [Vää12]; on the other there is almost no model theory of second
order logic.

The crucial aspect of modern model theory is the focus not on logics but on
the models of a particular theory (usually in first order logic). The crucial ingre-
dient in what I call the paradigm shift is Shelah’s introduction of a classification
of complete first order theories into finitely many kinds. This classification (See
http://www.forkinganddividing.com/#_02_54.) is roughly syntactic (certainly
set theoretically absolute). Morley discovered the significance of ω-stability: a
countable first order theory T is ω-stable6 if for every countable model M of T
there are only countably many non-isomorphic 1-element extensions of M . Shelah
generalized this notion and gave a long list of equivalent requirements for a theory
to be stable (i.e. stable in some infinite cardinal κ). The following three facts
indicate the diverse aspects of the notion.

Fact 2.2. If T is stable

(1) then T is stable in every cardinal κ with κℵ0 = κ.

5Note that isomorphism is not well-defined unless one specifies the vocabulary. See Pierce’s

paradox in [Bal18].
6Non-trivially Morley showed ω-stable implies κ-stable; κ-stable is defined by replacing count-

able with κ in both occurrences in definition.

http://www.forkinganddividing.com/#_02_54
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(2) (fundamental theorem of stability theory) then there is no formula φ(x,y)
that has the order property: for every n

T |= (∃x1, . . .xn∃y1, . . .yn)
∧
i<j

φ(xi,yj) ∧
∧
i>j

¬φ(xi,yj)

and conversely.
(3) there is a notion of independence on models of T which, locally, generalizes

the notion of independence of a vector space.

The first of these conditions demonstrates that there are fundamental math-
ematical properties which depend non-trivially on cardinality. In contrast most
mathematical result are either very specific to structures of size less than the con-
tinuum, e.g., a complete separable ordered field is isomorphic to the real numbers,
or completely independent of cardinality, e.g., any Desarguesian plane can be co-
ordinatized by a division ring.

The second condition is syntactic and clearly it is a property that can be checked
on the countable models of T . There are consequences for reliability. These notions
are clearly described in second order arithmetic and do not depend on higher set
theory. The third condition contributes to many of the important applications of
stability theory in traditional mathematics.

Initially, I thought of classification theory as the essence of the paradigm shift.
But deeper thought led to my current emphasis on formalization and the classifi-
cation of theories. Already in the 1950’s (or even the 30’s for the special case of
real closed fields) such pioneers as Robinson and Tarski realized that showing that
those subsets definable in a model of a theory T could be defined by formulas with
low quantifier complexity was a powerful tool for studying the theory. This is an
epistemological insight. If one formalizes an area of mathematics in a way that
all definable sets are ‘simple’, then one has a much better understanding of the
subject. Thus, while the formulas of first order Peano arithmetic have unbounded
quantifier-complexity, every definable subset of the complex (or real) field is defin-
able without quantifiers (in a vocabulary with order). The relation between this
kind of simplicity and decidability is not obligatory. But many decision problems
(e.g. the real field) were solved precisely by reducing to quantifier free formulas
where a brute-force analysis was possible.

In the 1980’s work of Steinhorn, Pillay, and Van Den Dries [PS86, Dri84] melded
this epistemological approach with a combinatorial simplicity of the type discovered
by Morley and Shelah. Thus, a theory is strong minimally (best-behaved stable
theory) if every definable subset is finite or co-finite. A theory whose models are
linearly ordered is o-minimal if every definable subset of a model M is a finite union
of points and intervals with endpoints in M . This definition captures the essential
character of the collection of definable subsets of the real field. This essence is
emphasized by the proof [Wil96] that the real exponential field is also o-minimal
and model complete. This work was followed by showing other expansions of reals
(e.g., by the Γ function) remain o-minimal. Wilkie explains the sense in which
o-minimality captures Grothendieck’s notion of ‘tame topology’ in [Wil07]; See
also Marker [Mar00]. The subject has been well-integrated with contemporary real
algebraic geometry [BCR98] and has had a significant impact in number theory.
Half of the 2013 Karp prize7 was awarded to Kobi Peterzil, Jonathan Pila, Sergei

7For award details see http://vsl2014.at/2014/07/awards-at-the-logic-colloquium/.

http://vsl2014.at/2014/07/awards-at-the-logic-colloquium/
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Starchenko, and Alex Wilkie for ‘their efforts in turning the theory of o-minimality
into a sharp tool for attacking conjectures in number theory, which culminated in
the solution of important special cases of the André-Oort Conjecture by Pila.’ These
results are summarised by Chambert-Loir in a poetic metaphor of unicorns and
grasslands while reviewing the collection O-Minimality and Diophantine Geometry,
[CL17, JW15].

