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Abstract. This paper explores the role of unitary braiding operators in quantum
computing. We show that a single specific solution R (the Bell basis change
matrix) of theYang–Baxter equation is a universal gate for quantum computing, in
the presence of local unitary transformations.We show that this sameRgenerates a
new non-trivial invariant of braids, knots and links. Other solutions of the Yang–
Baxter equation are also shown to be universal for quantum computation. The
paper discusses these results in the context of comparing quantum and topological
points of view. In particular, we discuss quantum computation of link invariants,
the relationship between quantum entanglement and topological entanglement,
and the structure of braiding in a topological quantum field theory.
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1. Introduction

It is a challenge to unravel the relationships among quantum entanglement, topological
entanglement and quantum computation. In this paper, we show some of the pieces in this
puzzle and how they fit together. In no way do we claim to have assembled the entire puzzle!
That is a challenge for futher work. In order to introduce our problems, and explain what we
have done with them, the next few paragraphs will give capsule summaries of each of the major
points of view taken in this study. We then describe in more detail what is contained in each
separate section of the paper. The paper strives to be self-contained, and to describe carefully
the issues involved, particularly with topological structures that may be unfamiliar to a physics
audience.

Quantum computing can be regarded as a study of the structure of the preparation, evolution
and measurement of quantum systems. In the quantum computation model, an evolution is a
composition of unitary transformations (finite dimensional over the complex numbers). The
unitary transformations are applied to an initial state vector that has been prepared for this
process. Measurements are projections to elements of an orthonormal basis of the space upon
which the evolution is applied. The result of measuring a state |ψ〉, written in the given basis, is
probabilistic. The probability of obtaining a given basis element from the measurement is equal
to the absolute square of the coefficient of that basis element in the state being measured.

It is remarkable that the above lines constitute an essential summary of quantum theory. All
applications of quantum theory involve filling in details of unitary evolutions and specifics of
preparations and measurements.
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One hopes to build powerful quantum computers. Such hopes would be realized if there
were reliable ways to implement predetermined patterns of unitary evolution and measurement.
In the course of trying to understand the potential for quantum computing, it became apparent
that arbitrary finite dimensional unitary transformations can be built from a relatively small set of
primitives. A standard set of primitives consists in all two-dimensional unitary transformations,
together with a choice of one sufficiently robust four-dimensional transformation such as
the CNOT gate discussed in the first section of this paper. One says that CNOT , together
with single qubit gates (two-dimensional unitary transformations) is universal for quantum
computation.

Probability in quantum mechanics acts quite differently from classical probability.
Entangled quantum states embody this difference. An example of an entangled state is the
two-qubit state |ψ〉 = (|00〉 + |11〉)/√2. This state is not decomposable as a tensor product
of single-qubit states, and a measurement in one of its tensor factors will determine the outcome
in the other factor. Implicit in entanglement is the phenomenon of quantum non-locality: physical
access to the measurement of one tensor factor or the other may be separated by an arbitrary spatial
interval. The result of a measurement can have the appearance of instantaneous determination
across an arbitrary distance.

Entanglement and quantum computing are related in a myriad of ways, not the least of
which is the fact that one can replace the CNOT gate by another gate R and maintain universality
(as described above) just so long as R can entangle quantum states. That is, R can be applied to
some unentangled state to produce an entangled state. It is of interest to examine other sets of
universal primitives that are obtained by replacing CNOT by such an R.

Contemplating the inherent non-locality of entangled states, it is natural to ask whether there
are relationships between topological entanglement and quantum entanglement. Topology studies
global relationships in spaces, and how one space can be placed within another, such as knotting
and linking of curves in three-dimensional space. One way to study topological entanglement and
quantum entanglement is to try making direct correspondences between patterns of topological
linking and entangled quantum states. One approach of this kind was initiated by Aravind as
we discuss in section 8 of this paper and also in [1, 2]. A deeper method (we believe) is to
consider unitary gates R that are both universal for quantum computation and are also solutions
to the condition for topological braiding. Such matrices R are unitary solutions to the Yang–
Baxter equation, as explained in section 2. We are then in a position to compare the topological
and quantum properties of these transformations. In this way, we can explore the apparently
complex relationship among topological entanglement, quantum entanglement, and quantum
computational universality. It is this exploration that is the theme of this paper.

In this paper, we prove that certain solutions of theYang–Baxter equation together with local
unitary two-dimensional operators form a universal set of quantum gates. In the first version of
this result, we generate CNOT using a solution to the algebraic Yang–Baxter equation. In the
second version, we generate CNOT using versions of the braidingYang–Baxter equation. Results
of this kind follow from general results of the Brylinskis [3] about universal quantum gates. Here,
we give explicit proofs by expressing the CNOT gate in terms of solutions to the Yang–Baxter
equation (and local unitary transformations).

Section 2 of the paper defines theYang–Baxter equation, gives unitary examples and proves
the results about universal gates. We regard these results as a significant elementary step in
relating quantum topology and quantum computing. The results say that quantum computing
can be framed in the context of quantum topology. They also say that quantum computing can be
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framed in those statistical mechanics contexts where the solutions to the Yang–Baxter equation
are natural structures.

Certainly the Yang–Baxter equation is a natural structure in thinking about the topology
of braids, knots and links. In section 3, we formalize an extension of the Artin braid group
that can accomodate local operators so that this extended braid group can represent any unitary
transformantion. Section 3 shows how to use solutions to the Yang–Baxter equation to obtain
such representations. The section ends with a discussion of the role of the algebraicYang–Baxter
equation in configuring quantum circuit diagrams.

In section 4, we work out details of the invariant of knots and links that is associated with
the universal gate R, and give a number of examples. In particular, we show that this invariant
measures the linking of the Borromean Rings and the Whitehead Link, both examples of links
with zero linking numbers.

In section 5, we indicate how to formulate a quantum computation of a quantum link
invariant in terms of a preparation, a unitary evolution and a measurement. We include in this
context a process that quantum computes the absolute value of the trace of an arbitrary unitary
transformation. These ideas are applied in section 7 first to a unitary representation of the three
strand braid group that will produce a good chunk of the Jones polynomial for three strand braids
when configured as a quantum computer, and then to the invariant discussed in section 4.

Entanglement is an integral ingredient in certain communications procedures such as the
teleportation of quantum states. In section 6 we digress on the structure of teleportation, using
the ideas presented in the previous section for obtaining the trace of a unitary transformation.
By associating a matrix M to a measurement state 〈M| and using the entangled state |δ〉 used
for preparation in the trace calculation of the previous section, we show that for unitary M there
is a full teleportation procedure for obtaining M|ψ〉 from a given state |ψ〉. This discussion
will be expanded in subsequent papers to deal with the question of quantum computation in
general, and the specific problem of computing knot invariants that are based on non-unitary
solutions to the Yang–Baxter equation. The approach to teleportation given here is inherently
topological (in the diagrammatic sense) and we shall take up its applications in subsequent
papers [4].

