Hanf numbers
for properties
of AEC's
John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Hanf numbers for properties of AEC's

John T. Baldwin
University of Illinois at Chicago Saharon Shelah Hebrew University- Rutgers

October 26, 2016

Background

```
Hanf numbers
for properties
    of AEC's
    John T.
    Baldwin
University of
    illinois at
    Chicago
    Saharon
    Shelah
    Hebrew
    University-
    Rutgers
```

Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction
ZFC version

First order logic is largely impervious to extensions of ZFC.
There is a deep entanglement between infinitary logic and axiomatic set theory.

```Hanf numbersfor properties
    of AEC's
        John T.
        Baldwin
        University of
        Illinois at
        Chicago
        Saharon
        Shelah
        Hebrew
        University-
        Rutgers
Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction:
ZFC version
```


Underlying question

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Do the connections of large cardinals with fundamental properties of AEC's represent algebraic or geometric rather than combinatorial phenomena?

Underlying question

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Do the connections of large cardinals with fundamental properties of AEC's represent algebraic or geometric rather than combinatorial phenomena?

Related Issues
What is significant about complete sentences of $L_{\omega_{1}, \omega}$?
A slightly different method of establishing completeness.
Independence in Boolean Algebras
κ-free implies κ^{+}-free

Hanf's principle

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction
ZFC version

If a certain property can hold for only set-many objects then it is eventually false.

Hanf's principle

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models

If a certain property can hold for only set-many objects then it is eventually false.
Hanf refines this twice.
1 If \mathcal{K} a set of collections of structures \boldsymbol{K} and $\phi_{P}(X, y)$ is a formula of set theory such $\phi(\boldsymbol{K}, \lambda)$ means some member of \boldsymbol{K} with cardinality λ satisfies P.

$$
\mu_{\boldsymbol{K}}=\sup \{\lambda: P(\boldsymbol{K}, \lambda) \text { holds if there is such a sup }\}
$$

Hanf number of $P=\sup _{\boldsymbol{K}}{ }^{\mu} \boldsymbol{K}$
2 If the property P is closed down for sufficiently large members of each \boldsymbol{K}, then 'arbitrarily large' can be replaced by 'on a tail' (i.e. eventually).

Examples

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction:
ZFC version

Large cardinals: Boney- Unger -Shelah
The Hanf number for 'all aec's are tame' (with various decorations) is a compact cardinal with various decorations.
small cardinals: B, Koerwein, Kolesnikov,Laskowski, Lambdie-Hanson, Shelah, Souldatos

Erratic behavior for amalgamation, disjoint amalgamation, maximal models, joint embedding.
All below $\beth_{\omega_{1}}$

The big gap

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Theorem. B-Boney
The Hanf number for Amalgamation is at most the first strongly compact cardinal

The best lower bound known is $\beth_{\omega_{1}}$.

Maximality, JEP, AP, Arbitarily Large

```
Hanf numbers
for properties
    of AEC's
    John T.
    Baldwin
University of
    Illinois at
    Chicago
    Saharon
    Shelah
    Hebrew
    University-
    Rutgers
```

A maximal model plus (global) JEP or AP implies a bound on the cardinality of models.

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Test question: non-maximality

Let \boldsymbol{K}_{0} be the collection of models of a complete sentence in $L_{\omega_{1}, \omega}$ in a countable vocabulary.
to avoid negatives:
\boldsymbol{K}_{0} is universally extendible in λ if every model in λ is extendible - has a proper $L_{\omega_{1}, \omega}$ extension.

Theorem. B-Shelah

The Hanf number for universal extendibility is the first measurable cardinal μ if it exists.

Clearly, every model with cardinality at least μ has a proper $L_{\omega, \omega}$-extension.

Why complete sentence?