The effectiveness of model theory described in the next section results from a
combination of a methodology applicable in many areas of mathematics and a deep
understanding of the particular topic.

3. The effectiveness of model theory

In this section we will describe several examples of the interactions of model the-
ory with other areas of mathematics. We pass over the famous examples mentioned
above and describe some recent interactions of model theory with other areas of
mathematics.

3.1. Parallel Developments I: statistics and learning theory

The Sauer-Shelah lemma was independently discovered by three investigators
(Sauer (combinatorics of set systems), Shelah/Perles8 (model theory/geometry),
Vapnik-Chervonenkis (statistics)) around 1972. We adapt the terminology from
set system9.

If F = {S1, S2, . . . } is a family of sets, and T is another set, then T is said to
be shattered by F if every subset of T (including the empty set and T itself can
be obtained as an intersection T ∩ Si between T and a set in the family. The VC
dimension of F is the largest cardinality of a set shattered by F . If there is such
an n, we call F ⊂ X a Vapnik-Chervonenkis class (or VC class).

In terms of these definitions, the Sauer-Shelah lemma states that if F is a family

of subsets of a set F with |F | = n such that |F| >
∑k−1
i=0

(
n
i

)
, then F shatters a

set of size k. Equivalently, if the VC dimension of F is k, then F can consist of at

most
∑k
i=0

(
n
i

)
= O(nk) sets.

In terms of stability theory, the Sauer-Shelah Lemma asserts that if a formula φ
does not have the independence property (NIP), the number of φ-types of a set of
size n is a polynomial in n with order the VC dimension of φ. This connection was
pointed out in [Las92].

A class has finite VC dimension if and only if it is Probably approximately correct
(PAC) -learnable, in the sense of the following definition [CF18b]. Given an infinite
set X with a probability measure µ on X and a collection of measurable subsets of
X, denoted by F , one attempts to learn a fixed but unknown F ∈ F by sampling
from X. For some large n, a sample A of n elements of X is chosen randomly,
and the learner is told which points belong to F . The goal is to use the sample to
make a prediction G(A) that estimates F with small error. For some ε > 0 fixed
ahead of time, we say that the sample estimates the set F ε-well if µ(G(A)4F ) < ε.
The class F is PAC-learnable if for any δ there is a large enough n such that the
measure of the samples of size n (computed using the product measure µn) which
estimate the sample ε-well is greater than 1− δ. Roughly, for large enough sample
size, we can get arbitrarily high likelihood that we predict the target set arbitrarily

8Shelah [She72] cites ‘a little more complex result, of Perles and Shelah’.
9The text of this standard definition is taken from the wikipedia article .

https://en.wikipedia.org/wiki/Sauer%E2%80%93Shelah_lemma
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well. That is, for a large enough sample size, predictions are probably approximately
correct.

The connection to model theory follows: when X is taken to be the universe of
M , a model of a first order theory T and φ(x, y) is a formula in the vocabulary of
T , we let F = {φ(M,a)|a ∈ M}. Then [Las92] the VC-dimension of F is finite if
and only if φ(x, y) is NIP. Much of the interaction has been from learning theory
to model theory. In particular, the learning theory notion of a compression scheme
[LW86] was adapted to the stability theory context [JL10]. The abstract of [EK19]
emphasizes this impact: ‘Combining two results from machine learning theory we
prove that a formula is NIP if and only if it satisfies uniform definability of types
over finite sets (UDTFS). This settles a conjecture of Laskowski.’ There has been
some feedback to learning theory [LS13].

PAC learning is only one of many models of machine learning. But more recently
a surprising new connection arose between ‘online learning’ and stable theories. In
the online learning setting, the learner is presented with a stream of elements and
is asked to guess if they belong to the target set. A class is online learnable if
there is some N such that the learner has a strategy to make at most N mistakes in
learning any set in the class. The notion of thicket dimension (Definition 3.3) takes
into account the order in which information is introduced. We set the stage as in
[CF18a] with a specific on line learning model. Fix a set X and denote by P(X)
the collection of all subsets of X. A concept class C on X is a subset of P(X). In
the equivalence query (EQ) learning model, a learner attempts to identify a target
set A ∈ C by means of a series of data requests called equivalence queries. The
learner has full knowledge of C, as well as a hypothesis class H with C ⊆ H ⊆ P(X).
An equivalence query consists of the learner submitting a hypothesis B ∈ H to a
teacher, who either returns yes if A = B, or a counterexample x ∈ A4B. In the
former case, the learner has learned A, and in the latter case, the learner uses the
new information to update and submit a new hypothesis. [CF18a] improve the
upper bounds for the number of queries (LCEQ(C,H)) required for EQ learning
(and the related EQ+MQ) of a class C with hypothesesH in terms of the Littlestone
dimension of C, denoted Ldim(C), and the consistency dimension of C with respect
to H, denoted C(C,H). The consistency dimension is new to learning theory and
is related to the model theoretic notion nfcp (the finite cover property fails). Here
is a sample result.

