Strongly minimal Steiner Systems: Model Theory, Universal Algebra, Combinatorics University of Chicago logic seminar

> John T. Baldwin University of Illinois at Chicago

> > Nov 15, 2021

John T. Baldwin University of Illinois at Ch Strongly minimal Steiner Systems: Model

Nov 15, 2021 1 / 48

Two Goals

- Introduce some of the wide variety of strongly minimal 'Hrushovski structures', especially Steiner systems.
 - Summarise connections with universal algebra and 'coordinatization'.
 - Obscribe applications of variants of concepts from the study of finite Steiner systems to the infinite.
- Gesture at the proof that many (most??) strongly minimal sets given by an *ab initio* Hrushovski construction do not admit elimination of imaginaries and have very limited definable closure

- 2 Quasi-groups and Steiner systems
- 3 Coordinatization by varieties of algebras
- 4 Groups, definable closure, and elimination of imaginaries
- 5 The General Construction
- The structure of acl(X)
- 7 Applications to Combinatorics
- 8 Diversity and Classification

Joint work with Vitkor Verbovskiy Thanks to Joel Berman, Gianluca Paolini,Omer Mermelstein, and Viktor Verbovskiy.

Strongly Minimal Theories

イロト イヨト イヨト イヨト

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition

a is in the algebraic closure of *B* ($a \in acl(B)$) if for some $\phi(x, \mathbf{b})$: $\models \phi(a, \mathbf{b})$ with $\mathbf{b} \in B$ and $\phi(x, \mathbf{b})$ has only finitely many solutions.

Theorem

If T is strongly minimal algebraic closure defines matroid/combinatorial geometry.

< 同 > < 三 > < 三 >

Combinatorial Geometry: Matroids

The abstract theory of dimension: vector spaces/fields etc.

Definition

A closure system is a set G together with a dependence relation

$${\it cl}:{\cal P}({\it G})
ightarrow{\cal P}({\it G})$$

satisfying the following axioms.

A1.
$$cl(X) = \bigcup \{ cl(X') : X' \subseteq_{fin} X \}$$

A2. $X \subseteq cl(X)$
A3. $cl(cl(X)) = cl(X)$

(*G*, cl) is pregeometry if in addition: **A4.** If $a \in cl(Xb)$ and $a \notin cl(X)$, then $b \in cl(Xa)$.

If cl(x) = x the structure is called a geometry.

Usually this acl pre-geometry is not definable.

The trichotomy

Zilber Conjecture

The acl-geometry of every model of a strongly minimal first order theory is

- disintegrated (lattice of subspaces distributive)
- vector space-like (lattice of subspaces modular)
- 'bi-interpretable' with an algebraically closed field (non-locally modular)

Zilber: geometries \leftrightarrow canonical structures

Hrushovski gave a method of constructing strongly minimal sets that have flat geometries and admit no associative binary function.

There is no apparent canonical structure - only a (very flexible) method.

Zariski Geometries aim at canonical structures with more restrictions.

The diversity of flat strongly minimal sets

The 'Hrushovski construction' actually has 5 parameters:

Describing Hrushovski constructions

- σ : vocabulary
- **2** L_0 : A $\forall \exists$ axiomatized collection of finite σ -structures.
- **③** ϵ : A flat (hence submodular) function from L_0^* to \mathbb{Z} .
- $L_0: L_0^*$ defined using ϵ .
- *μ*: a function bounding the number of 0-primitive extensions of an
 A ∈ *L*₀ are in *L*_μ.

To organize the classification of the theories each choice of a class **U** of μ yields a collection of T_{μ} with similar properties.

Quasi-groups and Steiner systems

<ロ> <回> <回> <回> < 回</p>

Definitions

A Steiner system with parameters t, k, n written S(t, k, n) is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block.

We always take t = 2 and allow infinite *n*.

Some History

For which n's does an S(2, k, n) exist? for k = 3

Necessity: $n \equiv 1 \text{ or } 3 \pmod{6}$ is necessary. Rev. T.P. Kirkman (1847)

Some History

```
For which n's does an S(2, k, n) exist? for k = 3
```

```
Necessity:

n \equiv 1 \text{ or } 3 \pmod{6} is necessary.

Rev. T.P. Kirkman (1847)
```

```
Sufficiency:

n \equiv 1 \text{ or } 3 \pmod{6} is sufficient.

(Bose 6n + 3, 1939) Skolem (6n + 1, 1958)
```

Linear Spaces

Definition: linear space

The vocabulary contains a single ternary predicate R, interpreted as collinearity. A linear space satisfies

- *R* is a predicate of sets (hypergraph)
- 2 Two points determine a line

 α is the iso type of $(\{a, b\}, \{c\})$ where R(a, b, c).