Hanf numbers
for properties
of AEC's
John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models

Consider a class \boldsymbol{K} of 4 -sorted structures:
$1 P_{0}$ is a copy of $(\omega,<)$.
$2 P_{1}$ is a set.
$3 P_{2}$ is a boolean algebra of subsets of P_{1} (given by extensional binary E.
$4 P_{3}$ is a set of countable sequences from P_{2}. via a function $f(c, n)=b$ maps $c \in P_{2}, n \in P_{0}, b \in P_{1}$.)
One further axiom: If a sequence $c \in P_{3}$ has the finite intersection property then the intersection is non-empty.

Let $\psi \in L_{\omega_{1}, \omega}$ axiomatize \boldsymbol{K}.

Why maximal?

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models
M is a maximal model of $\boldsymbol{K}=\bmod (\psi)$ if
$1 \lambda<$ first measurable
$2\left|P_{0}^{M}\right|=\lambda$.
$3 P_{1}^{M}=\mathcal{P}\left(P_{0}^{M}\right)$
$4 P_{2}^{M}={ }^{\omega}\left(P_{1}^{M}\right)$
M can only be extended by adding an element $a *$ to P_{0}^{M}. But then

$$
\left\{b \in P_{1}^{M}: E(a *, b)\right\}
$$

is a non-principal \aleph_{1}-complete ultrafilter on λ.
But ψ is not complete. $2^{\aleph_{0}}$ types over empty set. c_{X} realizes p_{X} iff $\left|a \in P_{0}^{M}: a \in f(c, n)\right| \in X$.

What is a 'complete AEC'?

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers
Definition: complete sentence ϕ of $L_{\omega_{1}, \omega}$

TFAE

1 For every $\psi \in L_{\omega_{1}, \omega}, \phi \rightarrow \psi$ or $\phi \rightarrow \psi$.
2 Every model of ϕ realizes only countably many distinct $L_{\omega_{1}, \omega}$-types.

Trial definition

($\boldsymbol{K}, \prec_{\boldsymbol{K}}$) is complete iff
$A \prec_{\boldsymbol{K}} B$ implies $A \prec_{\infty, \omega} B$.

A schema for getting complete sentences

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models

Notation

1 Let $\left(\boldsymbol{K}_{0}, \leq\right)$ be a collection of countably many countable (finitely generated) structures.
2 Let $\left(\boldsymbol{K}_{1}, \leq\right)$ (often $\hat{\boldsymbol{K}}$) the collection of direct limits of structures in \boldsymbol{K}_{0}.

If $\left(\boldsymbol{K}_{0}, \leq\right)$ has the amalgamation property and joint embedding then it has generic model M - universal and homogenous with respect to $\left(\boldsymbol{K}_{0}, \leq\right)$.

Constructing the complete sentence

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
illinois at
Chicago
Saharon
Shelah
Hebrew
University
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main

Definition

M in K_{1} is rich if for any $N_{1}, N_{2} \in K_{0}$ with $N_{1} \subseteq N_{2}$ and $N_{1} \subseteq M$, there is an embedding of N_{2} into M over N_{1}. We denote the class of rich models in \boldsymbol{K}_{1} by $\boldsymbol{K}_{2}=\boldsymbol{K}^{R}$.

It is easy to construct a back-forth-showing:

Lemma

The class K_{2} is the collection of models of the Scott sentence of the generic (rich) model.

First approximation

P_{1}^{M} is an elementary submodel of the natural Boolean algebra on $\mathcal{P}(\omega)$,
P_{4}^{M} as the distributive sublattice of finite sets, P_{0}^{M} and R^{M} as coding subsets of ω.
Note $P_{1}^{M} \approx P_{4}^{M} \times \mathcal{B}$ where \mathcal{B} is the countable atomless Boolean algebra.
P_{2}^{M} is an infinite set.
Cofinitely of the $F_{n}^{M}(c)$ give a basis for P_{1}^{M}. But for each c, finitely many $F_{n}^{M}(c)$ may be in $P_{4}^{M} \times \mathcal{B}$ but not in either factor.