In section 8 we discuss the relationship between topological entanglement and quantum
entanglement. We recall an invariant of links associated with the solution to the Yang–Baxter
equation used for theorem 1. This solution, R′, makes an invariant that detects linking numbers
of two-component links exactly when R′ is capable of entangling quantum states. Examples like
this, and invariants like the one constructed via the matrix R, indicate relationships between
topological entanglement and quantum entanglement. Other examples, such as the braid group
representation representing the Jones polynomial of section 4, do not exhibit such behaviour.
The question remains open. In this section we give an example that effectively destroys the hope
of continuing an analogy of Aravind that would identify the cutting of a link component with
an observation of a state. Aravind himself showed that his notion was not invariant under basis
change. We point out that it is easy to build states whose entanglement or lack of it after an
observation is a matter of probability obtained from a probability amplitude. Since linking of
classical links is not a matter of probability, this destroys the possibility of a direct relationship
between classical linking and quantum entanglement. Of course, there may be more subtle
avenues. We are in the process of working on such ideas.

Section 9 is a capsule summary of topological quantum field theory from the point of view
of anyonic models for quantum computation. We have included this section to indicate how
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Figure 1. The Yang–Baxter equation (R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)

× (I ⊗ R).

braiding gates fit into a wider context. In section 10, we carry on a philosophical discussion
about the relationship of quantum and topological entanglement, speculating that a spin network
pregeometry of the right kind could enlighten us in our quest.

2. Braiding operators and universal gates

We shall assume that the reader is familiar with the notions of knots, links and braids in
Euclidean three-dimensional space. Recall that a knot is an embedding of a circle, taken up
to topological equivalence, and that a link is an embedding of a collection of circles, taken up to
topological equivalence. Braids form a group under concatenation, where the concatenation of
two braids is obtained by attaching the bottom strands of the first braid to the top strands of the
second braid.

A class of invariants of knots and links called quantum invariants can be constructed by using
representations of the Artin braid group, and more specifically by using solutions to the Yang–
Baxter equation [5], first discovered in relation to (1 + 1)-dimensional quantum field theory, and
two-dimensional statistical mechanics. Braiding operators feature in constructing representations
of the Artin braid group, and in the construction of these invariants of knots and links.

A key concept in the construction of quantum link invariants is the association of a Yang–
Baxter operator R to each elementary crossing in a link diagram. The operator R is a linear
mapping

R : V ⊗ V −→ V ⊗ V

defined on the 2-fold tensor product of a vector space V , generalizing the permutation of the
factors (i.e., generalizing a swap gate when V represents one qubit). Such transformations are not
necessarily unitary in topological applications. It is a motivation for our research to understand
when they can be replaced by unitary transformations for the purpose of quantum computing.
Such unitary R-matrices can be used to make unitary representations of the Artin braid group.

A solution to the Yang–Baxter equation, as described in the last paragraph, is a matrix R,
regarded as a mapping of a two-fold tensor product of a vector space V ⊗ V to itself that satisfies
the equation

(R ⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗ R)(R ⊗ I)(I ⊗ R).

From the point of view of topology, the matrix R is regarded as representing an elementary bit of
braiding represented by one string crossing over another. In figure 1 below, we have illustrated
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the braiding identity that corresponds to the Yang–Baxter equation. Each braiding picture with
its three input lines (below) and output lines (above) corresponds to a mapping of the three-fold
tensor product of the vector space V to itself, as required by the algebraic equation quoted above.
The pattern of placement of the crossings in the diagram corresponds to the factors R ⊗ I and
I ⊗ R. This crucial topological move has an algebraic expression in terms of such a matrix R. Our
main approach to relate topology, quantum computing, and quantum entanglement is through
the use of the Yang–Baxter equation. In order to accomplish this aim, we need to study solutions
of the Yang–Baxter equation that are unitary. Then the R matrix can be seen either as a braiding
matrix or as a quantum gate in a quantum computer.

The problem of finding solutions to the Yang–Baxter equation that are unitary turns out to
be surprisingly difficult. Dye [6] has classified all such matrices of size 4 × 4. A rough summary
of her classification is that all 4 × 4 unitary solutions to the Yang–Baxter equation are similar to
one of the following types of matrix:

R =




1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2


 ,

R′ =




a 0 0 0

0 0 b 0

0 c 0 0

0 0 0 d


 , R′′ =




0 0 0 a

0 b 0 0

0 0 c 0

d 0 0 0


 ,

where a, b, c and d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix as acting on the

standard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗ V , where V is a two-dimensional complex
vector space. Then, for example, we have

R|00〉 = (1/
√

2)|00〉 − (1/
√

2)|11〉, R|01〉 = (1/
√

2)|01〉 + (1/
√

2)|10〉,
R|10〉 = −(1/

√
2)|01〉 + (1/

√
2)|10〉, R|11〉 = (1/

√
2)|00〉 + (1/

√
2)|11〉.

The reader should note that R is the familiar change-of-basis matrix from the standard basis to
the Bell basis of entangled states.

In the case of R′, we have

R′|00〉 = a|00〉, R′|01〉 = c|10〉, R′|10〉 = b|01〉, R′|11〉 = d|11〉.
Note that R′ can be regarded as a diagonal phase gate P , composed with a swap gate S.

P =




a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d


 , S =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .
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Compositions of solutions of the (braiding)Yang–Baxter equation with the swap gate S are called
solutions to the algebraic Yang–Baxter equation. Thus the diagonal matrix P is a solution to the
algebraic Yang–Baxter equation.

2.1. Universal gates

A two-qubit gate G is a unitary linear mapping G : V ⊗ V −→ V where V is a two complex
dimensional vector space. We say that the gate G is universal for quantum computation (or just
universal) if G together with local unitary transformations (unitary transformations from V to
V ) generates all unitary transformations of the complex vector space of dimension 2n to itself.
It is well known [7] that CNOT is a universal gate.

A gate G, as above, is said to be entangling if there is a vector

|αβ〉 = |α〉 ⊗ |β〉 ∈ V ⊗ V

such that G|αβ〉 is not decomposable as a tensor product of two qubits. Under these circumstances,
one says that G|αβ〉 is entangled.

In [3], the Brylinskis give a general criterion of G to be universal. They prove that a two-qubit
gate G is universal if and only if it is entangling.

The reader will also be interested in the paper [8] and the url http://www.physics.
uq.edu.au/gqc/, wherein the practical algorithm in [8], for expressing entangling gates in terms
of CNOT and local transformations, is implemented online.

It follows at once from the Brylinski theorem that the matrices R, R′, and R′′ are universal
gates, except for certain specific choices of parameters in R′ and R′′. In a sequel to this paper
[9] we will give a complete catalogue of universality for two-qubit gates that are solutions to
the Yang–Baxter equation. In this paper, we shall concentrate on specific examples and their
properties.

Remark. A two-qubit pure state

|φ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉
is entangled exactly when (ad − bc) �= 0. It is easy to use this fact to check when a specific
matrix is, or is not, entangling.

