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Two Goals

1 Introduce some of the wide variety of strongly minimal ‘Hrushovski
structures’, especially Steiner systems.

1 Summarise connections with universal algebra and
‘coordinatization’.

2 Describe applications of variants of concepts from the study of finite
Steiner systems to the infinite.

2 Gesture at the proof that many (most??) strongly minimal sets
given by an ab initio Hrushovski construction do not admit
elimination of imaginaries and have very limited definable closure
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Joint work with Vitkor Verbovskiy
Thanks to Joel Berman, Gianluca Paolini,Omer Mermelstein, and
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Strongly Minimal Theories
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STRONGLY MINIMAL

Definition
T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition
a is in the algebraic closure of B (a ∈ acl(B)) if for some φ(x ,b):
|= φ(a,b) with b ∈ B and φ(x ,b) has only finitely many solutions.

Theorem
If T is strongly minimal algebraic closure defines matroid/combinatorial
geometry.
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Combinatorial Geometry: Matroids
The abstract theory of dimension: vector spaces/fields etc.

Definition
A closure system is a set G together with a dependence relation

cl : P(G)→ P(G)

satisfying the following axioms.
A1. cl(X ) =

⋃
{cl(X ′) : X ′ ⊆fin X}

A2. X ⊆ cl(X )
A3. cl(cl(X )) = cl(X )

(G, cl) is pregeometry if in addition:
A4. If a ∈ cl(Xb) and a 6∈ cl(X ), then b ∈ cl(Xa).

If cl(x) = x the structure is called a geometry.

Usually this acl pre-geometry is not definable.
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The trichotomy

Zilber Conjecture
The acl-geometry of every model of a strongly minimal first order
theory is

1 disintegrated (lattice of subspaces distributive)
2 vector space-like (lattice of subspaces modular)
3 ‘bi-interpretable’ with an algebraically closed field (non-locally

modular)

Zilber: geometries↔ canonical structures

Hrushovski gave a method of constructing strongly minimal sets that
have flat geometries and admit no associative binary function.

There is no apparent canonical structure - only a (very flexible)
method.
Zariski Geometries aim at canonical structures with more restrictions.
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The diversity of flat strongly minimal sets

The ‘Hrushovski construction’ actually has 5 parameters:

Describing Hrushovski constructions
1 σ: vocabulary
2 L0: A ∀∃ axiomatized collection of finite σ-structures.
3 ε: A flat (hence submodular) function from L∗0 to Z.
4 L0: L∗0 defined using ε.
5 µ: a function bounding the number of 0-primitive extensions of an

A ∈ L0 are in Lµ.

To organize the classification of the theories each choice of a class U
of µ yields a collection of Tµ with similar properties.
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Quasi-groups and Steiner systems
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Definitions

A Steiner system with parameters t , k ,n written S(t , k ,n) is an
n-element set S together with a set of k-element subsets of S (called
blocks) with the property that each t-element subset of S is contained
in exactly one block.

We always take t = 2 and allow infinite n.
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Some History

For which n’s does an S(2, k ,n) exist?
for k = 3

Necessity:
n ≡ 1 or 3 (mod 6) is necessary.
Rev. T.P. Kirkman (1847)

Sufficiency:
n ≡ 1 or 3 (mod 6) is sufficient.
(Bose 6n + 3, 1939) Skolem ( 6n + 1, 1958)
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Linear Spaces

Definition: linear space
The vocabulary contains a single ternary predicate R,
interpreted as collinearity. A linear space satisfies

1 R is a predicate of sets (hypergraph)
2 Two points determine a line

α is the iso type of ({a,b}, {c}) where R(a,b, c).

Groupoids and quasi-groups
1 A groupoid (magma) is a set A with binary relation ◦.
2 A quasigroup is a groupoid satisfying left and right cancelation

(Latin Square)
3 A Steiner quasigroup satisfies

x ◦ x = x , x ◦ y = y ◦ x , x ◦ (x ◦ y) = y .
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existentially closed 3-Steiner Systems

Barbina-Casanovas
Consider the class K̃ of finite structures (A,R) which are
the graphs of a Steiner quasigroup.