Formal setting

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models
K_{-1}
$1 P_{1}$ is the domain of a Boolean algebra
2 In each model there will a (non-definable)
Homomorphism from P_{1} into the BA of subsets of P_{0}.
$G_{1}=H_{1}^{-1}$ is a bijection between $P_{4,1}$ (atoms of P_{1}) and P_{0}.
$R(u, b)$ iff $H_{1}(u) \leq b$.
$3 P_{2}$ is a set with no structure but for each n, there is a function such that
$\left\{F_{n}(c): c \in P_{2}\right\}$ is a set of elements of P_{1}.
Cofinitely many of them along with P_{2} and P_{0} generate the model.
$4 P_{4, n}$ is the set of elements of P_{1} that are a join of n-atoms; $P_{4}=\bigcup_{n} P_{4, n}$

Key properties of complete theory

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free

lemma

If M is the generic model then
1 if $b_{1} \neq b_{2} \in P_{1}^{M}-P_{4}^{M}$ then $R\left(b_{1}, M\right) \neq R\left(b_{2}, M\right)$, i.e. the map f homomorphism above is injective.
2 The sets $R\left(M, F_{n}^{M}(c)\right)$ with $F_{n}^{M}(c) \notin P_{4}^{M}$ and $c \in P_{2}(M)$ are independent in the algebra of sets on P_{0}^{M}.
3 If $b \in P_{1}^{M}-P_{4}^{M}, R^{M}(b, M)$ is infinite and b is not an atom. So P_{1}^{M} / P_{4}^{M} is an atomless boolean algebra, hence free.

```Hanf numbersfor propertiesof AEC's
        John T.
        Baldwin
        University of
        Illinois at
        Chicago
        Saharon
        Shelah
        Hebrew
        University-
        Rutgers
Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction:
ZFC version
```

Maximal Models

Maximality and P_{0}-maximality

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Definition: Maximal Models

1 A model $M \in \boldsymbol{K}_{1}$ is P_{0}-maximal (for \boldsymbol{K}_{1}) if $M \subseteq N$ and $N \in \boldsymbol{K}_{1}$ implies $P_{0}^{M}=P_{0}^{N}$.
2 A model $M \in \boldsymbol{K}_{2}=\boldsymbol{K}^{\boldsymbol{R}}$ is maximal (for $\boldsymbol{K}^{\boldsymbol{R}}$) if $M \subseteq N$ and $N \in \boldsymbol{K}_{2}$ implies $M=N$.

Background Set theory

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Definition

[\diamond_{S}] Given a cardinal κ and a stationary set $S \subseteq \kappa, \diamond_{S}$ is the statement that there is a sequence $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ such that
1 each $A_{\alpha} \subseteq \alpha$
2 for every $A \subseteq \kappa,\left\{\alpha \in S: A \cap \alpha=A_{\alpha}\right\}$ is stationary in κ

Definition

[S reflects] Let κ be a regular uncountable cardinal and let S be a stationary subset of κ. If $\alpha<\kappa$ has uncountable cofinality, S reflects at α if $S \cap \alpha$ is stationary in α. S reflects if it reflects at some $\alpha<\kappa$.

Let $S_{\aleph_{0}}^{\lambda}$ denote the stationary set
$\left\{\delta<\lambda: \operatorname{cf}(\delta)=\aleph_{0}, \delta\right.$ is divisible by $\left.|\delta|\right\}$.

Main Theorem for Maximality

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models

Free
Extensions
Main
Construction:
ZFC version

Theorem

If
1 there is no measurable cardinal ρ with $\rho \leq \lambda, \lambda=\lambda<\lambda$,
2 and there is an $S \subseteq S_{\aleph_{0}}^{\lambda}$, that is stationary non-reflecting, and \diamond_{S} holds.
Then there is a P_{0}-maximal model $M \in \boldsymbol{K}^{R}$ of card λ
We give this argument first; then sketch a black box to remove the set theoretic hypotheses.

Easy to go from P_{0}-max to max.

Goals of construction

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal

We will choose M_{α} for $\alpha<\lambda$ by induction to satisfy the following conditions.