Theorem 0. Let D denote the phase gate shown below. D is a solution to the algebraic Yang–
Baxter equation (see the earlier discussion in this section). Then D given by

D =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




is a universal gate.

Proof. It follows at once from the Brylinski theorem that D is universal. For a more specific
proof, note that CNOT = QDQ−1, where Q = H ⊗ I, H is the 2 × 2 Hadamard matrix. The
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conclusion then follows at once from this identity and the discussion above. We illustrate the
matrices involved in this proof below:

H =
(

1√
2

) (
1 1

1 −1

)
, Q =

(
1√
2

) 


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


 , D =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


 ,

QDQ−1 = QDQ =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 = CNOT .

This completes the proof of the theorem. �	
Remark. We thank Martin Roetteles [10] for pointing out the specific factorization of CNOT
used in this proof.

Theorem 1. The matrix solutions R′ and R′′ to the Yang–Baxter equation, described above, are
universal gates exactly when ad − bc �= 0 for their internal parameters a, b, c, d. In particular,
let R0 denote the solution R′ (above) to the Yang–Baxter equation with a = b = c = 1, d = −1.
Then

R0 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1


 .

Then R0 is a universal gate.

Proof. The first part follows at once from the Brylinski theorem. In fact, letting H be the
Hadamard matrix as before, and

σ =
(

1/
√

2 i/
√

2

i/
√

2 1/
√

2

)
, λ =

(
1/

√
2 1/

√
2

i/
√

2 −i/
√

2

)
, µ =

(
(1 − i)/2 (1 + i)/2

(1 − i)/2 (−1 − i)/2

)
.

Then

CNOT = (λ ⊗ µ)(R0(I ⊗ σ)R0)(H ⊗ H).

This gives an explicit expression for CNOT in terms of R0 and local unitary transformations (for
which we thank Ben Reichardt in response to an early version of the present paper). �	
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Remark. Let SWAP denote the Yang–Baxter solution R′ with a = b = c = d = 1. Then

SWAP =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .

SWAP is the standard swap gate. Note that SWAP is not a universal gate. This also follows from
the Brylinski theorem, since SWAP is not entangling. Note also that R0 is the composition of the
phase gate D with this swap gate.

Theorem 2. Let

R =




1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2


 ,

be the unitary solution to the Yang–Baxter equation discussed above. Then R is a universal gate.
The proof below gives a specific expression for CNOT in terms of R.

Proof. This result follows at once from the Brylinksi theorem, since R is highly entangling. For
a direct computational proof, it suffices to show that CNOT can be generated from R and local
unitary transformations. Let

α =
(

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
, β =

(−1/
√

2 1/
√

2

i/
√

2 i/
√

2

)
,

γ =
(

1/
√

2 i/
√

2

1/
√

2 −i/
√

2

)
, δ =

(−1 0

0 −i

)
.

Let M = α ⊗ β and N = γ ⊗ δ. Then it is straightforward to verify that

CNOT = MRN .

This completes the proof. �	
Remark. We take both theorems 1 and 2 as suggestive of fruitful interactions between quantum
topology and quantum computing. It is worth comparing these theorems with the results in [11],
a comparison that we shall leave to a future paper.

Remark. We thank Stephen Bullock for his help in obtaining this result. On showing him the
Yang–Baxter solution R used in the above proof, he showed us the paper [12] in which he and
his co-authors give a criterion for determining if a 4 × 4 unitary matrix can be generated by
local unitary transformations and a single CNOT . We then calculated that criterion and found
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that R passes the test. Bullock then showed us how to apply their theory to obtain the specific
transformations needed in this case. Thus the above result is a direct application of their paper.
The criterion also shows that the solutions of type R′ and R′′ listed above require two applications
of CNOT . We will discuss their structure elsewhere; but for the record, it is of interest here to
record the Shende, Bullock and Markov criterion.

Theorem [12]. We shall say that a matrix can be simulated using k CNOT gates if it can be
expressed by that number k of CNOT gates plus local unitary transformations. Let E be the
following matrix:

E =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 .

Let U be a matrix in SU(4). Let γ(U) be defined by the formula

γ(U) = UEUE.

Let tr(M) denote the trace of a square matrix M. Then

1. U can be simulated using zero CNOTS if and only if γ(U) = I, where I denotes the identity
matrix.

2. U can be simulated using one CNOT gate if and only if tr[γ(U)] = 0 and γ(U)2 = −I.

3. U can be simutated using two CNOT gates if and only if tr[γ(U)] is real.

Note that in applying this criterion, the matrix in question must be in the special unitary
group. We leave it to the reader to show that matrices of type R′ and R′′ require two CNOTS, and
that the matrix R is picked by this criterion to require only one CNOT , just as we have shown
explicitly above. Note that since R8 is the identity, we have R−1 = R7, as well as the fact that
R−1 can be expressed in terms of local transformations and a single application of CNOT .

3. Generalizing and representing the Artin braid group

Let Bn denote the Artin braid group on n strands [13]. We recall here that Bn is generated by
elementary braids {s1, . . . , sn−1} with relations

1. sisj = sjsi for |i − j| > 1,

2. sisi+1si = si+1sisi+1 for i = 1, . . . , n − 2.

See figure 2 for an illustration of the elementary braids and their relations. Note that the braid
group has a diagrammatic topological interpretation, where a braid is an intertwining of strands
that lead from one set of n points to another set of n points. The braid generators si are represented
by diagrams where the ith and (i + 1)th strands wind around one another by a single half-twist
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1 2

3 1
-1

=

=

=

s

s s

s

Braid Generators

1s1
-1s = 1

1s 2s 1s 2s 1s 2s=

1s 3s 1s3s=

Figure 2. Braid generators and relations.

(the sense of this turn is shown in figure 2) and all other strands drop straight to the bottom.
Braids are diagrammed vertically as in figure 2, and the products are taken in order from top to
bottom. The product of two braid diagrams is accomplished by adjoining the top strands of one
braid to the bottom strands of the other braid.

In figure 2 we have restricted the illustration to the four-stranded braid group B4. In that
figure the three braid generators of B4 are shown, and then the inverse of the first generator
is drawn. Following this, one sees the identities s1s

−1
1 = 1 (where the identity element in B4

consists in four vertical strands), s1s2s1 = s2s1s2, and finally s1s3 = s3s1. With this interpretation,
it is apparent from figures 1 and 2 that the second braiding relation (above) is formally the same
as the Yang–Baxter equation.

In fact, if V denotes the basic vector space (the space for one qubit in our context), and R

is an invertible solution to the Yang–Baxter equation as described in section 2, then we obtain
a representation of the n strand braid group into the vector space of automorphisms of the nth
tensor power of V :

repn : Bn −→ Aut(V ⊗n)

by defining

repn(si) = I⊗i−1 ⊗ R ⊗ I⊗n−i−1,

where I denotes the identity mapping on V . Note that since R is a unitary matrix, it follows that
this representation is unitary. We shall call this the standard method for making a representation
of the braid group from an invertible solution to the Yang–Baxter equation. Note that repn(si) is
supported by R on the ith and (i + 1)th tensor factors and is the identity mapping on the other
factors.