1 K̃ has ap and jep and thus a limit theory T ∗sq.
2 T ∗sq has

1 quantifier elimination
2 2ℵ0 3-types;
3 the generic model is prime and locally finite;
4 T ∗sq has TP2 and NSOP1.
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Omitting classes of Steiner quasigroups

Horsley- Webb

Consider the class K̃ of finite structures (A, ∗) which are
Steiner quasigroups that omit a family F of finite quasigroups (such
that there exists an A which neither extends nor embeds in any
member of F ).

1 K̃ has ap and jep and thus
2 K̃ has a countable locally finite generic model.

They have a rather complex notion of subsystem but for quasigroups
(Q, ∗) it is just subalgebra.
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Hrushovki’s basic construction vs Steiner

Example
1 σ has a single ternary relation R;
2 L0: All finite σ-structures

finite linear spaces
3 ε(A) is |A| − r(A), where r(A) is the number of tuples realizing R.
δ(A) = |A| −

∑
`∈L(A)(|`| − 2).

4 A ∈ L∗0 if ε(B) ≥ 0 for all B ⊆ A.
Replace ε by δ.

5 U is those µ with µ(A/B) ≥ ε(B).
µ(α) = q − 2 gives line length 2.
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Strongly minimal linear spaces I

Fact
Suppose (M,R) is a strongly minimal linear space where all lines have
at least 3 points. There can be no infinite lines.

An easy compactness argument establishes

Corollary
If (M,R) is a strongly minimal linear system, for some k , all lines have
length at most k .
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Specific Strongly minimal Steiner Systems

Definition
A Steiner (2, k , v)-system is a linear system with v points such that
each line has k points.

Theorem (Baldwin-Paolini)[BP20]
For each k ≥ 3, there are an uncountable family Tµ of strongly minimal
(2, k ,∞) Steiner-systems.

There is no infinite group definable in any Tµ. More strongly,
Associativity is forbidden.
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Coordinatization by varieties of algebras
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Coordinatizing Steiner Systems

Weakly coordinatized
A collection of algebras V ‘(weakly) coordinatizes’ a class S of
(2, k)-Steiner systems if

1 Each algebra in V definably expands to a member of S
2 The universe of each member of S is the underlying system

of some (perhaps many) algebras in V .

Coordinatized
A collection of algebras V definably coordinatizes a class S of
k -Steiner systems if
in addition the algebra operation is definable in the Steiner system.
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Coordinatizing Steiner triple systems

Example
A Steiner quasigroup (squag) is a groupoid (one binary function) which
satisfies the equations:

x ◦ x = x , x ◦ y = y ◦ x , x ◦ (x ◦ y) = y .

Steiner triple systems and Steiner quasigroups are biinterpretable.
Proof: For distinct a,b, c:

R(a,b, c) if and only if a ∗ b = c

Theorem
Every strongly minimal Steiner (2,3)-system given by Tµ with µ ∈ U is
coordinatized by the theory of a Steiner quasigroup definable in the
system.
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2 VARIABLE IDENTITIES

Definition
A variety is binary if all its equations are 2 variable identities: [Eva82]

Definition
Given a (near)field (F ,+, ·,−,0,1) of cardinality q = pn and an
element a ∈ F , define a multiplication ∗ on F by

x ∗ y = y + (x − y)a.

An algebra (A, ∗) satisfying the 2-variable identities of (F , ∗) is a
block algebra over (F , ∗)
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Coordinatizing Steiner Systems
Key fact: weak coordinatization [Ste64, Eva76]
If V is a variety of binary, idempotent algebras and each block of a
Steiner system S admits an algebra from V then so does S.

Definition [Pad72]
An (r , k) variety is one in which every r -generated algebra has
cardinality k and is freely generated by every n-elements.