Construction: Goal

Let $\left\langle U_{\alpha}: \alpha<\lambda\right\rangle$ list $[\lambda]^{<\lambda}$ so that each subset is enumerated λ times and $U_{\alpha} \subseteq \alpha$.
Let $\bar{A}^{*}=\left\langle A_{\delta}^{*}: \delta \in S\right\rangle$ be a \diamond_{S}-sequence.
$1 M_{\alpha} \in \boldsymbol{K}_{1}$ has universe an ordinal between α and λ and M_{0} is empty.
$2\left\langle M_{\beta}: \beta<\alpha\right\rangle$ is \subseteq - continuous.
3 If $\beta \in \alpha-S$ then M_{α} is free over M_{β}.

Goals of construction II

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models

4 If $\alpha=\beta+2$ and $U_{\beta} \subseteq P_{0}^{M_{\beta}}$ then there is a $b_{\beta} \in P_{1}^{M_{\alpha}}$ such that $R\left(M_{\alpha}, b_{\beta}\right) \cap M_{\beta+1}=U_{\beta}$ and in the Boolean algebra $P_{1}^{M_{\alpha}},\left\{b_{\beta}\right\}$ is free over $P_{1}^{M_{\beta}+1} \cup P_{4}^{M_{\alpha}}$ and $M_{\alpha} \in \boldsymbol{R}$.
5 If $\delta \in S$ and $\alpha=\delta+1$ then a) implies b), where:
a) there is an increasing sequence $\bar{\gamma}=\left\langle\gamma_{\delta, n}, b_{\delta, n}: n<\omega\right\rangle$, where the $\gamma_{\delta, n}$ are not in S and increasing with n satisfying:
i) $\gamma_{\delta, n}<\gamma_{\delta, n+1}<\delta$ with $\sup _{n} \gamma_{\delta, n}=\delta$;
ii) $b_{\delta, n} \in P_{1}^{M_{\gamma, n+1}} \cap A_{\delta}^{*}$ and so $b_{\delta, n} \in P_{1}^{M_{\delta}}$;
iii) $\left\{b_{\delta, n}: n<\omega\right\}$ is independent over $P_{1}^{M_{\gamma n}} \cup P_{4}^{M_{\delta}}$;
iv) if $a \in P_{0}^{M_{\delta}}$ then for all but finitely many $n, \neg R\left(a, b_{\delta, n}\right)$.
b) For some $\bar{\gamma}=\left\langle\gamma_{\delta, n}, b_{n}^{\delta}: n<\omega\right\rangle$, there is a $c_{\delta} \in P_{2}^{M_{\delta+1}}$ such that for each $n, F_{n}^{M_{\delta+1}}\left(c_{\delta}\right)=b_{\delta, n}$.

The actual inductive Construction

Hanf numbers
for properties
of AEC's
John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction
ZFC version

1-4a are easy
Case 1: $\alpha=0$.
Case 2: $\alpha=\beta+1$ and $\beta \notin S$.
Case 3: $\alpha=\delta$, a limit ordinal that is not in S.
Use the fact that S does not reflect to show M_{δ} is free.
Case 4a: $\alpha=\delta+1, \delta \in S$, and clause 5a fails. This is just as in case 2.
Case 4b: $\alpha=\delta+1, \delta \in S$, but clause 5 a holds. Use the following lemma.

Key Lemma

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models

Claim

Suppose that for $n<\omega, M_{n} \subset_{f r} M_{n+1}$ are in $\widehat{\boldsymbol{K}}$. If Condition A) holds then so does condition B).

A $1 P_{2}^{M_{n+1}}-P_{2}^{M_{n}}$ is infinite
2 there is a $b_{n} \in P_{1}^{M_{n+1}}$ so that $\left\{b_{n}\right\}$ is free over $P_{1}^{M_{n}}$.
3 if $a \in P_{1}^{M_{i}}$, then for all but finitely many $n \geq i$, $a \notin R\left(M_{n+1}, b_{n}\right)$.
$B)$ then there is a pair (M, c)
$1 M=\bigcup M_{n} \cup\{c\}, c \in P_{2}^{M}, c$ is not in any M_{n},
$2 M_{n} \subset_{f r} M$ for each n,
$3 F_{n}^{M}(c)=b_{n}$.