Theorem 3.1. Suppose Ldim(C) = d < ∞ and 1 < C(C,H) = c < ∞. Then
LCEQ(C,H) 6 cd.

The new insight in [CF18a] is the discovery that Littlestone dimension is an
alias for Shelah 2-rank and also for ‘thicket’ dimension. Littlestone dimension is
a rank on set systems while thicket dimension measures systems of sequences. If
the set (sequence) system consists of are given by first order formulas then the two
ranks are equal. [ALMM19] proves that PAC of ‘private learning’ (a variant on
PAC-learning appropriate when the input data, such as medical records, need to
be kept secret) implies finite Littlestone definition, i.e., stability.

A major development in this area is the solution the following analogy

X

stability
=

VC–dimension

NIP
.
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For this, we replace thinking of a path through 2n as an indicator function for
a subset of X, by thinking of a function in 2X as picking in order a sequence that
we would like to list a subset of A ⊆ X. Formally,

Definition 3.2. A binary element tree of height n with labels from X is a function
T : 2<n → X. A leaf is a binary sequence of length n, τ : [n] → {0, 1}. A node is
a binary sequence σ ∈ 2<n along with its label, aσ := T (σ).

A leaf τ is properly labeled by a set A if for all m < n, aτ � m ∈ A iff τ(m) = 1.

Thus Y is ‘thicket dimension’.

Definition 3.3. The thicket dimension of a set system (X,F) is the largest k < ω
such that there is a binary element tree of height k with labels from X such that
every leaf can be properly labeled by elements of X if such a maximum exists or
∞. The thicket shatter function ρF (n) is the maximum number of leaves properly
labeled by elements of F in a binary element tree of height n.

Thus Y is ‘thicket dimension’.

Theorem 3.4 (Thicket Sauer-Shelah). [Bha18] Let F be a set system of thicket
dimension k. Then

ρF (n) 6
k∑
i=0

(
n

i

)
.

Chase and Freitag [CF18c] introduce the notion of banned sequences to give a
proof that specializes not only to each version of Sauer-Shelah considered here but
further improve the Malliaris and Terry improvement [MT18] (using the stability
classification to better organize the case analysis) on the bounds in a result of
[CKOS16] on a case of the Erdős-Hajnal conjecture. These developments illustrate
several ways in which model theory provides essential guidance. The use of stability
theory in on line learning not only gives better upper bounds but provides [CF18b,
Section 5] a wealth of new examples for the learning theory community.

3.2. Parallel Developments II: functional analysis

In this section we explore some striking analogies between functional analysis and
stability theory that turn out not to be at all coincidental. After tracing some of
the history we present some suggestions of Khanaki for new methods and problems
in stability theory arising from analyzing these analogies.

In [BY14], Ben Yaacov argued that Grothendieck ‘first’ proved the fundamental
theorem of stability theory (Fact 2.2). Like an earlier hybrid, the Gödel-Deligne
completeness theorem10, there is a kernel of truth here; there is a common core to
the central argument. But Grothendieck and Shelah have different contexts. That
is, as discussed in [BY14, Pil16], there is a topological (functional analytic) core
to Shelah’s proof that for a first order theory instability (i.e. failure of the order
property) is equivalent to the non-definability of types11. Pillay [Pil16] strengthens
the result to every complete type is generically stable. Grothendieck had earlier
isolated this argument as a theorem of general topology. Shelah rediscovered the
argument in the much more general context of complete first order theories, by

10Expounded in https://www.math.princeton.edu/events/godel-deligne-theorem-2016-04-21t163004).
11Another equivalent to stability is that every complete φ-type p ∈ Sφ(B) is definable; there

is a formula ψφ(y) over B such that φ(x, a) ∈ p if and only if ψφ(y).

https://www.math.princeton.edu/events/godel-deligne-theorem-2016-04-21t163004
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attaching, as described below, a topological space to each subset A of a model of
such a theory.