Consequently
If V is a variety of binary, idempotent algebras such that each
2-generated algebra has cardinality k , each A ∈ V determines a
Steiner k -system.
(The 2-generated subalgebras.)
And each Steiner k -system admits a weak coordinatization.

Can this coordinatization be definable in the strongly minimal (M,R)?
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Forcing a prime power

Fact (Ganter-Werner et al)
1 [Ś61, Grä63] The only (r , k) varieties are those where r = 0,

k = 0; r = k ; r = 2, k = q = pn, for a prime p and a natural
number n; r = 3, k = 4.

2 [GW75, GW80] For each q, the class of q-Steiner systems is
coordinatized by a (2,q)-variety of block algebras

Proof: As, if an algebra A is freely generated by every 2-element
subset, it is immediate that its automorphism group is strictly
2-transitive. And as [Ś61] points out an argument of Burnside [Bur97],
[Rob82, Theorem 7.3.1] shows this implies that |A| is a prime power.

Are there any strongly minimal quasigroups (block algebras)?
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Definability
Definability Theorem
Suppose q is a prime power and µ(α) = q − 2. Then

1 Each (M,R) |= Tµ is coordinatizable by an algebra (QM , ∗) in V .
2 R(x , y , z) is definable in (QM , ∗) by the formula θF (x , y , z) that is

the disjunction of the terms z = fi(x , y) where the fi(x , y) list the
terms generating F = F2(V ). Thus, (M,R) is definable in (QM , ∗).

3 There is an (incomplete) first order theory Ťµ in the vocabulary {∗}
such that each model of Tµ is coordinatized by a model of Ťµ.

Proof
1 1) and 2)are immediate from the general coordinatization theorem.
2 3) Let ∆F (x , y , f1(x , y), . . . fk (x , y)) be the quantifier-free diagram

of F . By 2-transitivity of F2 , any x , y does. Axiomatize Ťµ by:

Eq(V )∪{(∀x , y)∆F (x , y , f1(x , y), . . . fk (x , y))}∪{φ�(R/θF ) : φ ∈ Tµ}
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Non-definability

Theorem: (B) Non-definability in (M,R)

If µ(α) = k > 1 this coordinatization is not definable in (M,R).

Proof
Without loss of generality, let (M,R) be the countable generic and
suppose it is coordinatized by (QM , ∗).
Let {a,b} be a strong substructure of (M,R) (i.e. d({a,b} = 2) and let
c1, . . . ck fill out the line through a,b to a structure A. By genericity
there is a strong embedding of A into M.
Then all triples a,b, ci realize the same quantifier free R-type and
A ≤ M implies for any permutation ν of k fixing 0,1, for 2 ≤ i < k , there
is an automorphism of (M,R) fixing a,b and taking ci to cν(i).
Thus, a ∗ b cannot be definable in (M,R).
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Groups, definable closure, and elimination of imaginaries

This section is about arbitrary strongly minimal theories not just
Hrushovski constructions.
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Baizhanov’s Question

Question (1990’s)
Does every strongly minimal set that admits elimination of imaginaries
interpret an algebraically closed field?

Partial Answer
1 Infinite language: No! Verbovskiy
2 finite language:

1 Yes! for one ternary relation: constructions of [Hru93, BP20].
2 A program for other flat geometries
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Group Action and Definable Closure

Fix I, a finite set of independent points in the model M |= T .

2 groups
Let G{I} be the set of automorphisms of M that fix I setwise and GI be
the set of automorphisms of M that fix I pointwise.

Definition
1 dcl∗(I) consists of those elements that are fixed by GI but not by

GX for any X ( I.
2 The symmetric definable closure of I, sdcl∗(I), consists of those

elements that are fixed by G{I} but not by G{X} for any X ( I.

sdcl∗(I) = ∅ implies T does not admit elimination of imaginaries.

John T. Baldwin University of Illinois at ChicagoStrongly minimal Steiner Systems: Model Theory, Universal Algebra, CombinatoricsUniversity of Chicago logic seminarNov 15, 2021 24 / 48



Finite Coding

Definition

A finite set F = {a1, . . . ,ak} of tuples from M is said to be coded by
S = {s1, . . . , sn} ⊂ M over A if

σ(F ) = F ⇔ σ|S = idS for any σ ∈ aut(M/A).