We now wish to generalize the classical Artin braid group to a larger group whose
representations can include compositions of the elements repn(si) constructed in the last
paragraph with local unitary transfomations. A diagrammatic example of such a composition
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A B

C D

R CNOT

RCNOT A B C D= ( ) ( )

Figure 3. CNOT = (A ⊗ B)R(C ⊗ D).

is given in figure 3, where we illustrate (as in theorem 2) the expression of CNOT in terms of R

and local unitary transfomations. In this diagram, the local unitary transformations are inicated
by nodes on single braiding lines. This corresponds to the fact that the local unitary operations
act on single tensor factors. Thus we shall generalize the braid group so that the new group
generators are represented on single tensor factors while the elementary braids are represented
on two essential tensor factors. This is formalized in the next paragraph.

Let G be any group, and let G⊗n denote the n-fold tensor product of G with itself, where
by this tensor product we mean the group whose elements are of the form g1 ⊗ g2 ⊗ · · · ⊗ gn,
with gi ∈ G, satisfying

(g1 ⊗ g2 ⊗ · · · ⊗ gn)(g
′
1 ⊗ g′

2 ⊗ · · · ⊗ g′
n) = g1g

′
1 ⊗ g2g

′
2 ⊗ · · · ⊗ gng

′
n.

We articulate G⊗n in tensor language, because we wish to consider representations of the group
where individual members of G go to matrices and the elements g1 ⊗ g2 ⊗ · · · ⊗ gn are sent to
tensor products of these matrices. Let hi(g) = e ⊗ e · · · ⊗ g ⊗ e · · · ⊗ e, where e is the identity
element in G, and the element g is in the ith place in this tensor product string. Then

g1 ⊗ g2 ⊗ · · · ⊗ gn = h1(g1) · · · hn(gn),

and G⊗n is generated by the elements hi(g) where i ranges from 1 to n and g ranges over elements
of G. Note that for i �= j, and for any g, g′ ∈ G, the elements hi(g) and hj(g

′) commmute. Note
that hi is an isomorphism of G to the subgroup hi(G) of G⊗n.

We define an extension GBn of the braid group Bn by the group G⊗n as follows: GBn is
freely generated by G⊗n and Bn modulo the relations

hi(g)sj = sjhi(g)

for all g in G and all choices of i and j such that i < j or i > j + 1.
Just as there is a diagrammatic interpretation of the braid group Bn in terms of strings that

entangle one another, there is a diagrammatic intepretation of GBn. Think of a braid diagram
and suppose that on the lines of the diagram there is a collection of labelled dots, with each dot
labelled by an element of the group G. Let it be given that if two dots occur consecutively on one
of the strings of the braid diagram, then they can be replaced by a dot labelled by the product
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of these two elements. We make no assumptions about moving dots past elementary braiding
elements (which have the appearance of one string passing over or under the other). It is easy to
see that this diagrammatic description also defines a group extending the braid group, and that
this diagrammatic group is isomorphic to GBn.

We apply this description of GBn by taking G = U(2), the 2 × 2 unitary matrices, viewing
them as local unitary transformations for quantum computing. Then we let UBn denote U(2)Bn

and take the representation of UBn to Aut(V ⊗n) that is obtained by the mapping

	 : UBn −→ Aut(V ⊗n)

defined by 	(hi(g)) = hi(g) for g in U(2) and 	(si) = I⊗i−1 ⊗ R ⊗ I⊗n−i−1, where R is the
Yang–Baxter solution discussed in theorem 2.

Recall that a quantum computer is an n-qubit unitary transformation U coupled with
rules/apparatus for preparation and measurement of quantum states to which this transformation
is applied. We then conclude from theorem 2 that

Theorem 3. Any quantum computer has its basic unitary transformation U in the image of 	.

Remark. This theorem means that, in principle, one can draw a circuit diagram for a quantum
computer that is written in the language of the extended braid group UBn. In particular, this
means that braiding relations will apply for sectors of the circuitry that are not encumbered by
local unitary transformations. Typically, there will be many such local unitary transformations.
We will investigate this braid algebraic structure of quantum computers in a sequel to this paper.
A key illustration of theorem 3 is the diagrammatic interpretation of theorem 2. This is shown
in figure 3 where we have written in diagrams an equation of the form

CNOT = (A ⊗ B)R(C ⊗ D).

Here A, B, C and D represent the local unitary matrices that are used in theorem 2 (with different
names) to express CNOT in terms of R.

In general, a unitary transformation can be written as an extended braiding diagram, with
appearances of R occupying two adjacent strands, and of local transformations occupying single
strands. Note that since R8 is the identity, theorem 3 actually says that a unitary transformation
can be built via a representation of the extension of a quotient B′

n of the braid group Bn, where
each braid generator s′

i in B′
n has order eight. It is worth investigating the algebraic structure of

B′
n. This is a topic for further research.

3.1. The algebraic Yang–Baxter equation

If R denotes a solution to the Yang–Baxter equation (not neccessarily the R of theorem 2), then
we can consider the composition r = SR, where S is the swap gate defined in section 2. If we
think of r as supported on two tensor lines, and write rij for the same matrix, now supported on
tensor lines i and j (all other lines carrying the identity matrix), then we find that theYang–Baxter
equation for R is equivalent to the following equations for rij:

ri,i+1ri,i+2ri+1,i+2 = ri+1,i+2ri,i+2ri,i+1.
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=

=
SR

r12

r    r    r    =  r    r    r
12 13 23 23 13 12

Figure 4. Algebraic Yang–Baxter equation.

The above equation is called the algebraic Yang–Baxter equation. See figure 4 for an illustration
of this relationship. In making circuit diagrams to apply theorem 1, it is useful to use the
formalism of the algebraic Yang–Baxter equation since we can then think of the phase gate
D as such a solution and use the above relation to relocate compositions of D on diffferent
tensor lines. Given a solution to the algebraic Yang–Baxter equation, plus the swap gate S, we
can again define a generalization of the braid group that includes local unitary transformations
on the single tensor lines. We will leave detailed application of this point of view to a sequel to
this paper.

4. An invariant of knots and links associated with the matrix R

A well-known relationship between braids and knots and links allows the construction of
invariants of knots and links from representations of the Artin braid group. We give here a
quick summary of these relationships and then apply them to the quantum universal matrix R,
showing that it gives rise to an interesting invariant of knots and links. The reader should note
that this section is concerned only with the classical braid group. It does not use the extensions
of the braid group that are discussed in the previous section.

