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COMPLETE Lω1,ω-SENTENCES WITH MAXIMAL MODELS IN

MULTIPLE CARDINALITIES

JOHN BALDWIN AND IOANNIS SOULDATOS

Abstract. In [BKS15] examples of incomplete sentences are given with maximal models
in more than one cardinality. The question was raised whether one can find similar
examples of complete sentences. In this paper we give examples of complete Lω1,ω-
sentences with maximal models in more than one cardinality; indeed in countably many
cardinalities. The key new construction is a complete Lω1,ω-sentence with arbitrarily
large models but with (κ+, κ) models for every κ.

We unite ideas from [BFKL13, BKL14, Hjo02, Kni77] to find complete sentences with maxi-
mal models in two cardinals. There have been a number of papers finding complete sentences
of Lω1,ω characterizing cardinals beginning with Baumgartner, Malitz and Knight in the 70’s,
refined by Laskowski and Shelah in the 90’s and crowned by Hjorth’s characterization of all
cardinals below ℵω1 in the 2002. These results have been refined since. But this is the first
paper finding complete sentences with maximal models in two or more cardinals.

Our arguments combine and extend the techniques of building atomic models by Fraissé
constructions using disjoint amalgamation, pioneered by Laskowski-Shelah and Hjorth, with
the notion of homogeneous characterization and tools from Baldwin-Koerwien-Laskowski.
This paper combines the ideas of Hjorth and Knight with specific techniques from [BFKL13,
BKL14, Sou14, Sou13] and many proofs are adapted from these sources.

Structure of the paper:

In Section 1, we explain the merger techniques for combining sentences that homogeneously
characterize one cardinal (possibly in terms of another) to get a single complete sentence
with maximal models in prescribed cardinalities.

Section 2 contains the main technical construction of the paper: the existence of a complete
sentence with a unary predicate that has (κ+, κ) models for every κ. From this construction
and the tools of Section 1, we present examples of Lω1,ω-sentences with maximal models in
κ and κ+ and no larger models.

In Section 3 we present examples of Lω1,ω-sentences with maximal models in κ and κω and
no larger models. The argument can be generalized to maximal models in κ and κℵα , for
all countable α.

Finally in Section 4, if κ is a homogeneously characterizable cardinal, we present an Lω1,ω-
sentence with maximal models in cardinalities 2ℵ0 , 2ℵ1 , . . . , 2κ and no models larger than
2κ.
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1. The general construction

In this section, for a cardinal κ that admits homogeneous characterization, we construct
a complete sentence φκ of Lω1,ω that has maximal models in κ and κ+ and no larger
models. The proof applies the notion of a receptive model from [BFKL13] and merges a
sentence homogeneously characterizing κ with a complete sentence encoding the old idea
of characterizing κ+ by a κ-like order. This template is extended to functions other than
successor in later sections.

We require a few preliminary definitions.

Definition 1.1. Assume λ ≤ κ are infinite cardinals, φ is a complete Lω1,ω-sentence in a
vocabulary that contains a unary predicate P , and M is the (unique) countable model of φ.
We say

(1) a model N of φ is of type (κ, λ), if |N | = κ and |PN | = λ;
(2) For a countable structure M, PM is a set of absolute indiscernibles for M, if PM

is infinite and every permutation of PM extends to an automorphism of M.
(3) φ homogeneously characterizes κ, if

(a) φ has no model of size κ+;
(b) PM is a set of absolute indiscernibles for M, and
(c) there is a maximal model of φ of type (κ, κ).

The next notation is useful for defining mergers. We slightly broaden the notion of ‘receptive’
from [BFKL13] by requiring some sorts of the ‘guest sentence’ to restrict to U while others
are new sorts in the final vocabulary.

Notation 1.2. Fix a vocabulary τ containing unary predicates V, U and a binary relation
symbol P . The sentence θ0 says V and U partition the universe and P is a projection of V
onto U .

Let τ1 extend τ and let θ be a complete τ1-sentence of Lω1,ω that implies θ0. Fix a vocabulary
τ ′ disjoint from τ1 that contains a unary predicate Q, and let ψ an arbitrary (possibly
incomplete) τ ′-sentence of Lω1,ω. Let τ2 contain the symbols of τ1 ∪ τ

′ except for Q.

• If U defines an infinite absolutely indiscernible set in the countable model of θ, we
call the pair (θ, U) receptive. We call θ receptive if there is a U such that (θ, U) is
receptive and in that case we also call the countable model of θ a receptive model.

• The merger χθ,U,ψ,Q of the pair (θ, U) is the conjunction of θ and ψU,Q, where ψU,Q

is the result of substituting U for Q in ψ. Thus χθ,U,ψ,Q is a τ2-sentence.
• If in all models N of ψ, QN is the domain of N , then we will drop Q and write
χθ,U,ψ.

• If M |= θ and N |= ψ, the merger model (M,N ) denotes a model of χθ,U,ψ,Q
where the elements of QN have been identified with the elements of UM, which is
the intersection of M and N .

M will be called the host model and N the guest model.

Note that if φ and P homogeneously characterize some κ, then the countable model of φ is
receptive. Fact 1.3 extends the argument in [BFKL13] to reflect our more general notion of
merger.

Fact 1.3. Let (θ, U) be receptive and ψ a sentence of Lω1,ω.

(1) The merger χθ,U,ψ,Q is a complete sentence if and only if ψ is complete.
(2) There is a 1-1 isomorphism preserving function between isomorphism types of the

countable models of ψ and the isomorphism types of countable models of the merger
χθ,U,ψ.
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(3) If there is a model M0 of θ with |M0| = λ0 and |UM0 | = ρ and also a model M1 of
ψ with |M1| = λ1 and |QM1 | = ρ, then there is a model of χθ,U,ψ,Q with cardinality
max(λ0, λ1).

Remark 1.4. The proof of 1) in [BFKL13] is a bit quick. The completeness also depends on
absolute indiscernability. Let N and N ′ be countable models of ψ. Then Q(N ) ∼=τ ′ Q(N ′).
By absolute indiscernability that automorphism extends to a τ1 automorphism of any M
being merged with N or N ′.

In Section 2 we prove:

Theorem 1.5. There is a complete Lω1,ω-sentence
1 φM with a unary predicates X,Y and

binary predicate < such that:

(1) φM has arbitrarily large models.
(2) If M |= φM , |M| ≤ |XM|+.
(3) For each κ, there exist a model of φK of type (κ+, κ).

Idea of the Proof: We will construct (via a generalized Fräıssé construction) a sentence φM
whose models behave as follows. The sort Y is linearly ordered by <. Each element y of
Y determines a function g( , y) : X → Y so that for y ∈ Y , g( , y) maps X onto the initial
segment below y. The mapping is finite-to-one and so bounds the size of any initial segment
by |X |. The full proof is in Section 2.

Using this result we show if κ is homogeneously characterizable, we can construct a complete
sentence of Lω1,ω that has maximal models in κ and κ+ and no larger models. Before we
proceed with the particular example we need to prove the following theorem.