We say T = Th(M) has the finite set property if every finite set of tuples F is
coded by some set S over ∅.

If there exists I with dcl∗(I) = ∅, T does not have the finite set property.
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dcl∗ and elimination of imaginaries

Fact: Elimination of imaginaries
A theory T admits elimination of imaginaries if its models are closed
under definable quotients.

ACF: yes; locally modular: no

Fact

If T admits weak elimination of imaginaries then T satisfies the finite
set property if and only T admits elimination of imaginaries.

Since every strongly minimal theory with acl(∅) infinite has weak
elimination of imaginaries. [Pil99], we have

If such a strongly minimal T has only essentially unary definable
binary functions it does not admit elimination of imaginaries.
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No definable binary function/elimination of
imaginaries: Sufficient

Lemma

Let I = {a0,a1} be an independent set with I ≤ M and M is a generic
model of a strongly minimal theory.

1 If sdcl∗(I) = ∅ then I is not finitely coded.
2 If dcl∗(I) = ∅ then I is not finitely coded and there is no parameter

free definable binary function.
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‘Non-trivial definable functions’

Definition

Let T be a strongly minimal theory. function f (x0 . . . xn−1) is called
essentially unary if there is an ∅-definable function g(u) such that for
some i , for all but a finite number of c ∈ M, and all but a set of Morley
rank < n of tuples b ∈ Mn, f (b0 . . . bi−1, c,bi . . . bn−1) = g(c).

Lemma

For a strongly minimal T the following conditions are equivalent:
1 for any n > 1 and any independent set I = {a1,a2, . . .an},

dcl∗(I) = ∅;
2 every ∅-definable n-ary function (n > 0) is essentially unary;
3 for each n > 1 there is no ∅-definable truly n-ary function in any

M |= T .
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The General Construction
This section applies to the original Hrushovski context (one ternary
function) and to q-Steiner systems.
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Amalgamation and Generic model

We study classes K 0 of finite structures A
with δ(A′) ≥ 0, for every A′ ⊂ A.
dM(A/B) = min{δ(A′/B) : A ⊆ A′ ⊂ M}.

A ≤ M if δ(A) = d(A).
When (K 0,≤) has joint embedding and amalgamation there is unique
countable generic.
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The main result: Classifying dcl [BV21]
Theorem
Let Tµ be a strongly minimal theory as in Hrushovski’s original paper.
I.e. µ ∈ U = {µ : µ(A/B) ≥ δ(B)}). Let I = {a1, . . . ,av} be a tuple of
independent points with v ≥ 2.
GI If Tµ triples

U ⊇ T = {µ : µ(A/B) ≥ 3}

then dcl∗(I) = ∅
dcl(I) =

⋃
a∈I dcl(a)

and every definable function is essentially unary (Definition 28).
G{I} In any case sdcl∗(I) = ∅

sdcl(I) =
⋃

a∈I sdcl(a)
and there are no ∅-definable symmetric (value does not depend
on order of the arguments) truly v -ary function.

In both cases Tµ does not admit elimination of imaginaries and the
algebraic closure geometry is not disintegrated.
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Primitive Extensions and Good Pairs

Definition

Let A,B,C ∈ K0.
(1) C is a 0-primitive extension of A if C is minimal with δ(C/A) = 0.

(2) C is good over B ⊆ A if B is minimal contained in A such that C is
a 0-primitive extension of B. We call such a B a base.

α is the isomorphism type of ({a,b}, {c}),
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The Amalgamation
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Overview of the analysis of acl(I)

Realization of good pairs
1 A good pair C/B well-placed by A in a model M, if B ⊆ A ≤ M and

C is 0-primitive over X .
2 For any good pair (C/B), χM(B,C) is the maximal number of

disjoint copies of C over B appearing in M.
3 For µ ∈ U , Kµ is the collection of M ∈ K 0 such that
χM(A,B) ≤ µ(A,B) for every good pair (A,B).