At this point it is worth making a digression about the Reidemeister moves. In the 1920s
Kurt Reidemeister proved an elementary and important theorem that translated the problem of
determining the topological type of a knot or link to a problem in combinatorics. Reidemeister
observed that any knot or link could be represented by a diagram, where a diagram is a graph
in the plane with four edges locally incident to each node, and with extra structure at each node
that indicates an over-crossing of one local arc (consisting in two local edges in the graph)
with another. See figure 5. The diagram of a classical knot or link has the appearance of a
sketch of the knot; but it is a rigorous and exact notation that represents the topological type
of the knot. Reidemeister showed that two diagrams represent the same topological type (of
knottedness or linkedness) if and only if one diagram can be obtained from another by planar
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Figure 5. A knot diagram.

I

II

III

Figure 6. Reidemeister moves.

homeomorphisms coupled with a finite sequence of the Reidemeister moves illustrated in
figure 6. Each of the Reidemeister moves is a local change in the diagram that is applied as
shown in this figure.

We say that two knots or links are isotopic if one can be obtained from the other by a
sequence using any of the three Reidemeister moves (plus global topological mappings of the
diagram plane to itself).

The first significant fact relating links and braids is the

Theorem of Alexander. Every knot or link is isotopic to the closure of a braid.

The closure of a braid b, here denoted CL(b), is obtained by attaching each top strand to
the corresponding bottom strand in the fashion shown in figure 7. The closed braid is a weave
that proceeds circularly around a given axis. There are many proofs of Alexander’s theorem. The
interested reader should consult [13].

Given that every knot or link can be represented by a closed braid, it is natural to wonder
whether the classification of braids will effect a classification of the topological types of all
knots and links. The situation is more complicated than one might have expected. There are
many braids whose closure is isotopic to any given knot or link. Here are two basic methods for
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b CL(b)

Figure 7. Closing a braid to form the Borromean rings.

modifying a braid b in Bn so that the topological type of its closure does not change:

1. Let g be any braid in Bn. Then

CL(gbg−1) = CL(b),

where we use equality to denote isotopy of knots and links as described above.

2. Note that if b is in Bn, then bsn is in Bn+1. It is easy to see that

CL(b) = CL(bsn) and CL(b) = CL(bs−1
n ).

In the light of the equivalences we have just indicated, the following two moves on braids
are called the Markov moves (after Markov who enunciated the theorem we state below):

1. Markov Move 1. Replace a braid b by gbg−1, where g is another braid with the same number
of strands.

2. Markov Move 2. Replace a braid b ∈ Bn by either bsn or by bs−1
n or vice versa, replace bs±1

n

with b.

Markov theorem. Suppose that b and b′ are two braids (of possibly different numbers of strands)
with CL(b) = CL(b′). Then b′ can be obtained from b by a series of braid equivalences coupled
with applications of the Markov moves).

Remark. For proofs of the Markov theorem, see [14, 15]. See figure 9 for an illustration of
the second Markov move. Notice that in making this move we promote the braid b ∈ Bn to a
braid in Bn+1 by adding a right-most strand. Then we multiply by sn ∈ Bn+1. The closure of the
resulting braid differs by a single first Reidemeister move from the closure of b. The upshot of
this theorem is that it is possible for a trace function on a representation of the braid group to give
rise to topological information about the closure of the braid. For example, suppose that we have
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a unitary representation of the braid group arising from a unitary solution of the Yang–Baxter
equation, as described in section 3. Let the representation be denoted by

repn : Bn −→ Aut(V ⊗n).

Let

τ(b) = tr(repn(b)),

where tr(M) denotes the trace of a square matrix M. Then, since the trace of any linear mapping
satisfies tr(AB) = tr(BA), it follows that τ(gbg−1) = τ(b), and hence τ gives the same values on
braids that differ by Markov moves of type 1. We would like τ to be invariant under Markov moves
of type 2, but this is usually too much to ask. It is standard practice in the literature of link invariants
to search for a matrix η mapping V to V such that the modified trace TR(b) = tr(η⊗nrepn(b)) has
a multiplicative property under the second Markov move in the sense that TR(bsn) = αTR(b)

and TR(bs−1
n ) = α−1TR(b), where α is a invertible constant in the ring of values for the trace.

Such a function TR is called a Markov trace, and one can normalize it to obtain a function that
is an invariant of isotopy of links by defining I(b) = α−w(b)TR(b), where w(b) is the sum of the
signs of the crossings of the braid b.

In the case of our computationally universal matrix R, the bare trace τ(b) = tr(repn(b))

behaves in a very simple way under the second Markov move. We find (and will show the details
below) that

τ(bsn) =
√

2τ(b)

and

τ(bs−1
n ) =

√
2τ(b).

Note that the multiplicative factor is the same for both types of second Markov move. Instead
of making a normalizing factor from this, we can say that if two links CL(b) and CL(b′) are
isotopic, then τ(b) and τ(b′) will differ by a multiplicative factor that is some power of the square
root of two. In particular, this means that if τ(b) and τ(b′) have different signs, or if one is zero
and the other not zero, then we know that the closures of b and b′ are not isotopic.

Here is the matrix R:

R =




1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2


 .

We have

R|ab〉 = R00
ab|00〉 + R01

ab|01〉 + R10
ab|10〉 + R11

ab|11〉.
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Let

tr2(R) = �kR
bk
ak

be the partial trace of R with respect to the second tensor factor. Then

tr2(R) = (1/
√

2 + 1/
√

2)I =
√

2I,

where I denotes the 2 × 2 identity matrix and

tr2(R
−1) =

√
2I.

Recall from the previous section that

repn : Bn −→ Aut(V ⊗n)

is defined on braid generators by the equation

repn(si) = I⊗i−1 ⊗ R ⊗ I⊗n−i−1,

where I denotes the identity mapping on V . Now suppose that b ∈ Bn. We want to compute
τ(bsn). This expression requires interpretation. When we write bsn, we are taking b in Bn and
regarding it as an element of Bn+1 by adding an extra right-most strand to b. In general, by adding
strands in this way, we have standard embeddings of Bn in Bm when m � n. Working in Bn+1,
we have

repn+1(b) = repn(b) ⊗ I

and

repn+1(sn) = I⊗(n−1) ⊗ R.

Thus

τ(bsn) = tr(repn+1(bsn)) = tr((rep(b) ⊗ I)(I⊗(n−1) ⊗ R)).

From this it is easy to see that in tracing repn+1(bsn), the rightmost indices of the matrix R (in
the n + 1 tensor factor) are contracted directly with one another (since b is supported on the first
n strands). Thus the partial trace is applied to the R that appears in the representation of bsn

corresponding to sn. It follows from this that

τ(bsn) = tr(repn(b))tr2(R) = τ(b)
√

2.

Hence, for the tensor representation built from R as described in section 3, we have

τ(bsn) =
√

2τ(b)

and in like manner, we have

τ(bs−1
n ) =

√
2τ(b).

This proves the assertions we have made about the properties of τ for this R.
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Remark. In figure 10, we illustrate diagrammatically the above argument at the index level. In
this illustration, we have placed a shaded box around a braid to indicate the application of the
representation of the braid group. Thus a shaded braided box represents a matrix with upper
indices correpsponding to the upper strands on the box, and lower indices corresponding to the
lower strands on the box. The simplest instance of such a matrix is a single vertical line which
represents the identity matrix, and iconically indicates the identity of the top index with the
bottom index (hence representing the identity as a Kronecker delta).