Groupoids and quasi-groups

- O A groupoid (magma) is a set A with binary relation ○.
- A quasigroup is a groupoid satisfying left and right cancelation (Latin Square)
- A Steiner quasigroup satisfies
 - $x \circ x = x, x \circ y = y \circ x, x \circ (x \circ y) = y.$

イロト イポト イラト イラト

existentially closed 3-Steiner Systems

Barbina-Casanovas

Consider the class \tilde{K} of finite structures (A, R) which are the graphs of a Steiner quasigroup.

- \tilde{K} has ap and jep and thus a limit theory T_{sq}^* .
- 2 T^{*}_{sq} has
 - quantifier elimination
 - 2^{ℵ₀} 3-types;
 - the generic model is prime and locally finite;
 - T_{sq}^* has TP_2 and $NSOP_1$.

Omitting classes of Steiner quasigroups

Horsley- Webb

Consider the class \tilde{K} of finite structures (A, *) which are Steiner quasigroups that omit a family F of finite quasigroups (such that there exists an A which neither extends nor embeds in any member of F).

- \tilde{K} has ap and jep and thus
- 2 \tilde{K} has a countable locally finite generic model.

They have a rather complex notion of subsystem but for quasigroups (Q, *) it is just subalgebra.

Hrushovki's basic construction vs Steiner

Example

- σ has a single ternary relation *R*;
- 2 L₀: All finite σ-structures finite linear spaces
- $\epsilon(A)$ is |A| r(A), where r(A) is the number of tuples realizing R. $\delta(A) = |A| - \sum_{\ell \in L(A)} (|\ell| - 2).$

3
$$A \in L_0^*$$
 if $\epsilon(B) \ge 0$ for all $B \subseteq A$.
Replace ϵ by δ .

5 U is those μ with $\mu(A/B) \ge \epsilon(B)$. $\mu(\alpha) = q - 2$ gives line length 2.

Strongly minimal linear spaces I

Fact

Suppose (M, R) is a strongly minimal linear space where all lines have at least 3 points. There can be no infinite lines.

An easy compactness argument establishes

Corollary

If (M, R) is a strongly minimal linear system, for some k, all lines have length at most k.

Specific Strongly minimal Steiner Systems

Definition

A Steiner (2, k, v)-system is a linear system with v points such that each line has k points.

Theorem (Baldwin-Paolini)[BP20]

For each $k \ge 3$, there are an uncountable family T_{μ} of strongly minimal $(2, k, \infty)$ Steiner-systems.

There is no infinite group definable in any T_{μ} . More strongly, Associativity is forbidden.

< 同 > < 回 > < 回 > -

Coordinatization by varieties of algebras

< ロ > < 回 > < 回 > < 回 > < 回</p>

Coordinatizing Steiner Systems

Weakly coordinatized

A collection of algebras V '(weakly) coordinatizes' a class S of (2, k)-Steiner systems if

- Each algebra in V definably expands to a member of S
- The universe of each member of S is the underlying system of some (perhaps many) algebras in V.

Coordinatized

A collection of algebras V definably coordinatizes a class S of k-Steiner systems if in addition the algebra operation is definable in the Steiner system.

(*) * (*) *)

Coordinatizing Steiner triple systems

Example

A Steiner quasigroup (squag) is a groupoid (one binary function) which satisfies the equations:

$$x \circ x = x,$$
 $x \circ y = y \circ x,$ $x \circ (x \circ y) = y$

- + ∃ →

Coordinatizing Steiner triple systems

Example

A Steiner quasigroup (squag) is a groupoid (one binary function) which satisfies the equations:

$$x \circ x = x,$$
 $x \circ y = y \circ x,$ $x \circ (x \circ y) = y$

Steiner triple systems and Steiner quasigroups are biinterpretable. Proof: For distinct *a*, *b*, *c*:

R(a, b, c) if and only if a * b = c

Theorem

Every strongly minimal Steiner (2,3)-system given by T_{μ} with $\mu \in \mathcal{U}$ is coordinatized by the theory of a Steiner quasigroup definable in the system.