If C/B is well-placed by A ≤ M, χM(B,C) = µ(B/C)
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The structure of acl(X )
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G-decomposable sets

Definition
Let G be GI or G{I}, I ≤ M independent.
A ⊆ M is G-decomposable if

1 A ≤ M
2 A is G-invariant
3 A ⊂<ω acl(I).

Fact
There are G-decomposable sets.
Namely for any finite U with d(U/I) = 0,

A = icl(I ∪ G(U))
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Constructing a G-decomposition
Linear Decomposition: Each annulus is primitive over its predecessors.

Tree Decomposition: Each pie piece is primitive over previous level.

Prove by induction on levels that dcl∗(I) = ∅. (sdcl∗(I) = ∅)
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A non-trivial definable binary function

In the diagrams, we represent a triple satisfying R by a triangle.

a1

a2

r

r

A0

A1
1,2

rd1
rd3

sd2

A1
1,1

rc1

r
c3

sc2

A1 A2

A2
1,1

rα1

rα2

rγ3

rδ3

rγ1

rδ1
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Pasch Configuration
Definition
Let X be finite partial Steiner system. A Steiner system (M,R) is anti-X
if there no embedding of X into M.

Figure: Pasch configuration: P
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‘few’ Pasch and no Pasch

Fact
If there is an infinite group (associative binary operation) interpretable
in a structure M then there is an instance of the Pasch diagram where
a point c is on a line through ab if c ∈ acl(a,b). No such diagram with
points having positive dimension is possible in a strongly minimal set
with a flat geometry.

But since δ(P) = 2 there will be copies of P in our Steiner systems as
constructed. But,

Theorem

The subclass of K P
0 of those finite structures with 3-element lines that

omit the Pasch configuration satisfies amalgamation. Thus, there are
strongly minimal anti-Pasch Steiner triple systems.

Without the strongly minimal, this is proved in [HW21].
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∞-sparse configurations
[CGGW10, page 116] prove there is are continuum many countable
∞-sparse configurations.

Definition

A Steiner triple system (M,R) is∞-sparse if there is no A ⊆ M with
|A| ≥ 6 and δ(A) = 2.

Definition

Let K sp
0 be the subclass of K ∗ (linear spaces) such that for every

B ⊆ A:
(#) |B| > 1 → δ(B) > 1 & |B| > 3→ δ(B) > 2.

Theorem

The system (K sp
0 ,≤) has ≤-amalgamation. And so for any µ ∈ U , K sp

µ

has ≤-amalgamation. So there are 2ℵ0 strongly minimal sparse
3-Steiner systems of every infinite cardinality.
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Further Combinatorial Applications

Unlike many construction in infinite combinatorics these methods give
a family of infinite structures with similar properties [Bal21a, Bal21b].
Among the properties investigated are:

1 cycle graphs in 3-Steiner systems [CW12] generalized to paths in
Steiner k -system;

2 preventing or demanding 2-transitivity
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Diversity and Classification
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Examples
Strongly minimal theories with non-locally modular algebraic
closure

I the Hrushovski (Steiner) examples 2ℵ0 theories of strongly minimal
Steiner systems (M,R) with

1 no ∅-definable binary function. (i.e. triplable)
2 Some definable functions (examples in [BV21])

II 2ℵ0 theories of strongly minimal quasigroups (M,R, ∗) + a
3-Steiner example of Hrushovski

III strongly minimal Steiner systems with combinatorial interesting
properties

IV Non-Desarguesian projective planes definably coordinatized by
ternary fields [Bal95]

V 2-ample but not 3-ample sm sets (not flat) [MT19]
VI strongly minimal eliminates imaginaries (flat) INFINITE vocabulary)

(Verbovskiy)
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Classifying the examples

1 discrete
2 non-trivial but no binary function
3 non-trivial but no commutative binary function
4 Non-Desarguesian projective planes definably coordinatized by

ternary fields [Bal95]
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