The Construction Suffices

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of
AEC
Maximal
M is P_{0}-maximal for K^{R}
Suppose for contradiction there exists N extending M in $\widehat{\boldsymbol{K}}$ such that $P_{0}^{N} \supsetneq P_{0}^{M}$. Choose $a^{*} \in P_{0}^{N}-P_{0}^{M}$. Let

$$
A=\left\{b \in P_{1}^{M}: R^{N}\left(a^{*}, b\right)\right\} .
$$

Then A is a non-principal ultrafilter on P_{1}^{M}.
We will derive a contradiction using the choice of the stationary set $S_{A}=\left\{\delta \in S: M_{\delta}\right.$ has universe $\left.\delta \& A_{\delta}^{*}=A \cap \delta\right\}$.

2 cub's

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction:
ZFC version

C_{1}

There is a closed unbounded set C_{1} such that if $\delta \in C_{1}$, for every sequence $\bar{\gamma} \in M_{\delta}^{\omega}$ satisfying condition 5 a), there is a $c_{\delta} \in P_{2}^{M_{\delta+1}}$ such that for each $n, F_{n}^{M_{\delta+1}}\left(c_{\delta}\right)=b_{\delta, n}$.
C_{2}
$C_{2}=\left\{\delta<\lambda: \delta\right.$ limit $\left.\& \alpha<\lambda \rightarrow b_{\alpha}<\delta\right\}$ is a club of λ.
Fix $\alpha^{*} \in S \cap C_{1} \cap C_{2}$.

2 cub's

```
Hanf numbers
for properties
    of AEC's
    John T.
    Baldwin
University of
    Illinois at
    Chicago
    Saharon
    Shelah
    Hebrew
    University
    Rutgers
```

Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Now show that A (the ultrafilter on P_{1}^{M}) induces via R a non-principal, \aleph_{1}-complete ultrafilter contained in $\mathcal{P}\left(P_{0}^{M_{\alpha^{*}}}\right)$.

K_{2}-maximal

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

We can construct M_{λ} to be in K_{2} as well as P_{0}-maximal.
If M is not maximal build an increasing sequence of proper extensions (freely extend if possible) in \boldsymbol{K}_{2} with the same P_{0}, we find an actual maximal model M^{\prime} in K_{2}.
This must happen before $\left(2^{\lambda}\right)^{+}$steps.
We know M itself satisfies every subset of size less than λ is embedded in a free

The role of Set theory

Hanf numbers
for properties
of AEC's
John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction
ZFC version

1 Non-reflecting is used in the construction to guarantee clause 5a) at limits in S while maintaining freeness.
$2 \diamond$ is used to verify the construction works.
3 It is crucial that we preserve freeness at each stage.
There are non-free subalgebras of some free Boolean algebras -so the choice of filtration is essential.

```Hanf numbersfor properties
    of AEC's
        John T.
        Baldwin
        University of
        Illinois at
        Chicago
        Saharon
        Shelah
        Hebrew
        University-
        Rutgers
Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction:
ZFC version
```


Free Extensions

Relative Independence

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of
AEC
Maximal
Models
Free
Extensions

Definition

1 For $X \subseteq B$ and B a Boolean algebra, $\bar{X}=X_{B}=\langle X\rangle_{B}$ be the subalgebra of B generated by X.
2 A set Y is independent from X over an ideal I in a Boolean algebra B if and only if for any Boolean-polynomial $p\left(v_{0}, \ldots, v_{k}\right)$ (that is not identically $0)$, and any $a \in \bar{X}-I$,

$$
p\left(y_{0}, \ldots, y_{k}\right) \wedge a \notin I
$$

Facts

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University
Rutgers

Spectra of
AEC
Maximal
Models
Free
Extensions

Main

Construction
ZFC version

Observations

1 If I is the 0 ideal, (read Y is independent from X), the condition becomes any $a \in \bar{X}-\{0\}$, $B \models p\left(y_{0}, \ldots, y_{k}\right) \wedge a>0$.
2 It is easy to check that ' Y is independent from X over l ' implies the image of Y is free from the image of X in B / I.