It is a fact that shaded boxes so placed on the braids give a correct picture of the contractions
of the corresponding matrices via the convention that we contract the indices along lines that
connect free index ends between diagrammatic matrices. The figure then illustrates directly via
these diagrammatic matrices how we obtain the formula

tr(repn+1(bsn)) =
√

2tr(repn(b)).

Note that the trace of a diagrammatic matrix has exactly the same form as the closure of a braid,
since the connection of two open lines corresponds to the identification and contraction over
their respective indices.

Finally, here is the same argument using matrix algebra with indices. We use the Einstein
summation convention: summation is taken over repeated upper and lower indices. Suppose that
repn(b) = (M

a,i
b,j) where a and b are vectors of indices for the the first n − 1 factors of the tensor

product, and i and j are individual indices with values 0 or 1. Then

repn+1(b) = (M
a,i
b,jδ

r
s),

where δr
s is the 2 × 2 identity matrix. Furthermore,

repn+1(sn) = δa
bR

t,u
v,w.

Hence

repn+1(bsn) = (M
a,i
b,jR

j,u

k,w)

from which it follows that

tr(repn+1(bsn)) = tr(M
a,i
b,jR

j,u

k,w) = tr(M
a,i
b,jR

j,u

k,u),

where in the last equality we have contracted the last indices of R. Since

R
j,u

k,u =
√

2δ
j

k,

it follows that

tr(repn+1(bsn)) = tr(M
a,i
b,j

√
2δ

j

k) =
√

2tr(M
a,i
b,k) =

√
2tr(repn(b)).

This completes the explicit index verification of the behaviour of τ under the second Markov
move.

New Journal of Physics 6 (2004) 134 (http://www.njp.org/)

http://www.njp.org/


20 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Hopf Link

Figure Eight Knot

Trefoil Knot

Figure 8. Closing braids to produce Hopf link, trefoil knot and figure eight knot.

This invariant of knots and links turns out to be quite interesting. For example, it detects the
linkedness of the Borromean rings (depicted in figures 7 and 16). It gives the following values:

1. τ (unlink of three components) = 8 > 0;
2. τ (Hopf link) = 0;
3. τ (trefoil knot) = −2

√
2 < 0;

4. τ (figure-eight knot) = −4 < 0;
5. τ (Borromean rings) = −8 < 0.

Note that τ does not detect the difference between the trefoil knot, the figure-eight knot and
the Borromean rings, but it does show that the Hopf link is linked, that the Borromean rings are
linked, and that the trefoil knot and the figure-eight knot are knotted. See figure 8 for illustrations
of these knots and links. It remains to be seen how the quantum entangling properties of the
matrix R are related to the behaviour of this link invariant.

Remark on a Skein relation. In this subsection, we point out that there is a skein relation that
helps in the computation of the trace τ(b) for a braid b. A skein relation is an equation about an
invariant involving local changes at the site of a single crossing in corresponding braid or link
diagrams. The first skein relation in knot theory was discovered and utilized for the Alexander
polynomial by Conway in his remarkable paper [16]. (Conway used an idea that was implicit
in Alexander’s original paper of 1928.) The Jones polynomial and many other knot polynomial
invariants satisfy such relations.

The matrix R satisfies the equation

R + R−1 =
√

2I2,

where In denotes the 2n × 2n identity matrix. We leave it to the reader to check this fact. It is
also easy to check that

R8 = I2
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b in B3 b in B4
b s3 in B4

CL(b s3)   =  CL(b) 

Figure 9. Illustration of the second Markov move.

and that all the lower powers are non-trivial. The fact that R has finite order certainly limits its
power as a link or braid invariant. For example, we have the eight-fold periodicity

τ(sn+8
i ) = τ(sn

i )

as a direct consequence of the finite order of R. On the other hand, the identity R + R−1 = √
2I2

can be viewed as a method for simplifying the calculations for a braid. This implies the skein
relation

τ(b) + τ(b′) =
√

2τ(b′′)

when b and b′ are elements of the n-strand braid group that differ at a single crossing and b′′

is the result of replacing this crossing by an identity braid. The crossing can be interpreted as a
single instance of si for some i, and we then use repn(αsiβ) + repn(αs−1

i β) = √
2 repn(αβ).

Example 1. Here is the simplest example of this sort of computation. We work in B2 and let
s = s1:

τ(ss) + τ(ss−1) =
√

2τ(s).

Here we have τ(ss−1) = τ(I2) = 4 and τ(s) = √
2τ(I1) = 2

√
2. Hence τ(ss) = 0, as we remarked

earlier with ss the braid representative for the Hopf link (see figure 8). More generally,
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tr
2

rep
3

(b) rep

3

(b)
4

rep
4
(b s )

tr(
3

rep
4
(b s ) rep

3
(b))

= sqrt(2) (R) = sqrt(2) I

= sqrt(2)

)  =  sqrt(2) tr(

Figure 10. Illustration of the behaviour of the trace on the second Markov move.

we have

τ(sn+1) + τ(sn−1) =
√

2τ(sn)

so that

τ(sn+1) =
√

2τ(sn) − τ(sn−1).

Letting 1 denote the identity braid in B2, we then have

τ(1) = 4, τ(s) = 2
√

2, τ(s2) = 0, τ(s3) = −2
√

2,

τ(s4) = −4, τ(s5) = −2
√

2, τ(s6) = 0, τ(s7) = 2
√

2

with the periodicity

τ(sn+8) = τ(sn).

Since s7 and s3 close to knots, we see that this invariant can distinguish these two knots from one
another, but cannot tell that the closure of s7 is knotted.

Example 2. Let b = s2
1s

−1
2 s1s

−1
2 . See figure 11. The closure of b is W , a link of two components,

with linking number equal to zero. W is called the Whitehead link, after the topologist, J H C
Whitehead, who first studied its properties. We shall check that τ(b) = −4

√
2, showing that our

invariant detects the linkedness of the Whitehead link.
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b

CL(b)

W

Figure 11. Whitehead link, W = CL(b = s2
1s

−1
2 s1s

−1
2 ).

We use skein relation for the first appearance of s−1
2 from the left on the word for b. This

gives

τ(b) = −τ(s2
1s2s1s

−1
2 ) +

√
2τ(s2

1s1s
−1
2 ).

Note that

s2
1s2s1s

−1
2 = s1(s1s2s1)s

−1
2 = s1(s2s1s2)s

−1
2 = s1s2s1.

Then

τ(s1s2s1) = τ((s1s2)s1) = τ(s1(s1s2)) = τ(s2
1s2) =

√
2τ(s2

1) = 0.

Hence

τ(b) =
√

2τ(s2
1s1s

−1
2 ) =

√
2τ(s3

1s
−1
2 ) =

√
2

2
τ(s3

1) = 2(−2
√

2) = −4
√

2.