Theorem 1.6. Let κ be a homogeneously characterizable cardinal. Then there exists an
Lω1,ω-sentence χ in a vocabulary with a new unary predicate symbol B, such that (χ,B) is
receptive, χ homogeneously characterizes κ and χ has maximal models with (|M|, |BM|) =
(κ, λ), for all λ ≤ κ.

Proof. Fix a receptive pair (θ, U) such that θ homogeneously characterizes κ. Define a new
vocabulary τ = {A,B, p} where A,B are unary predicates and p is a binary predicate. Let
φ be the conjunction of: (a) A,B partition the universe and (b) p is a total function from A
onto B such that each p−1(x) is infinite. In the countable model of φ, B is a set of absolute
indiscernibles.

Now merge θ and φ by identifying U and A. The merger χ = χθ,U,φ,A is a complete sentence
which does not have any models of size κ+. Let M be a maximal model of θ with UM of
size κ, and N a model of φ of type (κ, λ), for some λ ≤ κ. Then the merger model (M,N )
is a maximal model of χ with |(M,N )| = κ and |B(M,N )| = λ, which proves the result �

A word of caution: In the countable model of θ, the predicate U defines a set of absolute
indiscernibles, and the same is true for the countable model of φ and B. So, we started with
two models and two sets of absolute indiscernibles. In the merger χθ,U,φ,A, the absolute
indiscernibles of the host model (model of θ) are used to bound the size of A from the
guest model (model of φ). Moreover, the predicate B from the guest model defines a set of
absolute indiscernibles in the merger model too, and it may be small.

Now, combining Theorem 1.6 and Theorem 1.5 we conclude

Corollary 1.7. Let κ be a homogeneously characterizable cardinal. Then there is a complete
sentence that characterizes κ and has maximal models in κ and κ+.

In particular there is a complete sentence with maximal models in ℵ1 and ℵ2.

1The subscript M on φM is residue of the proof; we have only one such sentence.
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Proof. Let φ∗κ be the merger χφκ,U,φM ,X , where the pair (φκ, U) witnesses the homogeneous
characterizability of κ, and the pair (φM , X) is given by Theorem 1.5. By Fact 1.3, φ∗κ is
complete. Suppose (M,N ) |= φ∗κ and M is a maximal model of φκ of size κ. If |UM| < κ,
then |XN | < κ, and by Theorem 1.5 (2) |N | ≤ κ. So, the merger model is maximal and has
size κ.

On the other hand, if |UM| = κ, then choose a model N of φM of type (κ+, κ), which is
maximal among models of φM with X = UM. By Theorem 1.5, there is no (κ++, κ)-model
of φM and therefore, there must be such a maximal (κ+, κ) model. The merger model
(M,N ) is again a maximal model of φ∗κ, but this time it has size κ+. �

Particular examples of homogeneously characterizable cardinals are given by [Bau74], [Hjo02],
[Sou12], [Sou13], [Sou14], [BKL14].

Theorem 1.8. If κ is homogeneously characterizable, then the same holds true

(1) for2 2κ;
(2) for3 κω;
(3) for4 κℵα , for all countable ordinals α.

Theorem 1.9 (Theorem 4.29, [Sou13]). If ℵα is a characterizable cardinal, then 2ℵα+β is
homogeneously characterizable, for all 0 < β < ω1.

Finally a result of slightly different character; we note a direct proof of a sentence φn that
homogeneously characterize ℵn (n > 0) and has (ℵn,ℵk) models for k ≤ n.

Theorem 1.10 ([BKL14]). For each n ∈ ω, there is a complete Lω1,ω-sentence φn such
that

• φn homogeneously characterizes ℵn with absolute indiscernibles in a predicate P ;
and

• for each k ≤ n, there is a maximal model Nk of φn of type (ℵn,ℵk).

Since in this last example, the complete sentence5 has maximal models of type (ℵn,ℵk), for
all k ≤ n there is no need to appeal to Theorem 1.6 for the proof of Corollary 1.7.

2. A complete sentence with only (κ+, κ)-models for all κ

Knight [Kni77] constructed the first example of a complete sentence characterizing ℵ1. We
will vary that idea to get the result announced.

Lemma 2.1. There is a structure A = (Q,<, gn) in the vocabulary 〈<, gn〉, where < is the
usual dense order on Q and the gn are unary, such that for each n and x, gn(x) < x and for
each x the set of gn(x) is the set of predecessors of x. Moreover this structure has a proper
elementary extension isomorphic to itself. Thus A is extendible. If φA is the Scott sentence
of A, φA characterizes ℵ1.

The proof of this lemma involves an intricate construction of functions fa for a ∈ Pω(A);
we now produce a similar structure by a Fraissé style construction, proving Theorem 1.5.
We follow the idea of Hjorth in replacing functions fn by a uniform f(x, y) indexed in the
model. This sentence will have arbitrarily large models with two sorts X,Y such that the

2Baumgartner; see also Theorem 3.4 of [Sou13]
3Theorem 3.6,[Sou14]
4Corollary 5.6, [Sou12]
5The proof that these (ℵn,ℵk) models exist requires the use of both frugal amalgamation and an amal-

gamation which allows identification. We say a class has frugal amalgamation if for every amalgamation
triple A,B,C there is an amalgam on the union of the domains with no identifications. See [BKS09].
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sort of |Y | ≤ |X |+. This construction will allow us in Theorem 2.17 to construct (κ+, κ)
models of φM . The predicates Gn are used to enforce local finiteness.

We now describe the sentence φM ; the remainder of the subsection completes the proof of
Theorem 1.5.

Construction 2.2. Let τ contain binary <, unary X,Y and ternary g(x, y, z) and (n+2)-
ary relation symbols Gn(x0, . . . , xn−1, y, z) on X

n × Y 2.

K0 is the collection of finite structures such X and Y are disjoint, < linearly orders Y ,
g(x, y, z) is a total function from X × Y into Y such that g(x, y, z) implies z ≤ y and for
each y ∈ Y , letting Wy = {z ∈ Y |z ≤ y}, the function gy = g( , y) : X → Wy is onto. We
often write g(x, y) = z for g(x, y, z).

We want to guarantee that in each model for each z < y ∈ Y there is an n, 0 < n < ω, such
that the set {x ∈ X |g(x, y) = z} has size n. In other words, the function g( , y) is finite-to-1
when restricted to the set {x ∈ X |g(x, y) < y}. Notice that while g(x, y) is allowed to take
the value y, the finite-to-1 restriction does not apply to the set {x ∈ X |g(x, y) = y}.