Free Amalgamation

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

We can amalgamate Boolean algebras B and A over C.

notation

Let $C \subseteq A, B$ be Boolean algebras.
The disjoint amalgamation $D=A \otimes_{C} B$ is the Boolean algebra obtained as the pushout of A and B over C.

It is characterized internally by the following condition. For $a \in A-C, b \in B-C: a \leq b$ in D if and only if there is a $c \in C$ with $a<c<b$ (and symmetrically). D is generated as a Boolean algebra by $A \cup B$.

Amalgamation preserving atoms

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions

Main

Construction
ZFC version

Theorem
Let $A_{0} \subseteq A_{1}, A_{2}$ be Boolean algebras. There is a Boolean algebra amalgamating A_{1} and A_{2} such that $\operatorname{At}\left(A_{3}\right)=\operatorname{At}\left(A_{1}\right) \cup \operatorname{At}\left(A_{2}\right)$.

The proof uses the notion of independence defined above.

Free Extensions

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main
Construction:
ZFC version

Definition

M_{2} is free over M_{1} written $M_{1} \subseteq_{f r} M_{2}$ if
1 There is an I with $I \subset\left(P_{1}^{M_{2}}-P_{1}^{M_{2}}\right) \cup P_{4}^{M_{2}}$ such that:
i $I \cup P_{1}^{M_{1}} \cup P_{4}^{M_{2}}$ generates $P_{1}^{M_{2}}$
ii \boldsymbol{I} is independent from $P_{1}^{M_{1}}$ over $P_{4}^{M_{2}}$ in $P_{1}^{M_{2}}$.
2 There is a function H from $P_{2}^{M_{2}} \backslash P_{2}^{M_{1}}$ to \mathbb{N} such that the $F_{n}(c)$ for $n \geq H(c)$ are distinct and

$$
\left\{F_{n}^{M}(c): c \in P_{2}^{M_{2}} \backslash P_{2}^{M_{1}} \text { and } n \geq H(c)\right\} \subset I
$$

M is free if it is free over the empty model i.e., P_{1}^{M} has a free basis over P_{4}^{M}.

Properties of Free Extensions

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Transitivity

1 If $M_{1} \subseteq_{f r} M_{2}$ by I_{1} and $M_{2} \subseteq_{f r} M_{3}$ by \boldsymbol{I}_{2} then $M_{1} \subseteq_{f r} M_{3}$ by $\boldsymbol{I}_{1} \cup \boldsymbol{I}_{2}$. Thus, $\subseteq_{f r}$ is a partial order.
2 More generally if M_{α} with $\alpha<\delta$ is continuous $\subseteq_{f r}$ increasing then $M=\bigcup M_{\alpha}$ satisfies $M_{\alpha} \subseteq_{f r} M$ witnessed by $\bigcup_{\alpha<\beta<\delta} I_{\beta}$.

Proof is immediate from analogous result for Boolean algebras. This proof depends heavily on the notion of free -from -over.

Amalgamation of finitely generated with free

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Theorem

Suppose $M_{1} \in K_{1}$ is free and $N_{1} \subset M_{1}$. Let $N_{1} \subset N_{2}$ with both in \boldsymbol{K}_{0} (i.e. finitely generated).
Then there are an M_{2} and an f such that:
$1 M_{2} \in K_{1}, M_{1} \subseteq_{f r} M_{2}$ and so M_{2} is free. Similarly $N_{2} \subseteq_{f r} M_{2}$.
2 Suppose $A \subset P^{M_{1}}$. We can choose M_{2} and $b_{0} \in P_{1}^{M_{2}}$ such that b is free from $P_{1}^{M_{1}}$ over $P_{4}^{M_{2}}$ and $R\left(M_{2}, b_{0}\right)=A$.
$3 f$ maps N_{2} into M_{2} over N_{1}. Moreover, the image of N_{2} is free in M_{2}.