э

2 VARIABLE IDENTITIES

Definition

A variety is binary if all its equations are 2 variable identities: [Eva82]

Definition

Given a (near)field $(F, +, \cdot, -, 0, 1)$ of cardinality $q = p^n$ and an element $a \in F$, define a multiplication * on F by

$$x * y = y + (x - y)a.$$

An algebra (A, *) satisfying the 2-variable identities of (F, *) is a block algebra over (F, *)

A B > A B >

Coordinatizing Steiner Systems

Key fact: weak coordinatization [Ste64, Eva76]

If V is a variety of binary, idempotent algebras and each block of a Steiner system S admits an algebra from V then so does S.

Definition [Pad72]

An (r, k) variety is one in which every *r*-generated algebra has cardinality *k* and is freely generated by every *n*-elements.

Consequently

If V is a variety of binary, idempotent algebras such that each 2-generated algebra has cardinality k, each $A \in V$ determines a Steiner k-system.

(The 2-generated subalgebras.)

And each Steiner *k*-system admits a weak coordinatization.

Can this coordinatization be definable in the strongly minimal (M, R)

Forcing a prime power

Fact (Ganter-Werner et al)

- [S61, Grä63] The only (r, k) varieties are those where r = 0, k = 0; r = k; r = 2, $k = q = p^n$, for a prime p and a natural number n; r = 3, k = 4.
- [GW75, GW80] For each q, the class of q-Steiner systems is coordinatized by a (2, q)-variety of block algebras

Proof: As, if an algebra *A* is freely generated by every 2-element subset, it is immediate that its automorphism group is strictly 2-transitive. And as [\pm 61] points out an argument of Burnside [Bur97], [Rob82, Theorem 7.3.1] shows this implies that |*A*| is a prime power.

Are there any strongly minimal quasigroups (block algebras)?

・ 同 ト ・ ヨ ト ・ ヨ ト

Definability

Definability Theorem

Suppose q is a prime power and $\mu(\alpha) = q - 2$. Then

• Each $(M, R) \models T_{\mu}$ is *coordinatizable* by an algebra $(Q_M, *)$ in V.

- 2 R(x, y, z) is definable in $(Q_M, *)$ by the formula $\theta_F(x, y, z)$ that is the disjunction of the terms $z = f_i(x, y)$ where the $f_i(x, y)$ list the terms generating $F = F_2(V)$. Thus, (M, R) is definable in $(Q_M, *)$.
- There is an (incomplete) first order theory \check{T}_{μ} in the vocabulary $\{*\}$ such that each model of T_{μ} is coordinatized by a model of \check{T}_{μ} .

Proof

and 2) are immediate from the general coordinatization theorem.

3) Let $\Delta_F(x, y, f_1(x, y), \dots f_k(x, y))$ be the quantifier-free diagram of *F*. By 2-transitivity of F_2 , any *x*, *y* does. Axiomatize \check{T}_{μ} by:

 $Eq(V) \cup \{(\forall x, y) \Delta_F(x, y, f_1(x, y), \dots f_k(x, y))\} \cup \{\phi \upharpoonright (R/\theta_F) : \phi \in T_\mu\}$

Non-definability

Theorem: (B) Non-definability in (M, R)

If $\mu(\alpha) = k > 1$ this coordinatization is not definable in (M, R).

Proof

Without loss of generality, let (M, R) be the countable generic and suppose it is coordinatized by $(Q_M, *)$.

Let $\{a, b\}$ be a strong substructure of (M, R) (i.e. $d(\{a, b\} = 2)$ and let c_1, \ldots, c_k fill out the line through a, b to a structure A. By genericity there is a strong embedding of A into M.

Then all triples *a*, *b*, *c_i* realize the same quantifier free *R*-type and $A \le M$ implies for any permutation ν of *k* fixing 0, 1, for $2 \le i < k$, there is an automorphism of (M, R) fixing *a*, *b* and taking *c_i* to *c_{\nu(i)}*. Thus, a * b cannot be definable in (M, R).

Groups, definable closure, and elimination of imaginaries

This section is about arbitrary strongly minimal theories not just Hrushovski constructions.

→ E → < E</p>

Baizhanov's Question

Question (1990's)

Does every strongly minimal set that admits elimination of imaginaries interpret an algebraically closed field?

Partial Answer

Infinite language: No! Verbovskiy

Inite language:

- Yes! for one ternary relation: constructions of [Hru93, BP20].
- A program for other flat geometries

Group Action and Definable Closure

Fix *I*, a finite set of independent points in the model $M \models T$.

2 groups

Let $G_{\{I\}}$ be the set of automorphisms of *M* that fix *I* setwise and G_I be the set of automorphisms of *M* that fix *I* pointwise.