For each z < y ∈ Y , we use the (n + 2)-ary relation symbols Gn(x0, . . . , xn−1, y, z) on
Xn × Y 2 to indicate that the set {x0, . . . , xn−1} equals the set {x ∈ X |g(x, y) = z}, which
is of size n. The relations Gn satisfy the following:

The universal closure of each formula of the following form(s):

Gn(x0, . . . , xn−1, y, z) →
∧

i<j<n

xi 6= xj ;

Gn(x0, . . . , xn−1, y, z) → (z < y) ∧
∧

i<n

g(xi, y, z);

Gn(x0, . . . , xn−1, y, z) ∧ g(w, y, z) →
∨

i<n

w = xi;

and for every permutation π : n→ n,

Gn(x0, . . . , xn−1, y, z) ↔ Gn(xπ(0), . . . , xπ(n−1), y, z)

and each sentence of the form:

∀y ∀z < y
∨

0<n<ω

∃x0∃x1 ∃x2 . . . ∃xn−1, Gn(x0, x1, . . . xn−1, y, z);

Note that since in every member of K0 and for every y there is an x with g(x, y) = y, we
will never have to check this condition in an amalgamation. The following easy lemma will
be applied several times.

Lemma 2.3. If A ∈ K0 and m ∈ ω, there is a structure B ∈ K0 with A a substructure of
B and |XB \XA| ≥ m.

Proof. Adjoin m elements to XA and let gB(x, y) = y, for all new x and each y ∈ Y A. For
each n exactly the same elements satisfy Gn in A and B. �

Definition 2.4. We call (A,B) a good pair, if A ⊂ B, A,B ∈ K0 and |XB \ XA| ≥
|Y B \ Y A|.

Lemma 2.5. K0 has the disjoint amalgamation property under substructure.
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Proof. Suppose A is a substructure of B and C. Applying Lemma 2.3 to B with m =
|Y B \ Y A| and to C with m = |Y C \ Y A| we may assume |XB \ XA| ≥ |Y B \ Y A| and
|XC \ XA| ≥ |Y C \ Y A| (and they intersect in A). Extend the partial order on Y B ∪ Y C

by linearly ordering the ai, bj that are in an interval (ci, cj) in any way that preserves the
ordering of the a’s and of the b’s.

Let XD = XB ∪ XC and Y D = Y B ∪ Y C . The goal is to define gD(x, y) on the pairs
(x, y) ∈ (XB \XA)× (Y C \ Y A) ∪ (XC \XA)× (Y B \ Y A) to obtain an amalgam D ∈ K0.

For each y ∈ Y C \ Y A, let WB
y = {z ∈ Y B \ Y A|z ≤ y}. Define gD(x, y) so that for each

y ∈ Y C \ Y A and each x ∈ XB \XA, gD(x, y) ∈ WB
y and each element in WB

y is mapped

to by at least one x ∈ XB \XA. This is possible by the application above of Lemma 2.3. If
WB
y is empty, define gD(x, y) = y.

Symmetrically, for each x ∈ XC \ XA and each y ∈ Y B \ Y A, define gD(x, y) to be an
element in WC

y = {z ∈ Y C \ Y A|z ≤ y}, so that each element in WC
y ⊂ Y C \ Y A is mapped

to at least once. Again, if the set is empty, define gD(x, y) = y.

Since no newly defined triple x, y1, y2 that satisfies g(x, y1) = y2 has both y1 and y2 in C,
or both y1 and y2 in B, we can extend the definition of the GDn ’s consistent with the new
assignments of g while extending GBn and GCn and so making D ∈ K0. �

We summarize the results of this construction. We call a structure K0-generic if it is
homogeneous and universal for K0-structures and is a union of finite structures.

Theorem 2.6. There is a countable K0-generic (and atomic) model M (with Scott sen-
tence φM ), which is an increasing union of members of K0 which are each closed under g.
Thus, M is locally (but not uniformly locally) finite. Moreover M |= (∀y1, y2)[y1 < y2 →
(∃x)g(x, y2) = y1] since each model in the union does.

Thus, if N |= φM , Y N is a dense linear order and for every y ∈ Y N , |XN | ≥ |{y′ ∈ Y N :
y′ < y}|. In particular, if |XN | ≤ κ, then the size of Y N is bounded by κ+.

Proof. Since the Gn are only defined on models of cardinality at least n, there are only
countably many models inK0, so the amalgamation property (and trivially joint embedding)
guarantee the existence of M. �

Corollary 2.7. There is an (ℵ1,ℵ0)-model of φM .

Proof. We borrow the technique of Lemma 1.10 of [BFKL13]. Expand the vocabulary τ to
τ ′ by adding a new unary predicate Q. Consider the class K ′ of finite τ ′-structures N such
that:

(1) N ↾ τ ∈ K0;
(2) XN ⊆ QN ; and
(3) Y N ∩QN is an initial segment of Y N .

By virtue of K0 satisfying disjoint amalgamation, the same is also true for K
′. We claim

that the generic model M ′ for K
′ has a proper τ -substructure M0 with universe QM

′

,
M0 ↾ τ ∼=M ′ ↾ τ , and XM0 = XM ′

.

Since M ′ is K′-generic, both M ′ ↾ τ and M0 ↾ τ must be K0-generic. By Theorem 2.6, they
are isomorphic. The fact that XM0 = XM ′

follows from condition (2).

Now, consider the question whether M0 is a proper submodel of M ′. It is immediate that
M0,M

′ agree on <, and XM0 = XM ′

implies that they agree on the Gn’s too. The only case
that needs to be considered is if there exist x ∈ XM0 and y1 ∈ YM0 , and gM0(x, y1) does
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not equal gM
′

(x, y1). But this can happen only if gM
′

(x, y1) /∈ YM0 , i.e. gM
′

(x, y1) /∈ QM
′

.

In this case, gM
′

(x, y1) < y1, y1 ∈ QM
′

and gM
′

(x, y1) /∈ QM
′

, contradicting condition (3).

So, we proved all three conditions on M0 ↾ τ and M ′ ↾ τ . Taking a countable increasing
chain of atomic models, we get an (ℵ1,ℵ0) model M∗ |= φM . �

Definition 2.8. C ∈ K̂0 if

(1) for every finite A ⊂ C there exists some finite substructure A′ of C with A ⊂ A′ and
A′ ∈ K0.

(2) (Y C , <) is a linear order without endpoints.

Condition 1) is often expressed by saying C is locally finite. The following lemma is a crucial
observation.

Lemma 2.9. If C ∈ K̂0, then g
C
y maps onto WC

y = {z ∈ C : z ≤ y}.

Proof. Let z ∈ WC
y . By local finiteness there is a finite A such that gAy maps onto WA

y ; in

particular there is an x ∈ A with gA(x, y) = gC(x, y) = z. �

The structure N is called K0-rich, or just rich, if for every A ⊂ N which is in K0 and every

extension B ∈ K0 of A, there is an embedding of B into N over A. If N ∈ K̂0 and N is
rich then standard arguments show N |= φM .

Our first goal is to prove that φM has model in all cardinalities. Then we will merge this
sentence with a complete sentence φ that homogeneously characterizes some cardinal κ by
identifying X with the set of absolute indiscernibles of φ. This will result in a complete
Lω1,ω-sentence that has maximal models in two cardinalities: κ and κ+.

In the following argument we write gC(x, y) to emphasize when we are using the existing
model C to define the extended function gD(x, ).