5. Quantum computation of knot invariants

Can the invariants of knots and links such as the Jones polynomial be configured as quantum
computers? This is an important question because the algorithms to compute the Jones
polynomial are known to be NP-hard, and so corresponding quantum algorithms may shed
light on the relationship of this level of computational complexity with quantum computing (see
[17]). Such models can be formulated in terms of the Yang–Baxter equation [18]–[21]. The next
paragraph explains how this comes about.
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Figure 12. A knot quantum computer.

In figure 12, we indicate how topological braiding plus maxima (caps) and minima (cups)
can be used to configure the diagram of a knot or link. This also can be translated into algebra
by the association of a Yang–Baxter matrix R (not necessarily the R of the previous sections) to
each crossing and other matrices to the maxima and minima. There are models of very effective
invariants of knots and links such as the Jones polynomial that can be put into this form [21].
In this way of looking at things, the knot diagram can be viewed as a picture, with time as
the vertical dimension, of particles arising from the vacuum, interacting (in a two-dimensional
space) and finally annihilating one another. The invariant takes the form of an amplitude for this
process that is computed through the association of the Yang–Baxter solution R as the scattering
matrix at the crossings and the minima and maxima as creation and annihilation operators. Thus
we can write the amplitude in the form

ZK = 〈CUP|M|CAP〉,
where 〈CUP | denotes the composition of cups, M is the composition of elementary braiding
matrices, and |CAP〉 is the composition of caps. We regard 〈CUP| as the preparation of this state,
and |CAP〉 as the measurement of this state. In order to view ZK as a quantum computation, M

must be a unitary operator. This is the case when the R-matrices (the solutions to theYang–Baxter
equation used in the model) are unitary. Each R-matrix is viewed as a quantum gate (or possibly
a composition of quantum gates), and the vacuum–vacuum diagram for the knot is interpreted
as a quantum computer. This quantum computer will probabilistically (via quantum amplitudes)
compute the values of the states in the state sum for ZK.

The form of the model proposed for translating the Jones polynomial to a quantum
computation is also the form of models for anyonic quantum computation (see [11],
[22]–[25]). In an anyonic model, the braiding corresponds to the motion of configurations of
particles in a two-dimensional space. These theories are directly related to quantum link invariants
and to topological quantum field theories [26]. It is hoped that quantum computing placed in the
anyonic context can be made resistant to the effects of decoherence due, in part, to the invariance
of topological structures under perturbation.
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I

δ

δ

Figure 13. A quantum process to obtain |tr(U)|.

The formalism of configuring a computation in terms of preparation and measurement in the
pattern of figure 12 can be used in very general quantum computational contexts. For example,
let U be a unitary transformation on H = V ⊗n, where V is the complex two-dimesional space
for a single qubit. Represent U as a box with n input lines at the bottom and n output lines at
the top, each line corresponding to a single qubit in an element of the tensor product H with
basis {|α〉|α is a binary string of length n}. Let |δ〉 = �α|α, α〉 ∈ H ⊗ H , where α runs over all
binary strings of length n. Note that 〈δ| is the following covector mapping H ⊗ H to the complex
numbers C:

〈δ|α, β〉 = 1 if α = β and 〈δ|α, β〉 = 0 otherwise.

Now let W = U ⊗ IH , where IH denotes the identity transformation of H to H . Then

〈δ|W |δ〉 = 〈δ|U ⊗ IH |δ〉 = 〈δ|�γU
γ
α |γ, α〉 = �αU

α
α = tr(U).

For example, 〈δ|δ〉 = 2n = tr(IH). See figure 13 for an illustration of this process.
Thus we see that we can, for any unitary matrix U, produce a quantum computational

process with preparation |δ〉 and measurement 〈δ| such that the amplitude of this process is the
trace of the matrix U divided by (

√
2)n. This means that the corresponding quantum computer

computes the probability associated with this amplitude. This probability is the absolute square
of the amplitude and so the quantum computer will have |tr(U)|2/2n as the probability of success
and hence one can find |tr(U)| by successive trials. We have proved the

Lemma. With the above notation, the absolute value of the trace of a unitary matrix U, |tr(U)|,
can be obtained to any desired degree of accuracy from the quantum computer corresponding
to U ⊗ IH with preparation |δ〉 and measurement 〈δ|, where |δ〉 = �α|α, α〉 ∈ H ⊗ H .

The proof of the lemma is in the discussion above its statement.
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6. Unitary representations and teleportation

The formalism we used at the end of the last section to describe the (absolute value of the) trace
of a unitary matrix contains a hidden teleportation. It is the purpose of this section to bring forth
that hidden connection.

First consider the state

|δ〉 = �α|α, α〉 ∈ H ⊗ H

from the last section, where H = V ⊗n and V is a single-qubit space. One can regard |δ〉 as a
generalization of the EPR state 〈00| + 〈11|.

Let |ψ〉 ∈ H be an arbitrary pure state in H . Let 〈M| be an abitrary element of the dual of
H ⊗ H and consider the possibility of a successful measurement via 〈M| in the first two tensor
factors of

|ψ〉|δ〉 ∈ H ⊗ H ⊗ H.

The resulting state from this measurement will be

〈M|[|ψ〉|δ〉].
If

〈M| = �α,βMα,β〈α|〈β|,
then

〈M|[|ψ〉|δ〉] = �α,βMα,β〈α|〈β|�γ,λψγ |γ〉|λ〉|λ〉
= �α,βMα,β�γ,λψγ〈α|γ〉〈β|λ〉|λ〉 = �α,βMα,βψα|β〉
= �β[�αMα,βψα]|β〉 = �β(M

Tψ)β|β〉 = MT|ψ〉.
Thus we have proved the

Teleportation lemma. Successful measurement via 〈M| in the first two tensor factors of

|ψ〉|δ〉 ∈ H ⊗ H ⊗ H

results in the state MT|ψ〉 where the matrix M represents the measurment state 〈M| in the
sense that

〈M| = �α,βMα,β〈α|〈β|,
and MT denotes the transpose of the matrix M.

This lemma contains the key to teleportation. Let |ψ〉 be a state held byAlice, whereAlice and
Bob share the generalized EPR state |δ〉. Alice measures the combined state |ψ〉|δ〉 and reports to
Bob that she has succeeded in measuring via 〈M| (from some list of shared transformations that
they have in common) by a classical transmission of information. By the lemma, Bob knows that
he now has access to the state MT|ψ〉. In this generalized version of teleportation, we imagine
that Alice and Bob have a shared collection of matrices M, each coded by a bit-string that can be
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|ϕ>

Μ|ϕ>

<Μ|

|δ>

Figure 14. Matrix teleportation.

transmitted in a classical channel. By convention, Alice and Bob might take the zero bit-string to
denote lack of success in measuring in one of the desired matrices. Then Alice can send Bob by
the classical channel the information of success in one of the matrices, or failure. For success,
Bob knows the identity of the resulting state without measuring it. See figure 14 for a schematic
of this process.