Definition

- $dcl^*(I)$ consists of those elements that are fixed by G_I but not by G_X for any $X \subsetneq I$.
- 2 The symmetric definable closure of *I*, sdcl*(I), consists of those elements that are fixed by *G*_{*I*} but not by *G*_{{*X*}} for any *X* ⊆ *I*.

 $sdcl^*(I) = \emptyset$ implies T does not admit elimination of imaginaries.

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite Coding

Definition

A finite set $F = \{\overline{a}_1, \dots, \overline{a}_k\}$ of tuples from M is said to be coded by $S = \{s_1, \dots, s_n\} \subset M$ over A if

 $\sigma(F) = F \Leftrightarrow \sigma | S = \mathrm{id}_S \text{ for any } \sigma \in \mathrm{aut}(M/A).$

We say T = Th(M) has the finite set property if every finite set of tuples F is coded by some set S over \emptyset .

If there exists *I* with $dcl^*(I) = \emptyset$, *T* does not have the finite set property.

dcl* and elimination of imaginaries

Fact: Elimination of imaginaries

A theory *T* admits *elimination of imaginaries* if its models are closed under definable quotients.

ACF: yes; locally modular: no

Fact

If T admits weak elimination of imaginaries then T satisfies the finite set property if and only T admits elimination of imaginaries.

Since every strongly minimal theory with $acl(\emptyset)$ infinite has weak elimination of imaginaries. [Pil99], we have

If such a strongly minimal T has only essentially unary definable binary functions it does not admit elimination of imaginaries.

・ 同 ト ・ ヨ ト ・ ヨ ト

No definable binary function/elimination of imaginaries: Sufficient

Lemma

Let $I = \{a_0, a_1\}$ be an independent set with $I \le M$ and M is a generic model of a strongly minimal theory.

• If $sdcl^*(I) = \emptyset$ then I is not finitely coded.

If dcl*(I) = Ø then I is not finitely coded and there is no parameter free definable binary function.

'Non-trivial definable functions'

Definition

Let *T* be a strongly minimal theory. function $f(x_0 \dots x_{n-1})$ is called *essentially unary* if there is an \emptyset -definable function g(u) such that for some *i*, for all but a finite number of $c \in M$, and all but a set of Morley rank < n of tuples $\mathbf{b} \in M^n$, $f(b_0 \dots b_{i-1}, c, b_i \dots b_{n-1}) = g(c)$.

Lemma

For a strongly minimal T the following conditions are equivalent:

- for any n > 1 and any independent set $I = \{a_1, a_2, \dots, a_n\}$, $dcl^*(I) = \emptyset$;
- 2 every \emptyset -definable *n*-ary function (n > 0) is essentially unary;
- **③** for each *n* > 1 there is no \emptyset -definable truly *n*-ary function in any *M* ⊨ *T*.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

The General Construction

This section applies to the original Hrushovski context (one ternary function) and to *q*-Steiner systems.

→ Ξ →

Image: A math

Amalgamation and Generic model

We study classes K_0 of finite structures Awith $\delta(A') \ge 0$, for every $A' \subset A$. $d_M(A/B) = \min\{\delta(A'/B) : A \subseteq A' \subset M\}.$

 $A \le M$ if $\delta(A) = d(A)$. When (\mathbf{K}_0, \le) has joint embedding and amalgamation there is unique countable generic.

The main result: Classifying dcl [BV21]

Theorem

Let T_{μ} be a strongly minimal theory as in Hrushovski's original paper. I.e. $\mu \in \mathcal{U} = \{\mu : \mu(A/B) \ge \delta(B)\}$). Let $I = \{a_1, \ldots, a_v\}$ be a tuple of independent points with $v \ge 2$.

 G_I If T_μ triples

$$\mathcal{U} \supseteq \mathcal{T} = \{\mu : \mu(A/B) \ge 3\}$$

then $dcl^*(I) = \emptyset$ $dcl(I) = \bigcup_{a \in I} dcl(a)$ and every definable function is essentially unary (Definition 28).

$$\begin{array}{l} G_{\{l\}} & \text{In any case } \mathrm{sdcl}^*(\mathrm{I}) = \emptyset \\ & \mathrm{sdcl}(\mathrm{I}) = \bigcup_{a \in \mathrm{I}} \mathrm{sdcl}(a) \end{array}$$

and there are no \emptyset -definable symmetric (value does not depend on order of the arguments) truly *v*-ary function.