Theorem 2.10. Let C ∈ K̂0 be infinite. Let A,B ∈ K0, A ⊂ B,C. Then the triple
(A,B,C) can be disjointly amalgamated to a structure D ∈ K̂0 with |XD| = |XC | and
|Y D| = |Y C |.

Proof. As in the proof of Lemma 2.5, extend the partial order on Y B ∪ Y C to a total order
without endpoints. Without loss of generality by Lemma 2.3 assume that |XB \ XA| ≥
|Y B \ Y A|. The goal is to extend gC and gB to a function gD on all pairs (x, y) ∈ (XB \

XA)× (Y C \ Y A) ∪ (XC \XA)× (Y B \ Y A) so that D ∈ K̂. In stage 1, we almost achieve
this goal. But we may need a further finite extension of D to D′ and this is stage 2 of the
construction.

In making this extension no new values are assigned to g(a, b) = c where both b, c are in
Y C , or both b, c are in Y B. So there is no danger of injury to any predicate Gn(x, b, c) with
b, c ∈ B, or b, c ∈ C.

Stage 1: We organize the case structure by the possible locations of an (x, y) on which
gD must be defined. The first case is (x, y) ∈ XB \XA × Y C \ Y A. For fixed y and each
x define gD(x, y) to be an element of the set WB

y = {z ∈ Y B \ Y A|z ≤ y}, ensuring that

each element in WB
y is mapped to at least once. This is possible given the assumption

|XB \ XA| ≥ |Y B \ Y A|. If WB
y is empty, let gD(x, y) = y. Since only finitely many

extensions gD(x, )’s have been defined and all of them take values outside of C, it is trivial
to define the GDn . Note that since each z ∈ Y C , z ≤ y, is already in the range of gCy , g

D
y

maps onto {z ∈ Y D|z ≤ y}.

The second case of stage 1 is (x, y) ∈ XC \ XA × Y B \ Y A. It requires more work, since
we must define gD(x, y) for infinitely many x and finitely many y without violating the
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constraints on the Gn. We choose a surrogate y0 > Y B with y0 ∈ Y C \ Y A that we use to
define gD(x, y) for all (x, y) satisfying this case. For every x ∈ XC \XA and y ∈ Y B \ Y A,
we define gD(x, y) by three subcases.

(1) if gC(x, y0) ≥ y, let gD(x, y) = y.
(2) If gC(x, y0) < y and gC(x, y0) /∈ Y A, let gD(x, y) = gC(x, y0).
(3) If gC(x, y0) < y and gC(x, y0) ∈ Y A, let6 gD(x, y) = y.

Each gD(x, ) maps into WD
y = {z ∈ D : z ≤ y}. Further the range of gD( , y) contains all

of WD
y , except for the elements (if any) in the set

Py = {z ∈ Y C \ Y A|z < y and gC(x, y0) = z → x ∈ XA}.

Indeed, let z < y. If z ∈ Y B, then there is an x in XB with gB(x, y) = z since B ∈ K0.

If z ∈ Y C \ Y A, there exist x1 ∈ XC with gC(x1, y0) = z since C ∈ K̂0. If in addition
z /∈ Py, then x1 can be assumed to belong to XC \XA. Then gC(x1, y0) = gD(x1, y) = z,
by subcase (2). If z belongs to Py, then x1 is necessarily an element of XA, and none of
subcases (1)-(3) applies since x1, y ∈ B and gD(x1, y) equals g

B(x1, y). Thus, there is no x
with gD(x, y) = z ∈ Py.

Stage 2: We now ensure that all elements in Py are also included in the range of gD( , y).
For this we add a finite number of new x’s, Xnew, call the extended domain D′, and extend
gD to gD

′

. Since XA is finite, the same is true for Py. We map each y ∈ Y B \ Y A to Py
using these new elements so that for each y ∈ Y B \Y A and each z ∈ Py, there exists at least

one x ∈ Xnew such that gD
′

(x, y) = z. For every y ∈ Y C and x ∈ Xnew set gD
′

(x, y) = y.

We now define the GD
′

n . In stage 1 we did this for all y ∈ Y C and z ∈ Y B with z < y. By
property (1) of Definition 2.8, for each z ∈ Y C \ Y A, there are only finitely many x ∈ XC

that agree that the value of gC(x, y0) is z. This implies that for each y ∈ Y B \ Y A and each

z ∈ (Y C \Y A)\Py, z < y, there are only finitely many x ∈ XC \XA such that gD
′

(x, y) = z.

If z ∈ Py, then there are only finitely many x ∈ Xnew such that gD
′

(x, y) = z. Extend the

Gn’s from B and C to D′ as the new assignments of gD
′

require.

This completes the construction of the amalgam D′; next we show that each of B,C is a
substructure of D′. That is, the Gn’s are preserved when we pass from B,C to D′. To check
from B to D, we must show that for each y, z ∈ Y B there is no x ∈ Xnew ∪ (XC \XA), with

y > z and gD
′

(x, y) = z as this would violate GBn (x, y, z). If x ∈ Xnew and y ∈ Y B \ Y A,

then gD
′

(x, y) 6= z since gD
′

(x, y) belongs to Py ⊂ Y C \ Y A. If x ∈ Xnew and y ∈ Y A,

then gD
′

(x, y) = y 6= z. If x ∈ XC \ XA, there do not exist y, z ∈ Y B with y > z and

gD
′

(x, y) = z. For such a gD
′

(x, y) could not be defined using subcase (2), as in subcase

(2) z = gD
′

(x, y) = gC(x, y0) /∈ Y A (and so certainly not in Y B since z ∈ Y C). So, for

any y, z ∈ Y B with y > z, |{x : gD
′

(x, y) = z}| = |{x : gB(x, y) = z}|, which makes B a
substructure of D′.

To check that the Gn’s are preserved from C to D′, let y, z ∈ Y C with y > z. We must show
there is no x ∈ Xnew ∪ (XB \XA) such that gD

′

(x, y) = z. If x ∈ Xnew, then g
D′

(x, y) = y.

If x ∈ XB \XA, then gD
′

(x, y) ∈ WB
y ⊂ Y B \ Y A by the first case of Stage 1. Thus, both

B and C are substructures of D′.

It remains to prove that D′ ∈ K0. Property (2) is immediate. Property (1) is the one that
needs work.

Let D0 be a finite substructure of D′. Without loss of generality assume that Xnew ∪ B ∪
{y0} ⊂ D0. Applying property (1) on C, there exists a substructure D1 of C with D1 ∈ K0

6Since each gB( , y) is onto, there must be an x1 ∈ XB , gB(x1, y) = gC(x, y0) holds; following the recipe
in 2) would make GD

n (x, y, z) differ from GB
n (x, y, z).
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and D0 ∩C ⊂ D1. We claim that D2 = D0 ∪D1 is a substructure of D′ and is in K0, which
proves the result.

We must showD2 is closed under g. We follow the same case structure as in the construction.