I contrast the two uses of ‘general’ in the previous paragraph. Grothendieck is
finding topological (function analytic) conditions for a certain result. The Stone
space (compact, totally disconnected, Hausdorff) topology used by Shelah is a par-
ticular example of this situation. But Shelah is proving a general result about first
order theories. Thus, he grounds the whole range of applications across mathe-
matics mentioned in this article. He provides a context by which one is enabled to
apply the Grothendieck theorem and other results in functional analysis to many
diverse areas of mathematics.

This section reports the work of Khanaki [Kha19c, KP18, Kha19a] in transferring
theorems of functional analysis to inspire new characterizations of some classes
and new classes of first order theories. We isolate these topological phenomena,
separating them from the linear space context [Kha19c] so as to focus on the core of
the argument. As we are studying the action on a Stone space which is compact, we
are able to study the space of functionals with the topology of pointwise convergence
rather that engaging various notions of weak topology which arise in functional
analysis.

We review some notions and results for the topology of pointwise convergence. If
X is any set and A a subset of RX , then the topology of pointwise convergence on A
is that inherited from the usual product topology of RX . A typical neighborhood
of a function f is determined by a finite subset {x1, . . . , xn} of X and ε > 0 as
follows:

Uf (x1, . . . , xn; ε) = {g ∈ RX : |f(xi)− g(xi)| < ε for i 6 n}.

C(X) ⊆ RX denotes the space of continuous functions from X into R; it is naturally
a linear space under pointwise addition and is equipped with sup norm. For A ⊆
M |= T and a formula φ(x; y) (here x,y represent finite sequences of variables)
Sφ(A) is the collection of types containing formulas φ(x, a) or ¬φ(x, a) for a ∈ A.
Sφopp(A) reverses the roles of x and y; now formulas φ(a, y) are in the type. With
this notation we describe the relevant function space following [KP18, 1,2] and
[Kha19b, 2.1].

Notation 3.5. We fix the usage of A and X in this paragraph. Let T be a first
order theory, M a model of T , and M∗ a sufficiently saturated elementary extension
of M . Specifically, fix φ(x, y) with lg(x) = n and A a set of n-tuples contained in
M∗. Let X be Sφopp(A), the set of ultrafilters generated by formulas φ(a, y) with
a ∈ A. Now define a collection of functions φ(a, y) from X into 2 by φ(a, q) = 1 iff
φ(a, y) ∈ q. As φ is fixed we can identify this set of functions with A. Since each
function in A takes only the values 0 and 1, A is uniformly bounded. Moreover, the
logic topology guarantees that each φ(a, y) is continuous. So A ⊆ C(X).

In general a space of functions from X to R has the interchangeable double limit
property if for sequences of functions fn ∈ RX and points xm ∈ X

lim
n

lim
m
fn(xm) = lim

m
lim
n
fn(xm)

when the limits on both sides exist. We translate this to our context:

Definition 3.6. Let A ⊆M |= T , and X be Sφopp(A).
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(A,X) has the interchangeable double limit property if for any infinite sequences
a = 〈an : n < ω〉 ∈ A and b = 〈bn : n < ω〉 ∈ X

lim
n

lim
m
φ(an, bm) = lim

m
lim
n
φ(an, bm)

when the limits on both sides exist.

If a and b are infinite sequences we denote by (â b) the sequence obtained by
concatenating at each n, 〈a1b1, a2b2, . . .〉.

Observation 3.7. Note that T is stable exactly if for each A ⊆ M |= T , with
X = Sφopp(A), (A,X) has the interchangeable double limit property.

Proof. If there exist a,b with the order property, φ(ai, bj) if and only if i < j then
limn limm φ(an, bm) = 1 since for fixed n and a tail of m φ(an, bm) is true. But the
value is 0 when the limit is taken in the opposite direction.

Conversely, suppose T is stable, Fix a,b so that both limits exist. Fix n > 2. By
the Ramsey theorem we can find a subsequence of (â b) that is φ-n-indiscernible
(any two properly ordered n-tuples from the sequence have the same φ-type). Since
T is stable this sequence is ‘set’ n-indiscernible12. Hence, the double limits are
equal. And since the sequences have double limits they must be the limits of the
subsequences.

Definition 3.8. Let A be a subset of a topological space X, then

(i) The set A is relatively compact in X if its closure in X is compact.
(ii) The set A is relatively sequentially compact (RSC) in X if each sequence

of elements of A has a subsequence converging to an element of X.

The following Theorem applies to A and X = Sφopp(A). See [BY14, Pil16].

Fact 3.9 (Grothendieck’s criterion). Let X be a compact topological space. Then
the following are equivalent for a norm-bounded subset A ⊆ C(X):

(i) A is relatively compact in C(X).
(ii) A has the interchangeable double limit property.