Amalgamation depends on free extension and finite base and uses our atom-preserving amalgamation.

Existence of Free Extensions

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction
ZFC version

Theorem

Let M_{1} be free in \boldsymbol{K}_{1}.
1 There exists an M_{2} which is a free extension of M_{1}.
2 We can choose $M_{2} \in K_{2}$.
Proceeding inductively we get:

Corollary

For every μ there is a free $M \in \boldsymbol{K}_{1},\left(\boldsymbol{K}_{2}\right)$ of cardinality μ.

```
Hanf numbers
for properties
    of AEC's
        John T.
        Baldwin
    University of
        Illinois at
        Chicago
        Saharon
        Shelah
        Hebrew
        University-
        Rutgers
Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction:
ZFC version
```

Main Construction: ZFC version

Main Theorem

Hanf numbers
for properties
of AEC's
John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main

Theorem
Suppose $\lambda=\left(2^{\chi}\right)^{+}$and there is no measurable cardinal less than or equal λ, then there is a P_{0}-maximal model of \boldsymbol{K}_{1}. (Hence a maximal model of \boldsymbol{K}_{1} of cardinality at most 2^{λ}.

Reduction

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal
Models
Free
Extensions
Main ZFC version

Lemma
If $\mu=2^{\chi}$ and χ is not measurable there is a Boolean algebra B of cardinality μ contained in $\mathbb{P}(\mu)$ which has no \aleph_{1}-complete non-principal ultrafilter.

Straightforward diagonalization.

Blackbox

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Göbel-Shelah blackbox

Assume $\lambda=\mu^{+}$and $\lambda=\mu^{\theta}$ and $S \subseteq\left\{\delta: \delta<\lambda, \operatorname{cf}(\delta)=\aleph_{0}\right\}$ is a stationary subset of λ and $\left\langle C_{\delta}: \delta \in S\right\rangle$ guess clubs (and C_{δ} is an unbounded subset of δ of order type ω, of course). Then, we can find $\left\langle\bar{N}_{\eta}: \eta \in \Gamma\right\rangle$ such that:
(a) $\Gamma=\cup\left\{\Gamma_{\delta}: \delta \in S\right\}$ where $\Gamma_{\delta} \subseteq\{\eta: \eta$ in an increasing ω-sequence of ordinals $<\delta$ with limit $\delta\}$ and $\delta(\eta)=\delta$ when $\eta \in \Gamma_{\delta}, \delta \in S$
(b) $\overline{N_{\eta}}$ is $\left\langle N_{\eta, n}: n \leq \omega\right\rangle$ in \prec-increasing, and we let $N_{\eta}=N_{\eta, \omega}$
(c) each N_{η} is a model of cardinality κ with vocabulary $\subseteq H\left(\kappa^{+}\right)$for notational simplicity, and universe $\subseteq \delta:=\delta(\eta)$ and $N_{\eta, n}=N_{\eta} \mid \gamma_{n}^{\delta}$ where γ_{n}^{δ} is the n-th member of C_{δ}

Blackbox continued

Hanf numbers for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maxima Models
(d) for every distinct $\eta, \nu \in \Gamma_{\delta}$ where $\delta \in S$, for some $n<\omega$ we have $N_{\eta} \cap N_{\nu}=N_{\eta, n}=N_{\nu, n}$
(e) for every $\eta, \nu \in \Gamma_{\delta}$ the models N_{η}, N_{ν} are isomorphic, moreover there is such isomorphism f which preserve the order of the ordinals and maps $N_{\eta, n}$ onto $N_{\nu, n}$
(f) if \mathcal{A} is a model with universe λ and vocabulary $\subseteq \mathcal{A}\left(\kappa^{+}\right)$ then for stationarily many $\delta \in S$ for some $\eta \in \Gamma_{\delta} \subseteq \Gamma$ we have $N_{\eta} \prec \mathcal{A}$. Moreover, if $\kappa^{<\kappa}=\kappa$ and h is a one to one function from ${ }^{{ }^{0}} \lambda$ into λ then, we can add: if $\rho \in \aleph_{0}\left(N_{\eta, n}\right)$ then $h(\rho) \in N_{\eta, n}$.