In the first case of Stage 1, where (x, y) ∈ XB \XA× Y D1 \ Y A, gD(x, y) was defined to be
either an element w ∈WB

y ⊂ Y B \ Y A or y. In either event it is in D2.

Consider now the second case of Stage 1: (x, y) ∈ XD1 \XA × Y B \ Y A. In either subcase

(1) or (3) gD
′

(x, y) = y and the result is immediate. In subcase (2) suppose gD
′

(x, y) =
gC(x, y0) = z′. Then z′ ∈ D1 since x, y0 are in the substructure D1. Any other (x, y) with

x 6∈ Xnew are either both in B or both in D1 so closure under gD
′

follows since B and D1

are in K0.

And finally we consider the elements added in stage 2. If (x, y) ∈ Xnew × Y D1 , then

gD
′

(x, y) = y ∈ D2. If (x, y) ∈ Xnew × Y B , then gD
′

(x, y) ∈ Py ⊂ gC(XA, y0). Since
A ∪ {y0} ⊂ D1 and D1 is closed under gC , gC(XA, y0) is a subset of D1.

We have shown D2 is closed under gD
′

. It remains to prove that GD
′

n ↾ D2 = GD2
n and

D2 ∈ K0.

Suppose z < y ∈ Y D2 ; we must show GD
′

( , y, z) ↾ D2 = GD2( , y, z). If both y, z are in B
or both are in C, we showed this in showing B,C substructures of D′ (since D1 is given to
be a substructure of C).

Again we follow the case structure of the construction.

If y ∈ Y D1 \ Y A and z ∈ Y B \ Y A, y > z, then gD
′

(x, y) = z was defined in Stage 1 of

the construction for some x ∈ XB \ XA. So {x : x ∈ D′ & gD
′

(x, y) = z} = {x : x ∈

B & gD
′

(x, y) = z} as required.

If y ∈ Y B \ Y A, z ∈ Y D1 \ Y A, y > z and gD
′

(x, y) = z for some x, then the value was
defined either using subcase (2) in Stage 1 or using the new elements Xnew in Stage 2. If
under subcase (2), there are only finitely many x ∈ XC \XA such that gC(x, y0) = z. Since
z, y0 ∈ D1 and D1 ∈ K0, it follows that all these x’s belong to D1 and thus to D2. If z ∈ Py,

the Stage 2 construction showed {x : x ∈ D′ & gD
′

(x, y) = z} ⊂ Xnew ⊂ D2.

Overall, {x : gD2(x, y) = z} = {x : gD(x, y) = z} and D2 is a substructure of D.

Finally we must argue that D2 ∈ K0. But we constructed it so that gD is total and each

gD
′

y = gD2
y maps onto WD2

y , so D2 ∈ K0 and hence D′ ∈ K̂. �

Corollary 2.11. There are models of φM in all infinite cardinalities.

Proof. Proceed by induction. The countable case has been established. LetN0 be a structure
of size κ that satisfies φM . Construct inductively a sequence of models Nα ∈ K̂ for α < κ+,
so that every α < κ+, Nα+1 is the amalgam given by Theorem 2.10 of Nα and some B ∈ K0

over a finite substructure A ∈ K0 of Nα and take unions at limits. Organize the induction
so that for every α < κ+, every finite A ⊂ Nα with A ∈ K0 and every finite extension
B ∈ K0 of A, at some stage β > α, B is amalgamated with Nβ over A. Nκ+ is rich and so
is model of φM . �

Theorem 2.6 and Corollary 2.11 complete the first two parts of the proof of Theorem 1.5.
The models of φM of size κ produced by Corollary 2.11 are of type (κ, κ), i.e. both |X |, |Y |
have the same cardinality κ. We want to prove the analogue of Corollary 2.7 for cardinals
greater than ℵ1. The argument does not directly generalize because, unlike in ℵ0, the φM
is not uncountably categorical. We need a little more work to overcome this difficulty.
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Definition 2.12. Let C be a model of φM of size κ. Then C admits a filtering if there
exists a strictly increasing sequence (Cα)α<κ with

⋃
α<κ Cα = C that satisfies

(1) for all α, Cα ∈ K̂0;
(2) for all successors α + 1, Cα+1 is the disjoint amalgam of Cα and some Bα ∈ K0

over a substructure Aα ⊂ Cα with Aα ∈ K0;
(3) for all α, the pair (Bα, Aα) is a good pair (cf. Definition 2.4); and
(4) for each limit α, Cα =

⋃
β<αCβ.

If in addition the sequence (Cα)α<κ satisfies the following property, then C admits an ample
filtering:

(5) For each good pair (A,B) and each Â ⊂ Cα with Â ∼= A, there are κ-many stages α

such that Aα = Â and Bα ∼= B.

All models of φM produced by Lemma 2.11 admit a filtering and it is not hard to modify the
proof of the same lemma to produce models of φM of type (κ, κ) that admit ample filtering.
In fact a stronger statement is true.

Lemma 2.13. Let C be a model of φM of size κ. If C admits a filtering, then there is some
model C′ of φM such that C ⊂ C′ and C′ admits an ample filtering.

Proof. Let (Cα)α<κ be a filtering of C. If it is an ample filtering, then take C′ = C.
If not, then proceed for another κ more stages to construct an extension of (Cα)α<κ to
(Cα)α<κ·2 and take C′ =

⋃
α<κ·2. Iterate the argument of 2.11, requiring now for every

A ⊂ Cα, A ∈ K0, α < κ · 2, and every finite extension B ∈ K0 of A, there are κ-many

stages β
(α)
i > α, i < κ, and κ-many disjoint isomorphic copies of B, Bi, such that Bi is

amalgamated with C
β
(α)
i

over A at stage β
(α)
i . The construction can be carried through in

κ stages. It follows that C′ is rich, and therefore, a model of φM . �

The next theorem proves that under the assumption of ample filtering, a model C of φM of
type (κ, κ) can be properly extended to a model D of φM , while XC = XD.

This means that we extend only the Y -sort. To motivate the argument we note that the
conclusion of the next theorem in fact implies Y D is an end-extension of Y C . Indeed, assume
that there exist points y0 ∈ Y C and y1 ∈ Y D \ Y C such that y0 > y1. By Theorem 2.6,
there must be some x ∈ XD such that gD(x, y0) = y1. Since we assumed that XD = XC ,
x must also belong to XC . But then gC(x, y0) is defined and belongs to Y C , which means
that it can not equal y1. Because C is a substructure of D, gD(x, y0) = gC(x, y0) and we
get a contradiction. Thus, under the assumption XD = XC , it is necessary for Y D to be an
end-extension of Y C . Furthermore, we also prove that the resulting model D admits ample
filtering, which enables us to apply the theorem inductively.

Theorem 2.14. Assume κ > ℵ0 and C is a model of φM of type (κ, κ) that admits an
ample filtering. Then there exists a model D of φM such that C ⊂ D, XC = XD, and Y D

is an end-extension of Y C . Furthermore, D admits an ample filtering.