Since the interchangeable double limit property is equivalent to φ does not have
the order property (Observation 3.7), we have:

Theorem 3.10 (stable). φ does not have the order property if and only if for each
M model of T and A ⊂ M , the epononymous13 A ⊂ X = Sφopp(A) is relatively
compact in C(X).

Recall that a formula φ(x,y) has the strict order property in a model M if there
are bi ∈M , for i < ω, such that

M |= (∀x)φ(x,bi)→ φ(x,bj) iff i 6 j.

A crucial theorem of Shelah is that T is stable if and only if every formula
is both NIP (fails the independence property) and NSOP (fails the strict order

12That is, we can drop the requirement of ‘properly ordered’ [She78, Definition 2.4]. Note that

the proof that (T is stable) implies (order indiscernability implies set indiscernability) in [Bal88,
Theorem 1.3.i)] finds an ordering formula from a sequences that is not set indiscernibles in the

same number of variables as the offending formula.
13I was a little worried that this word was too fancy. But https://www.merriam-webster.com/

dictionary/eponymous shows it is exactly what I mean.

https://www.merriam-webster.com/dictionary/eponymous
https://www.merriam-webster.com/dictionary/eponymous
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property). Khanaki [Kha19a] refines this result in several ways by characterizing
various notions in functional analytic style. For this, we introduce a property Aφ
that yields a new characterization of NSOP.

Definition 3.11. We say a =< ai : i < ω > and b =< bj : j < ω > witness that
φ satisfies Aφ in T if

(1) the independence property is uniformly blocked for φ(x, y) on a. That is,
there exist (Nφ,a, Eφ,a) with N < ω and E ⊆ N such that for any subset
(ai1 , . . . aij , . . . aiN ) of distinct elements of a:

¬∃y(
∧
j∈E

φ(aij , y) ∧
∧
j 6∈E

¬φ(aij , y)).

(2) a,b witness φ has the order property.

Now Khanaki shows by fairly standard model theoretic arguments:

Theorem 3.12. (1) [Kha19a, Proposition 2.4] If Aφ holds witnessed by some
a,b then some Boolean combination of instances of φ has the strict order
property.

(2) [Kha19a, Proposition 2.7] T has the NSOP if and if only there is no formula
and sequence that witness Aφ is true.

We will say φ engenders the SOP if some Boolean combination of instances of
φ has SOP. Now we14 deduce from Theorem 3.12 an ‘intrinsic’ characterization of
those formulas φ which have the Independence Property but not the Strict Order
Property. The characterization asserts that the type of a countable sequence a that
indexes an independent family of sets is omitted and a second type of a countable
sequence â b that witnesses the strict order property is realized in all sufficiently
saturated models.

Theorem 3.13. φ has NIP but engenders SOP if and only if
For every a in the monster (or any ℵ1-saturated) model, M∗, of T the indepen-

dence property is uniformly blocked for φ(x, y) by some (Nφ,a, Eφ,a) with Nφ,a < ω
on a and there exists a,b that witness the order property for φ.

Note that by compactness that although Nφ,a varies with a there must be a
uniform bound N or there would be a sequence in M∗ that is not bounded. This
uniformity illustrates two instruments for the effectiveness of model theory: i) the
compactness theorem allows one to ‘concentrate’ an unbounded phenomenon in a
single instance and ii) the ability to choose models with special properties that
focus a problem. In our case, we posit a saturated model to realize the concen-
trated phenomenon. In another situation, the prime model might show a certain
configuration can be avoided.

In [Bal18, Chapter 2.3] I distinguish between a virtuous property of a theory
T and a dividing line. A property is virtuous if it has sigificant mathematical
consequences for the theory or its models. A property is a dividing line if it and its
negation are both virtuous. We now find some further virtuous properties suggested
by the study of Baire functions in analysis.

14This characterization was extracted from [Kha19a].
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Definition 3.14. (1) A real valued function from a complete metric space is
said to be Baire-1 if it is a pointwise limit of a sequence of continuous
functions.

(2) f ∈ RX is DBSC if it is a difference of two bounded semi-continuous func-
tions. This is a proper subclass of the Baire-1 functions.

It is standard (e.g. [Adl08]) that any formula φ which does not have the in-
dependence property has an alternation number nφ, the maximal number of el-
ements nφ such that there exists an indiscernible sequence a and a b such that
φ(ai, b) ↔ ¬φ(ai+1, b) for i < n. We use a wider notion of alternation number
by not requiring a to be indiscernible. Khanaki shows in [Kha19a, Lemma 2.6] a
topological result which translates into model theory15 as follows.