In both cases T_{μ} does not admit elimination of imaginaries and the algebraic closure geometry is not disintegrated.

Primitive Extensions and Good Pairs

Definition

- Let $A, B, C \in \mathbf{K}_0$.
- **(D**) C is a 0-primitive extension of A if C is minimal with $\delta(C/A) = 0$.

② C is good over $B \subseteq A$ if B is minimal contained in A such that C is a 0-primitive extension of B. We call such a B a base.

α is the isomorphism type of ({*a*, *b*}, {*c*}),

The Amalgamation

<ロ> <回> <回> <回> < 回</p>

The Amalgamation

문어 세종

Overview of the analysis of acl(I)

Realization of good pairs

- A good pair C/B well-placed by A in a model M, if $B \subseteq A \leq M$ and C is 0-primitive over X.
- 2 For any good pair (C/B), $\chi_M(B, C)$ is the maximal number of disjoint copies of *C* over *B* appearing in *M*.
- So For $\mu \in \mathcal{U}$, K_{μ} is the collection of $M \in K_0$ such that $\chi_M(A, B) \le \mu(A, B)$ for every good pair (A, B).

If C/B is well-placed by $A \leq M$, $\chi_M(B, C) = \mu(B/C)$

The structure of acl(X)

G-decomposable sets

Definition

Let *G* be G_l or $G_{\{l\}}$, $l \leq M$ independent. $\mathcal{A} \subseteq M$ is *G*-decomposable if

- $\bigcirc \mathcal{A} \leq M$
- **2** \mathcal{A} is *G*-invariant

Fact

There are *G*-decomposable sets. Namely for any finite *U* with d(U/I) = 0,

 $\mathcal{A}=icl(I\cup G(U))$

・ 同 ト ・ ヨ ト ・ ヨ ト

Constructing a G-decomposition

Linear Decomposition: Each annulus is primitive over its predecessors.

Constructing a G-decomposition

Linear Decomposition: Each annulus is primitive over its predecessors.

Tree Decomposition: Each pie piece is primitive over previous level.

Prove by induction on levels that $dcl^*(I) = \emptyset$. $(sdcl^*(I) = \emptyset)$

John T. Baldwin University of Illinois at ChStrongly minimal Steiner Systems: Model

A non-trivial definable binary function

In the diagrams, we represent a triple satisfying R by a triangle.

Pasch Configuration

Definition

Let X be finite partial Steiner system. A Steiner system (M, R) is *anti-X* if there no embedding of X into M.

Figure: Pasch configuration: \mathcal{P}

John T. Baldwin University of Illinois at Ch Strongly minimal Steiner Systems: Model

Nov 15, 2021 37 / 48

'few' Pasch and no Pasch

Fact

If there is an infinite group (associative binary operation) interpretable in a structure *M* then there is an instance of the Pasch diagram where a point *c* is on a line through *ab* if $c \in acl(a, b)$. No such diagram with points having positive dimension is possible in a strongly minimal set with a flat geometry.

But since $\delta(\mathcal{P}) = 2$ there will be copies of \mathcal{P} in our Steiner systems as constructed. But,

Theorem

The subclass of K_0^P of those finite structures with 3-element lines that omit the Pasch configuration satisfies amalgamation. Thus, there are strongly minimal anti-Pasch Steiner triple systems.

Without the strongly minimal, this is proved in [HW21].

∞ -sparse configurations

[CGGW10, page 116] prove there is are continuum many countable ∞ -sparse configurations.

Definition

A Steiner triple system (M, R) is ∞ -sparse if there is no $A \subseteq M$ with $|A| \ge 6$ and $\delta(A) = 2$.

Definition

Let K_0^{sp} be the subclass of K^* (linear spaces) such that for every $B \subseteq A$:

$$(\#) |B| > 1 \rightarrow \delta(B) > 1 \& |B| > 3 \rightarrow \delta(B) > 2.$$

Theorem

The system ($\mathbf{K}_{0}^{sp}, \leq$) has \leq -amalgamation. And so for any $\mu \in \mathcal{U}$, \mathbf{K}_{μ}^{sp} has \leq -amalgamation. So there are $2^{\otimes 0}$ strongly minimal sparse 3-Steiner systems of every infinite cardinality.