Proof. Fix a sequence 〈Cα, Aα, Bα : α < κ〉 witnessing that C admits an ample filtering. In
particular, at each stage α+ 1, Cα+1 is the disjoint amalgam of Cα and Bα, over Aα ⊂ Cα
with Aα, Bα ∈ K0.

As in Corollary 2.7, extend the vocabulary τ to τ ′ by adding a new predicate Q, and let K′
0

be the class of finite τ ′-structures N such that

(i) N ↾ τ ∈ K0;
(ii) XN ⊂ QN ; and
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(iii) Y N ∩QN is an initial segment of Y N .

Similarly to Definition 2.8, define that a finite τ ′-structure N is in K̂
′
0 if

(1) for every finite A ⊂ N there exists some finite substructure A′ of N with A ⊂ A′

and A′ ∈ K
′
0.

(2) (Y N , <) is a linear order without endpoints.

We now create a new sequence 〈Dα, A
′
α, B

′
α : α < κ〉 of τ ′-structures, so that the restriction

of this new sequence to the Q-sort, is the original sequence 〈Cα, Aα, Bα : α < κ〉. More

precisely, QDα ↾ τ = Cα, Q
A′

α ↾ τ = Aα and QB
′

α ↾ τ = Bα. The relationship we will require
between the pairs (Aα, Bα) and (A′

α, B
′
α) is captured by the following definitions.

Recall Definition 2.4 of a good pair.

Definition 2.15. We call A′, B′ ∈ K
′
0 a good pair of τ ′-structures if (A′ ↾ τ, B′ ↾ τ) is a

good pair of τ-structures.

If A′, B′ ∈ K
′
0 is a good pair of τ ′-structures then (Q(A′) ↾ τ,Q(B′) ↾ τ)s is a good pair of

τ structures since all of XA′

satisfies Q.

Definition 2.16. Let A,B ∈ K0 be a good pair of τ-structures and let A′, B′ ∈ K
′
0 be a good

pair of τ ′-structures. We call (A′, B′) a good extension of (A,B), if A′, B′ are extensions

of A,B respectively, and QA
′

↾ τ = A and QB
′

↾ τ = B. Call (A′, B′) a good extension, if
it is a good extension of some (A,B).

Note that if (A′, B′) is a good extension, then |(XB′

∩QB
′

) \ (XA′

∩QA
′

)| ≥ |(Y B
′

∩QB
′

) \

(Y A
′

∩QA
′

)|.

We construct a strictly increasing sequence (Dα)α<κ of K′
0-structures with the following

properties:

(1) for all α, Dα ∈ K̂
′
0;

(2) for all α, QDα ↾ τ = Cα;
(3) for all successors α + 1, Dα+1 is a disjoint amalgam of Dα and B′

α over A′
α, where

(A′
α, B

′
α) is a good extension of (Aα, Bα);

(4) for each limit α, Dα =
⋃
β<αDβ ;

(5) for each α, if A′ ⊂ Dα, B
′ and A′, B′ ∈ K

′
0, there are κ-many stages α such that

A′
α = A′ and B′

α
∼= B′.

Let A ⊂ C, A ∈ K0, and B ∈ K0 is an extension of A. By assumption on the sequence (Cα),
there are κ-many stages such that Aα = A and Bα ∼= B. Consider all possible τ ′-structures
A′ ⊂ B′ such that B = QB

′

↾ τ and A = QA
′

↾ τ . Organize the induction so that there
are κ-many stages such that A′

α = A′ and B′
α
∼= B′. Then use Theorem 2.10 to disjointly

amalgamate Dα and B′
α over A′

α to Dα1 ∈ K
′
0, making sure that (a) in the amalgam Y ∩Q

is an initial segment7 of Y and (b) the amalgamation agrees with the amalgamation of Cα
and Bα over Aα.

Let D =
⋃
α<κDα ↾ τ . Then D is rich and it satisfies the conclusion of Theorem 2.14. �

Theorem 2.17. For each κ, there exist a model of φM of type (κ+, κ).

Proof. If κ = ℵ0, the result holds true by Corollary 2.7. Assume κ is uncountable and let C0

be a model of type (κ, κ) given by Corollary 2.11. By Lemma 2.13, assume that C0 admits
ample filtering.

7This is easy to obtain as we can place Y B \ Y C at the end of Y C .
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Construct a sequence (Cα)α<κ+ such that each Cα is a model of φM that admits ample
filtering, XCα = XC0 and Y Cα+1 is an end-extension of Y Cα . Use Theorem 2.14 for the
successor stages. At limit stages take unions. The construction continues past the limit
stages, because the union of models of the same cardinality that admit ample filtering, also
admits ample filtering. �

This completes the proof of Theorem 1.5. We can actually do a little better. We prove
Theorem 2.19 which is an extension of Theorem 1.5. We first state the useful corollary
Theorem 2.18 of Theorem 2.19.

Theorem 2.18. If κ is homogeneously characterized by a complete Lω1,ω(τ)-sentence, there
is another complete Lω1,ω-sentence χ in a vocabulary τ ′ extending τ with a predicate U such
that:

(1) χ characterizes κ+;
(2) U is a set of absolute indiscernibles for the countable model of χ; and
(3) U has size ≤ κ in all models of χ with maximum attained.

The proof of this result is straightforward from the following theorem.

Theorem 2.19. There is a complete Lω1,ω-sentence φM ′ in a vocabulary with unary predi-
cates X,Y and a binary predicate < such that any model of φM ′ satisfies the first 3 conditions
of Theorem 1.5

(1) φM ′ has arbitrarily large models,
(2) if M |= φM ′ , |M | ≤ |XM |+,
(3) for each κ, there exist a model of φM ′ of type (κ+, κ);

and also there is a unary predicate U such that

(1) if M ′ is the countable model of φM ′ , UM
′

is a set of absolute indiscernibles,
(2) if M |= φM ′ , |UM | ≤ |XM |,

(3) for each κ, there is a model N of φM ′ with |N | = κ+ and |UM
′

| = κ.

The proof of Theorem 2.19 mirrors the proof of Theorem 1.5 starting with Construction 2.2
up to Lemma 2.17. Most of these proofs work with minor modifications. We only outline
the key differences here and leave the details to the reader.

Construction 2.20. Let τ ′ be union of τ ∪ {V, U, P}, where τ is the vocabulary from
Construction 2.2. Let K1 be the collection of finite (τ ′)-structures A′ such that

(1) X,Y, U are disjoint;
(2) P defines a projection function from X into U , and P is void everywhere else;
(3) (A′ \ U) ↾ τ is a structure A in K0.

Because K0 satisfies disjoint amalgamation, the proof of Lemma 2.5 can be used to prove
that the same is true for K1; to amalgamate B′ and C′ over A′ first amalgamate the
associated B and C over A in K0 by 2.5, then add the disjoint union of UB

′

and UC
′

over
UA

′

with the same values for P . This guarantees the following analogue of Theorem 2.6; as
usual the generic model construction guarantees that P is onto.