Fact 3.15. If the independence property is uniformly blocked on a then φ has
alternation number nφ,a on a and consequently φ(an, x) converges pointwise to a
function f ∈ RX which is DBSC.

Note the distinction in form between the two propostions in the next theorem.
The first is an unconditional statement that there is a subsequence whose limit is
DBSC; the second is conditioned on the sequence being uniformly blocked.

Theorem 3.16. (1) (NIP) [Kha19a, Remark 2.11] φ is NIP if and only if for
every sequence a, there is a subsequence aij such that φ(ai, y) converges to

an f ∈ RX which is DBSC.
(2) (NSOP) [Kha19a, Remark 2.8] A complete first order theory T is NSOP if

and only if
for any formula φ and infinite sequence a if the independence property

is uniformly blocked on a by some (Nφ,a, Eφ,a) then φ(x, ai) converges to
an f that is continuous.

Proof. 1) It is well known that NIP is equivalent to every sequence φ(an, x) has a
subsequence with bounded alternation number and so the subsequence converges.
The statement here just adds that the limit function is DSBC, which follows from
Fact 3.15.

2) Suppose T is NSOP. Then, by Theorem 3.12.ii) there is no formula φ and
sequences a,b that satisfy both conditions of Aφ. Suppose there is an a satisfying
condition i) of Aφ. Since condition ii) of Aφ fails, for any b, the pair a,b do not
witness the order property. Pillay [Pil16, Proposition 2.2] shows that if φ does
not satisfy the order property in M , then for any sequence a ∈ M , limφ(an, x)
converges to a continuous function. Thus, f is continuous.

Conversely, suppose T has SOP witnessed by the formula φ so there is a sequence
a such that ∀yφ(ai, y)→ φ(aj , y) if and only if i < j. Thus, if j < i, ∃y(φ(ai, y) ∧
φ(aj , y). In particular, there is a b so that ab witness the order property for φ; so,
condition ii) of Aφ holds. But then the independence property is blocked on a by
N = 2 and E = {1} and condition i) of Aφ is satisfied contrary to hypothesis.

Khanaki states [Kha19a, Fact 3.1] the following version of the Eberlein-Šmulian
theorem for the topology of pointwise convergence on C(X). We are interested in

15The ‘consequently’ Lemma 3.15 is ii) implies iii) of the topological Lemma 2.6. ‘ii) implies

iii)’ requires the additional assumptions which here amount to the observation that the φ(an, x)

are continuous and Sφopp (a) is a metric space. This last condition depends on the countability of

a. For large A, Sφopp (A) is not a metric space although it is compact.
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the result when X and A are as described in Notation 3.5. As noted A is uniformly
bounded. See [Whi67] for a short proof.

Theorem 3.17 (Eberlein-Šmulian variant). A is relatively compact in C(X) if and
only if both i) and ii) hold where

i (RSC16) Every sequence of A has a convergent subsequence in RX and
ii (SCP17) the limit of every convergent sequence from A is continuous.

We say a theory has RSC (SCP) if for every A ⊆ M |= T and X = Sφopp(A),
(A,X) has RSC (SCP).

Note that SCP of a theory is a strengthening of the characterization of NSOP
in Theorem 3.16 as SCP drops the hypothesis of the implication defining NSOP.

Since we know stability is equivalent to the relative compactness of A in C(X)
the following theorem just states the model theoretic translation of Theorem 3.17.

Theorem 3.18. [Kha19a, Remark 3.2] The following are equivalent:

(1) φ is stable for T .
(2) For every A ⊆M∗ and every φ, the pair (A,X) is both RSC and SCP.

The novelty here is that SCP strictly implies NSOP and NIP is equivalent to
RSC. This is a splitting of unstable into two classes (NRSC and NSCP) that overlap
differently than IP and SOP do. There is a theory [Kha19a, Remark 3.5,Example
2.15] that is NSOP and IP but does not have SCP.

Khanaki [Kha19c] introduced the notion on NIP in a model and with Pillay
[KP18, Kha19a] has demonstrated the interest of such first order properties in a
fixed model. Khanaki suggests in [Kha19a] that the Kechris-Louveau hierarchy of
Baire-1 functions could be translated by the scheme outlined here to a hierarchy
of theories defined analogously to RSC and SCP above. In particular, he sug-
gests investigating the class of theories such that convergent sequences of functions
φ(an, x) are DBSC. These suggestions appear to be a very interesting way in which
functional analysis could aid in the neo-stability project.