Further Combinatorial Applications

Unlike many construction in infinite combinatorics these methods give a family of infinite structures with similar properties [Bal21a, Bal21b]. Among the properties investigated are:

- cycle graphs in 3-Steiner systems [CW12] generalized to paths in Steiner k-system;
- preventing or demanding 2-transitivity

Diversity and Classification

(a)

Examples

Strongly minimal theories with non-locally modular algebraic closure

- the Hrushovski (Steiner) examples 2^{ℵ0} theories of strongly minimal Steiner systems (M, R) with
 - no Ø-definable binary function. (i.e. triplable)
 - Some definable functions (examples in [BV21])
- **2**^{\aleph_0} theories of strongly minimal quasigroups (M, R, *) + a 3-Steiner example of Hrushovski
- strongly minimal Steiner systems with combinatorial interesting properties
- Non-Desarguesian projective planes definably coordinatized by ternary fields [Bal95]
- 2-ample but not 3-ample sm sets (not flat) [MT19]
- strongly minimal eliminates imaginaries (flat) INFINITE vocabulary) (Verbovskiy)

Classifying the examples

discrete

- 2 non-trivial but no binary function
- on non-trivial but no commutative binary function
- Non-Desarguesian projective planes definably coordinatized by ternary fields [Bal95]

References I

John T. Baldwin.

Some projective planes of Lenz Barlotti class I. *Proceedings of the A.M.S.*, 123:251–256, 1995.

John T. Baldwin.

Strongly minimal Steiner Systems II: Coordinatizaton and Strongly Minimal Quasigroups.

Math arXiv:2106.13704, 2021.

John T. Baldwin.

Strongly minimal Steiner Systems III: Path Graphs and Sparse configurations.

in preparation, 2021.

References II

John T. Baldwin and G. Paolini.
 Strongly Minimal Steiner Systems I.
 Journal of Symbolic Logic, pages 1–15, 2020.
 published online oct 22, 2020 arXiv:1903.03541.

W. Burnside. *Groups of Finite Order*. Cambridge, 1897.

John T. Baldwin and V. Verbovskiy. Towards a finer classification of strongly minimal sets. preprint: Math Arxiv:2106.15567, 2021.

K. M. Chicot, M. J. Grannell, T. S. Griggs, and B. S. Webb. On sparse countably infinite Steiner triple systems. *J. Combin. Des.*, 18(2):115–122, 2010.

References III

P. J. Cameron and B. S. Webb.
 Perfect countably infinite Steiner triple systems.
 Australas. J. Combin., 54:273–278, 2012.

Trevor Evans.

Universal Algebra and Euler's Officer Problem. *The American Mathematical Monthly*, 86(6):466–473, 1976.

Trevor Evans.

Finite representations of two-variable identities or why are finite fields important in combinatorics?

In *Algebraic and geometric combinatorics*, volume 65 of *North-Holland Math. Stud.*, pages 135–141. North-Holland, Amsterdam, 1982.

References IV

G. Grätzer.

A theorem on two transitive permutation groups with application to universal algebras.

Fundamenta Mathematica, 53, 1963.

- Bernhard Ganter and Heinrich Werner. Equational classes of Steiner systems. *Algebra Universalis*, 5:125–140, 1975.
- Bernhard Ganter and Heinrich Werner.
 Co-ordinatizing Steiner systems.
 In C.C. Lindner and A. Rosa, editors, *Topics on Steiner Systems*, pages 3–24. North Holland, 1980.

E. Hrushovski.

A new strongly minimal set.

Annals of Pure and Applied Logic, 62:147–166, 1993.

References V

D. Horsley and B. Webb.

Countable homogeneous steiner triple systems avoiding specified subsystems.

Journal of Combinatorial Theory, Series A, 180, 2021. https://www.sciencedirect.com/science/article/ pii/S0097316521000339.

I. Muller and K. Tent.
 Building-like geometries of finite morley rank.
 J. Eur. Math. Soc., 21:3739–3757, 2019.
 DOI: 10.4171/JEMS/912.

R. Padmanabhan.

Characterization of a class of groupoids. *Algebra Universalis*, 1:374–382, 1971/72.

References VI

Anand Pillay.

Model theory of algebraically closed fields.

In E. Bouscaren, editor, *Model Theory and Algebraic Geometry : An Introduction to E. Hrushovski's Proof of the Geometric Mordell-Lang Conjecture*, pages 61–834. Springer-Verlag, 1999.

D.J.S. Robinson.

A Course in the Theory of Groups. Springer-Verlag, 1982.

S. Świerczkowski.

Algebras which are independently generated by every *n* elements. *Fund. Math.*, 49:93–104, 1960/1961.

Sherman K Stein.

Homogeneous quasigroups.

Pacific Journal of Mathematics, 14:1091–1102, 1964.