Theorem 2.21. There is a countable K1-generic (and atomic) model M ′ (with Scott sen-
tence φM ′) which is an expansion of the model M from Theorem 1.5 by a set of absolute

indiscernibles UM
′

, and PM
′

defines a projection function from XM ′

onto UM
′

with the set
{x ∈ XM ′

|PM
′

(x, u)} being infinite for every u ∈ UM
′

.

Thus, if N |= φM ′ , |UN | ≤ |XN | and |Y N | ≤ |XN |+.
12



To complete the proof of Theorem 2.19, we can repeat the proofs of Theorem 2.10 through
Theorem 2.17 with φM ′ replacing φM . In the proof of the revised Theorem 2.10, to amal-
gamate B′ and C′ over A′ first amalgamate the associated B and C over A in K0 by 2.10,
then then add the disjoint union of UB

′

and UC
′

over UA
′

with the same values for P . If
the amalgam contains new X-elements that are not in XB′

∪XC′

, e.g. elements introduced
by Lemma 2.3, or elements in Xnew, then expand the U -sort by adding a new set Unew of
U -elements disjoint from UB

′

∪ UC
′

, and assign P -values for the new X-elements in Unew.

The proofs of Corollary 2.11, Lemma 2.13 and Theorem 2.17 require no changes. In the
proof of the revised Theorem 2.14, add to the requirement (ii) that X ⊂ Q that also U ⊂ Q
and then the same argument works.

This concludes the outline of the proof of Theorem 2.19.

Proof of Theorem 2.18. If θ homogeneously characterizes κ with the receptive pair (θ,Q),
consider the merger χθ,Q,φM′ ,X . This will restrict the size of X by the size of Q. The merger
characterizes κ+ and has a set of absolute indiscernibles U of size ≤ κ with maximum
attained. �2.18

Lastly, notice that if N ′ |= φM ′ , |XN ′

| = κ and |Y N ′

| = κ+, the size of the predicate U(N ′)
can not be of size κ+. This makes it impossible to use this technique to homogeneously
characterize κ+.

3. Maximal models in κ and κω

Working similarly to Section 1 we construct a complete Lω1,ω-sentence that admits maximal
models in κ and κω, and has no larger models. But we must define a sentence that transfers
from κ to κω rather than κ+.

Theorem 3.1. Let φ be a complete Lω1,ω(τ)-sentence (in vocabulary τ) with a set of absolute
indiscernibles U . Then there is a complete Lω1,ω(τ

′)-sentence φ∗ (in vocabulary τ ′ ⊃ τ) with
the property:

If φ homogeneously characterizes κ, then φ∗ homogeneously characterizes κω.

Proof sketch: Here is the basic idea of the construction.

Fix an infinite setX and consider the structure N with universe the disjoint union of ω, X<ω

and a subset of Xω. Fix a vocabulary τ1 with unary predicates K,V, F denoting these sets,
binary predicates H,R and a ternary predicate E. Interpret the ‘height’ predicate H(·, ·) on
K × V so that H(n, v) holds if and only if v ∈ Xn, and the predicate R(u, v) on V 2 which
holds if v is an immediate successor of u, and the restriction function E on K ×F ×V such
that E(k, f, v) holds if and only if f ↾ k = v. Of course, by a sentence in Lω1,ω(τ1) we can
require that K is the standard ω and each of V and F are sets of functions.

If X is countable and F is also countable, the resulting structure has a Scott sentence µ.
Furthermore, if for every v ∈ Xn there exist infinitely many f ∈ F with f ↾ n = v, by
Theorem 3.4 of [Sou14] this structure is back and forth equivalent with the model where X
is countable and F is the set of eventually constant sequences.

Now using the τ -sentence φ we are able (in an expanded model N∗) to bound |X | = |KN∗ |
by κ and |V N∗ | by κω. Form τ ′ by adding a binary symbol M(·, ·) to τ1 ∪ τ2 and predicates
S(x, ·) for each τ -relation S(·).

Assert that the sets M(u, ·) for u ∈ V are disjoint and require that for each u ∈ V , the set
M(u, ·) (under the relations S(u, ·)) is a model of φ. Require further that the set R(u, ·) of
the immediate successors of u is also the set U(u, ·) of absolute indiscernibles of the model
M(u, ·) of φ. Since φ homogeneously characterizes κ, if N∗ |= φ∗, RN∗(u, ·) cannot be larger
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than κ so the number of immediate successors of u can not be more than κ. The resulting tree
has height ω and is ≤ κ-splitting. To prevent the first level V (0, ·) from growing arbitrarily
we require that V (0, ·) has only one element (the root).

The detailed axiomatization of this structure by a complete sentence of Lω1,ω and the proof
that it characterizes κω appear in [Sou14].

Theorem 3.2. Assume λ ≤ λω < κ < κω and φκ homogeneously characterizes κ. Then
there is a complete sentence φ∗κ that has maximal models in κ and κω, no maximal models
in any other cardinality, and no models larger than κω.

Proof. By Theorem 1.6, we can assume φκ has maximal models of type (κ, λ) for all λ ≤ κ.
Let φ∗κ be the sentence from Theorem 3.1. If for every u ∈ V , the set M(u, ·) is a maximal
model of φκ of type (κ, λ), then the resulting tree is λ-splitting and the associate model is
a maximal model of φ∗κ of size max{κ, λω} = κ.

Further, if for every u ∈ V , the set M(u, ·) is a maximal model of φκ of type (κ, κ), then
the resulting tree is κ-splitting and yields a maximal model of φ∗κ of size max{κ, κω} = κω.

Finally notice that for all µ < κ, if µω > κ, then µω = κω. So, we get maximal models only
in cardinality κ and in cardinality κω. �

Replacing the construction that characterized κω from [Sou14] with the construction that
characterized κℵα , α < ω1, from [Sou12] (cf. Theorem 3) one can prove the following
theorem.

Theorem 3.3. Assume α < ω1, λ ≤ λℵα < κ < κℵα and there is a sentence φκ that
homogeneously characterizes κ. Then there is a complete sentence φ∗κ that has maximal
models in κ and κℵα , no maximal models in any other cardinality, and no models larger
than κℵα .

The next theorem describes where JEP holds/fails in the examples of this section. Note
that the notion of strong embedding ≺K specified below, maybe different than elementary
substructure in the fragment generated by φ∗κ.

Let φκ be a sentence that homogeneously characterizes κ with P a set of absolute in-
discernibles and let φ∗κ be as in Theorem 3.1. Let K be the collection of models that
satisfy φ∗κ and let N0 ≺

K
N1 if N0 ⊂ N1 and for each u ∈ V , M(u, ·)N0 ∪ R(u, ·)N0 ≺

M(u, ·)N1 ∪ R(u, ·)N1 , where ≺ is understood as elementary substructure in the fragment
generated by φκ.

Theorem 3.4. If the models of φκ satisfy JEP(< κ), then the same is true for (K,≺K).