Several questions arise. Are these properties virtuous? Are they dividing lines?
Do they separate interesting theories? In particular, do they give applications
in other areas of math? Shelah assures us that one should explore the universe
without worrying about this last question. But experience with model theoretic
classification as exemplified in other sections of this paper give a positive answer.
So it is worth looking.

I have discussed here the use of functional analytic methods in refining the
stability classification. Let me quickly mention some applications of model theory
to functional analysis. In particular there is a lot of work around C∗ and Von
Neumann algebras. Showing specific classes are function algebras are elementary
in continuous logic is a key tool. Model theory of C∗-algebras will appear as a
Memoir of the American Mathematical Society [FHL+]. Hart’s web page https:

//ms.mcmaster.ca/~bradd/#Research contains links to many papers as well as
this memoir. [BYBHU08] provides the background in continuous logic. The study
of metric abstract elementary classes provides another perspective and links to
category theory [BGL+16, HH12, LR16].

16Relatively sequentially compact in RX
17Sequential completeness property

https://ms.mcmaster.ca/~bradd/#Research
https://ms.mcmaster.ca/~bradd/#Research
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4. Finite Combinatorics

I cannot attempt to survey the interactions of model theory with combinatorics.
Recent interactions are with such topics as the Erdős-Hajnal conjecture, Szmerédi’s
theorem, and the Elekes-Szabó theorem. Examples come from various places in the
stability hierarchy, especially the new notion of distal theories. Here I will concen-
trate on one particular investigation that involves very nicely behaved structures
from a model theoretic standpoint.

Graph theorists count graphs that have a specified property. One standard sort
of problem is to fix a class of finite graphs H that is hereditary (closed under
substructure and isomorphism) and count. The model theorists eyes light up. One
of the earliest theorems of model theory, the  Loś-Tarski theorem, asserts a classH is
hereditary exactly if it is defined by a set of universal sentences. And counting the
number of models of each cardinality was the motivating problem for classification.
The speed of H is the function sending n to |Hn| where |Hn| is the members of H
with universe n. Work in the 2000’s by Alon, Balogh, Bollobás, Morris, Thomason,
Weinreich (in various combinations) almost completely classified the possible speeds
for an hereditary class of graphs as follows:

Theorem 4.1. Let H be an hereditary class of finite graphs.

• (poly/exp) For some k, |Hn| is a sum of terms pi(n)in for i < k, where
each pi(n) is a rational polynomial

• (factorial) |Hn| = n(1−
1
k−o(n))n for some k > 1.

• (penultimate) |Hn| is caught between a function growing slightly slower than

nn and one slightly below 2n
2

.

• (exponential in n2) |Hn| grows as 2Cn
2+o(n2).

The penultimate range is both the ‘next to fastest’ growth rate and, importantly,
a range. There is an H whose growth rate is close to the lower limit on one infinite
set of natural numbers and close to the upper limit on another [BBBW0a].

A graph is a structure with one symmetric binary relation. Here is the basic
question. Can the kind of analysis carried out for graphs be extended to an arbitrary
finite relational language18 ? Noting that |Hn| is counting the number of quantifier-
free n-types of the theory TH consisting of the universal sentences true in H links
the problem with classical (late 1950’s) model theory. Strikingly, the solution by
Laskowski and Terry depends on the fine analysis of the stability hierarchy. Their
work illustrates one of the themes underlying the effectiveness of model theory:
approximating the finite by the infinite [Bal00]. The crucial step is to study the
class H of finite models by studying infinite models of completions of TH. We need
a little history to see how more sophisticated model theory enters the picture.

An element a is said to be in the algebraic closure of a set B, a ∈ acl(B) if
there is a formula φ(x,y) and a sequence b ∈ B such that φ(a,b) and there are
only finitely many solutions of φ(x,b) (written (∃6kx)φ(x,b).) A definable set D
is strongly minimal if every definable subset of D is finite or cofinite. This implies
that there is a unique non-algebraic type of elements in D. On a strongly minimal
set algebraic closure behaves as closure does in a vector space. Morley’s categoricity
theorem for countable vocabularies was reformulated in [BL71] by showing every

18Spencer was surprised that his 0-1 law for graphs with edge probability n−α[SS88] (α irra-
tional) extended to arbitrary finite relational languages [BS97].
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model of an ℵ1-categorical theory is controlled by a strongly minimal set. In gener-
alizing Morley’s results to uncountable vocabularies, Shelah introduced the notion
of a weakly minimal set: an infinite definable set W (x) such that every complete
type over a model M that contains the formula W (x) has a unique non-algebraic
extension to any N �M . Strongly (weakly) minimal theories are the best behaved
ω-stable (superstable) theories.