The role of Set theory

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

In the ZFC+ case:
1 Non-reflecting is used in the construction to guarantee clause 5a) at limits in S while maintaining freeness.at limits in S.
$2 \diamond$ is used to verify the construction works.
Here we give up the freeness and blackbox guesses the clubs from a collection of possibilities.

We must give up freeness since by Magidor-Shelah, assuming the consistency of countably many supercompacts), one cannot prove in set theory that there are almost free nonfree Abelian groups (Boolean algebras) whose cardinality is above the first cardinal fixed point.

Proof Sketch

Let $\mu=2^{\chi}$. Then $\mu=\mu^{\aleph_{0}}$ and there is no measurable cardinal $\leq \mu$.

By the reduction, there is a Boolean algebra B of cardinality μ contained in $\mathbb{P}(\mu)$ which has no \aleph_{1}-complete non-principal ultrafilter.

We will now construct a model M on λ and apply the fact taking M as the \mathcal{A} in Fact39. In particular, we include a unary predicate Q which will approximate the diamond sequence in the ZFC+ proof.

Construction

Hanf numbers
for properties of AEC's

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

1 Define M_{γ}^{1} by induction for $\gamma \leq \lambda$ as $\left\{\mathbf{m}=\left\langle\mathbf{M}_{\alpha}: \alpha<\gamma\right\rangle\right\}$ so that \mathbf{m} mimics an initial stage of the construction in the ZFC+ argument.
2 Replace the diamond sequence by requiring: if $\alpha<\gamma$ and $\alpha \notin S$ and $A \in \boldsymbol{B}_{\leq \alpha}$ there is a $b \in P^{M_{\beta+1}}$ that is free from $P^{M_{\beta}}$ over $P_{4}^{M_{\beta+1}}$ such that $R\left(M_{\alpha}, b\right)=A$ and even $R\left(M_{\beta}, b\right)=A$.
3 Expand each N_{λ} by a predicate Q with gives a non-principal ultrafilter on P_{1}^{N}.
4 Construct sequences $c_{\delta, \eta}, c_{\delta, \eta, n}$; the black box ensures that one η works as required.

Further considerations

```
Hanf numbers
for properties
    of AEC's
    John T.
    Baldwin
University of
    Illinois at
    Chicago
    Saharon
    Shelah
    Hebrew
    University-
    Rutgers
Spectra of
AEC
Maximal
Models
Free
Extensions
Main
Construction:
ZFC version
```

Is this a Geometric or Algebraic or combinatorial problem?
Can this example be modified with free Abelian groups? Hart-Shelah?

Further considerations

Is this a Geometric or Algebraic or combinatorial problem?
Can this example be modified with free Abelian groups? Hart-Shelah?
Does the work on independence here help in determining a precise characterization of forking in Boolean algebras?

Spectra of AEC

Maximal Models

Free
Extensions
Main

Further considerations

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal

Is this a Geometric or Algebraic or combinatorial problem?
Can this example be modified with free Abelian groups? Hart-Shelah?
Does the work on independence here help in determining a precise characterization of forking in Boolean algebras? What about amalgamation? Can the Hanf number be lowered?
Is there an AEC such that the set of cardinals where there is non-trivial amalgamation really alternates?

Further considerations

John T.
Baldwin
University of
Illinois at
Chicago
Saharon
Shelah
Hebrew
University-
Rutgers

Spectra of AEC

Maximal Models

Free

Is this a Geometric or Algebraic or combinatorial problem?
Can this example be modified with free Abelian groups? Hart-Shelah?
Does the work on independence here help in determining a precise characterization of forking in Boolean algebras? What about amalgamation? Can the Hanf number be lowered?
Is there an AEC such that the set of cardinals where there is non-trivial amalgamation really alternates? What (if anything) is special about measurable cardinals?