Proof. Let N0,N1 ∈ K and |N0|, |N1| < κ. It follows that the tree contained in either N0

or N1 must satisfy |V (0, ·)| = 1 and for each u ∈ V (n, ·), |M(u, ·)∪R(u, ·)| < κ. The goal is
to embed N0,N1 into a common N ∈ K.

First embed the root a0 of the tree in N0 and the root a1 of the tree in N1 into the
root of the tree in N , call it a. Since the models of φκ satisfy JEP(< κ), joint embed
M(a0, ·)N0 ∪R(a0, ·)N0 and M(a1, ·)N1 ∪R(a1, ·)N1 to a common modelM(a, ·)N ∪R(a, ·)N ,
say through embeddings f0, f1. If v ∈ R(a, ·)N and v /∈ range(f0)∪range(f1), then attach a
copy of (ℵ0)

ω with root v into N . If v ∈ range(f0)\range(f1), then embedM(f−1
0 (v), ·)N0 ∪

R(f−1
0 (v), ·)N0 into M(v, ·)N ∪ R(v, ·)N . Similarly work if v ∈ range(f1) \ range(f0). If

v ∈ range(f0) ∩ range(f1), then joint embed the models M(f−1
0 (v), ·)N0 ∪ R(f−1

0 (v), ·)N0

and M(f−1
1 (v), ·)N1 ∪ R(f−1

1 (v), ·)N1 into M(v, ·)N ∪ R(v, ·)N . Then repeat by induction
the same process for each u ∈ V (n, ·), and finally embed each f ∈ FN0 and f ∈ FN1 into
the corresponding branch in FN . The reader can verify that N0,N1 ≺

K
N . �
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Notice that disjoint-JEP fails for (K,≺K). One reason is that the root of the tree in N0

and the root of the tree in N1 must embed into the same element, namely the root of the
tree in N .

4. An example with maximal models in countably many cardinalities

In this section we construct a complete Lω1,ω-sentence that admits maximal models in
countably many cardinalities.

We adapt ideas from [Hjo02] and [Sou13] to characterize pairs of cardinals κ, 2κ. Combining
this result with our basic technique we are able to construct sentences with maximal models
in cardinalities 2λ, for all λ ≤ κ, where κ is a homogeneously characterizable cardinal; this
is interesting when κ < 2λ. The following version of Theorem 4.29 of [Sou13] establishes the
necessary transfer result.

Theorem 4.1. There is a complete Lω1,ω-sentence φ(X,Y ) such that if M |= φ(X,Y ) and
|X | = κ then |Y | ≤ 2κ; the maximum is attained.

Proof Sketch: Fix a set X and a binary relation on X which defines a dense linear order.
As in Section 4 of [Sou13], the key idea is the following condition crystallizes the property
of the meet function on 2X . Construct (via a generalized Fräıssé construction) a map f
from Y 2 to X such that for distinct8 a0, a1, a2 ∈ Y , if f(a0, a1) 6= f(a0, a2) then f(a1, a2) =
min{f(a0, a1), f(a0, a2)}. But if f(a0, a1) = f(a0, a2) then f(a1, a2) > f(a0, a1) = f(a0, a2).

The resulting structure has a Scott sentence φ′ in Lω1,ω such that if M |= φ′, |YM| ≤ 2|X
M|

and 2|X
M| is possible. Namely, the maximum is achieved if (X,<) has a <- cofinal sequence

of length κ.

Theorem 4.2. Suppose that ψ is a complete Lω1,ω-sentence that homogeneously charac-
terizes κ with absolute indiscernibles in the predicate P . Then there is a complete Lω1,ω-
sentence ψ′ that characterizes 2κ.

Furthermore for every λ ≤ κ, there exists a maximal model of ψ′ of size max{κ, 2λ}.

Proof. By Theorem 1.6, we can assume ψ has maximal models of type (κ, λ), for all λ ≤ κ.

Merge ψ with the complete sentence φ from Theorem 4.1 identifying X with P . Let ψ′ =
χψ,P,φ,X . By Fact 1.3 (1), ψ′ is a complete sentence.

Now supposeM is a maximal model of ψ of type (κ, λ). Linearly order PM so that (PM , <)
is a dense linear order with a λ-cofinal sequence. Then by Theorem 4.1 we get a maximal
model of ψ′ with cardinality max{κ, 2λ}. �

Exactly what this says about the cardinality of maximal models depends on the cardinal
arithmetic. We just give some sample applications of Theorem 4.2 with various choices of
the λ.

Theorem 4.3. Assume κ is a homogeneously characterizable cardinal and for simplicity let
2ℵ0 ≥ κ. Then there is a complete Lω1,ω-sentence φκ with maximal models in cardinalities
2λ, for all λ ≤ κ.

Theorem 4.4. Assume for simplicity that 2ℵ0 > ℵω. For each n ∈ ω, there is a complete
Lω1,ω-sentence φ

′
n with maximal models in cardinalities 2ℵ0 , 2ℵ1 , . . . , 2ℵn .

Theorem 4.5. Let (κi|i ≤ n) be an increasing sequence of cardinals such that cf(κi) >
ℵi. It is consistent that there is a complete sentence with maximal models in cardinalities
κ0, κ1, . . . , κn.

8For further restrictions see Definition 4.6 of [Sou13].
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Proof. By Easton’s Theorem, there is model of ZFC where 2ℵi = κi. Then apply Theorem
4.4. �

5. Conclusion

The examples from [Sou12] and [Sou14] have the maximal number of models in the cardinals
they characterize, namely κω and κℵα respectively. As a consequence, the sentence φ∗κ in
Theorem 3.2 has the maximal number of maximal models in κ and κω, and the sentence φ∗κ
in Theorem 3.3 has the maximal number of maximal models in κ and κℵα .

This motivates the following question.

Open Question 5.1. Is there a complete Lω1,ω-sentence φ which has at least one maximal
model in an uncountable cardinal κ, but less than 2κ many models?

In particular, a negative answer to Open Question 5.1 implies a negative answer to the
following Open Question 5.2, which was asked in [BKL14] and which in return relates to old
conjectures of S. Shelah.

Open Question 5.2 ([BKL14]). Is there a complete Lω1,ω-sentence which characterizes an
uncountable cardinal κ and it has less than 2κ many models in cardinality κ?

Finally, we want to stress the differences in techniques of this paper from [BKS15]. The main
idea behind [BKS15] is certain combinatorial properties of bipartite graphs. Here the main
construction is a refinement of the construction from [Kni77] combined with repeated use
of sets of absolute indiscernibles. All the examples presented here are complete sentences
with maximal models in more than one cardinality, which do not have arbitrarily large
models. In [BKS15] the examples are incomplete sentences with maximal models in more
than one cardinality, which do have arbitrary large models. The following question arises
naturally: Find examples of complete Lω1,ω-sentences with maximal models in more than
one cardinality, which also have arbitrarily large models. Also, in [BKS15], the JEP- and
AP-spectra of the sentences presented there are precisely calculated. The JEP- and AP-
spectra of our examples seem harder to calculate and the question remains open.
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