A structure is said to have trivial algebraic closure if acl(A) =
⋃

a∈A acl(a) for ev-
ery subset A. Laskowski [Las13] defines that a τ -formula φ(z) is mutually algebraic
if there is an integer K so that M |= ∀x∃6Kyφ(x; y) for every proper partition
z = x̂ y. If every formula with parameters is equivalent to a Boolean combina-
tion of mutually algebraic formulas the structure is mutually algebraic. Laskowski
proves that each model of a complete theory T is mutually algebraic if and only if
T is weakly minimal and algebraic closure is trivial on models of T . An incomplete
theory T is mutually algebraic if and only if every completion is.

Simplifying (abusing) the original notation we say a quantifier-free n-type p over
a finite set A ⊂ M is m-large in M if there are m pairwise disjoint realizations of
p. And T has unbounded arrays if for arbitrarily large m and N there is an M |= T
such that for some finite A there are at least N m-large types over A. The authors
show:

Theorem 4.2. [LT19b] An incomplete theory T is mutually algebraic if and only
if every atomic formula has uniformly bounded arrays in every model M of T .

In [LT19a] these model theoretic notions support new results measuring speeds.

Theorem 4.3. Let H be an hereditary class of finite structures in a language with
finitely many relation symbols with maximal arity r.

• (poly/exp) For some k, for sufficiently large n, |Hn| is a sum of terms
pi(n)in for i < k, where each pi(n) is a rational polynomial.

• (factorial) |Hn| = n(1−
1
k−o(n))n for some k > 1.

• (penultimate) |Hn| is caught between a function growing slightly slower than

nn and one with growth approximately 2n
r−ε

.
• (exponential in nr) |Hn| grows as 2Cn

r+o(nr).

Note that for the first two cases, the results are the same as in graphs. But the
faster speeds depend on the maximal arity r of relations in the language. As in the
graph case, there are examples showing the range of solutions in the penultimate
case actually occur. The argument divides into two main cases. On the one hand
the authors show theories with unbounded arrays (so not mutually algebraic by
Theorem 4.2) fall into classes 3) and 4) and then analyze the distinction. On the
other, they break the mutually algebraic theories into three classes; each of them
yields speeds in one of classes 1), 2), and 3).

This extension of a result for graphs to arbitrary relational languages uses not
only a refinement of the stability classification that gives very precise control over
definable sets but invokes the precise model theoretic notion of interpretation to
control the mutually algebraic structures by ones which are ‘totally bounded’.

5. The value of formalization

This article focuses on understanding why model theory has so many applications
across mathematics. Our choice of topics was restricted by space and time, the
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desire to emphasize the widening range of applications, and the need to avoid areas
which where the technical mathematical prerequisites are huge. Two, more or less
random examples of the last are [BHP, CN08]. The key is that formalizing a topic
in mathematics both forces a clarification of concepts and allows the systematic
investigation for analyzing the relations among theories. This key is also used by
other areas of logic. Definability plays not only a central role in exploring relations
within set theory (V=L, determinacy, etc.) but via the notion of Borel isomorphism
in classifying problems arising in many areas. Two surveys of such applications
are [Kec10, Ros11]. Computability theory has contributed to the general theory
of randomness; the large literature was summarised in [Nie12]. In his retiring
presedential address at the ASL meeting in Prague, Ulrich Kohlenbach, described
proof-mining as ‘local proof theory’ [Koh]. In the general setting of abstract metric
spaces, he describes results in fixed point and ergodic theory, convex optimization,
geodesic geometry, Cauchy problems, game theory etc. General metatheorems are
applied to the formal proof of theorem in specific areas that have been formalized in
an appropriate way. This is analogous to applying results about ω-stable theories
to differentially closed fields as well as compact complex manifolds.

ADDED RUTGERS OCTOBER 19:
cellular equivalent TO mutually algebraic and omega categorical
T is k-cellular implies |Hn| ∼ o((1−1/k)n.
If T is not cellular then for all ε > 0, |Hn| > n(1−ε)n
i.e. |Hn| > O(nn).
all Hrushovski construction are included in the 3 rd growth class although not

mutually algebraic.
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Annalen, pages 116–119, 1967.
[Wig60] Eugene Wigner. The unreasonable effectiveness of mathematics in the natural sci-

ences. Communications in Pure and Applied Mathematics, 13, 1960.

[Wil96] A. Wilkie. Model completeness results for expansions of the real field by restricted
Pfaffian functions and exponentiation. Journal of American Mathematical Society,

pages 1051–1094, 1996.
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