In the case of success, and if the matrix M is unitary, Bob can apply (MT)−1 to the transmitted
state and know that he now has the original state |ψ〉 itself. The usual teleportation scenario is
actually based on a list of unitary transformations sufficient to form a basis for the measurement
states. Let us recall how this comes about.

First take the case where M is a unitary 2 × 2 matrix and let σ1, σ2, σ3 be the three Pauli
matrices

σ1 =
[

1 0

0 −1

]
, σ2 =

[
0 1

1 0

]
, σ2 =

[
0 i

−i 0

]
.

We replace σ3 by −iσ3 (for ease of calculation) and obtain the three matrices X, Y, Z:

X =
[

1 0

0 −1

]
, Y =

[
0 1

1 0

]
, Z =

[
0 1

−1 0

]
.

Basis lemma. Let M be a 2 × 2 matrix with complex entries. Let the measuring state for M be
the state

〈M| = M00|00〉 + M01|01〉 + M10|10〉 + M11|11〉.
Let 〈XM| denote the measuring state for the matrix XM (similarly for YM and ZM). Then the
vectors

{〈M|, 〈XM|, 〈YM|, 〈ZM|}
are orthogonal in the complex vector space V ⊗ V if and only if M is a multiple of a unitary
matrixU of the form

U =
[

z w

−w̄ z̄

]

with complex numbers z and w as generating entries.
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Proof. We leave the proof of this lemma to the reader. It is a straightforward calculation. �	
This lemma contains standard teleportation procedure when one takes M = I to be the

identity matrix. Then the four measurement states

{〈I|, 〈X |, 〈Y|, 〈Z|}
form an orthogonal basis and by the teleportation lemma, they successfully transmit
{|ψ〉, XT|ψ〉, YT|ψ〉, ZT|ψ〉} respectively. Bob can rotate each of these received states back to
|ψ〉 by a unitary transformation. (Remember that states are determined up to phase.) In this
form, the lemma shows that we can, in fact, teleport any 2 × 2 unitary matrix transformation U.
We take M = U, and take the othogonal basis provided by the lemma. Then a 2-qubit classical
transmission from Alice to Bob will enable Bob to identify the measured state and he can rotate
it back to U|ψ〉.

Note that for H = V ⊗n we can consider the matrices

Tα,β = Tα(1),β(1) ⊗ · · · ⊗ Tα(n),β(n),

where α = (α(1), . . . , α(n)) and β = (β(1), . . . , β(n)) are bit-strings of length n and T0,0 = I,
T0,1 = X, T1,0 = Y , T1,1 = Z are the modified Pauli matrices discussed above. Then just as in the
above lemma, if U is a unitary matrix defined on H , then the set of measurement states 〈Tα,βU |
for the matrices Tα,βU are an orthogonal basis for H ⊗ H . Hence we can teleport the action of the
arbitrary unitary matrix U from Alice to Bob, at the expense of a transmission of 2n classical bits
of information. This means that, we can construct an arbitrary unitary transformation (hence an
idealized quantum computer) almost entirely by using quantum measurments. This result should
be compared with the results of [27, 28], which we shall do in a forthcoming paper. If Alice
and Bob coincide as observers, then there is no need to transmit the classical bits. The result
of a given measurement is an instruction to perform one of a preselected collection of unitary
transformations on the resulting state.

There are a number of lines that we will follow in susequent papers related to the points made
in this section. In particular, it is certainly of interest that one can partially teleport transformations
M that are not unitary, at the cost of having only partial information beforehand of the success of
any given measurement. In particular, this means that we could consider computing results such
as traces or generalized traces of matrices that are not unitary. In this way we could examine
computations of knot and link invariants that are based on non-unitary solutions to the Yang–
Baxter equation. All of this will be the subject of another paper. In the next section we turn to the
subject of quantum computation of link invariants based on unitary solutions to theYang–Baxter
equation.

7. Unitary representations of the braid group and the corresponding quantum computers

Many questions are raised by the formulation of a quantum computer associated with a given link
diagram configured as preparation, unitary transformation and measurement. Unitary solutions
to the Yang–Baxter equation (or unitary representations of the Artin braid group) that also give
link invariants are not so easy to come by. Here we give a unitary representation that computes
the Jones polynomial for closures of 3-braids. This representation provides a test case for the
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corresponding quantum computation. We now analyse this representation by making explicit
how the bracket polynomial [18]–[21] is computed from it.

The idea behind the construction of this representation depends upon the algebra generated
by two single qubit density matrices (ket-bras). Let |v〉 and |w〉 be two qubits in V , a complex
vector space of dimension two over the complex numbers. Let P = |v〉〈v| and Q = |w〉〈w| be
the corresponding ket-bras. Note that

P2 = |v|2P, Q2 = |w|2Q,

PQP = |〈v|w〉|2P, QPQ = |〈v|w〉|2Q.

P and Q generate a representation of the Temperley–Lieb algebra [21]. One can adjust parameters
to make a representation of the three-strand braid group in the form

s1 
−→ rP + sI, s2 
−→ tQ + uI,

where I is the identity mapping on V and r, s, t, u are suitably chosen scalars. In the following,
we use this method to adjust such a representation so that it is unitary. Note that it is possible for
the representation to be unitary even though its mathematical ‘parts’ P and Q are not unitary.
Note also that the resulting representation is made entirely from local unitary transformations, so
that while there is measurement of topological entanglement, there is no quantum entanglement
of any of the corresponding quantum states.

The representation depends on two symmetric but non-unitary matrices U1 and U2 with

U1 =
[
d 0

0 0

]
and U2 =

[
d−1

√
1 − d−2

√
1 − d−2 d − d−1

]
.

Note that U2
1 = dU1 and U2

2 = dU2. Moreover, U1U2U1 = U1 and U2U1U2 = U1. This is an
example of a specific representation of the Temperley–Lieb algebra [18, 21]. The desired
representation of the Artin braid group is given on the two braid generators for the three-strand
braid group by the equations:

(s1) = AI + A−1U1, (s2) = AI + A−1U2.

Here I denotes the 2 × 2 identity matrix.
For any A with d = −A2 − A−2, these formulas define a representation of the braid

group. With A = eiθ, we have d = −2 cos(2θ). We find a specific range of angles |θ| � π/6
and |θ − π| � π/6 that give unitary representations of the three-strand braid group. Thus a
specialization of a more general representation of the braid group gives rise to a continuum
family of unitary representations of the braid group.

Note that tr(U1) = tr(U2) = d while tr(U1U2) = tr(U2U1) = 1. If b is any braid, let I(b)

denote the sum of the exponents in the braid word that expresses b. For b a three-strand braid, it
follows that

(b) = AI(b)I + �(b),

where I is the 2 × 2 identity matrix and �(b) is a sum of products in the Temperley–Lieb algebra
involving U1 and U2. Since the Temperley–Lieb algebra in this dimension is generated by I, U1,
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U2, U1U2 and U2U1, it follows that the value of the bracket polynomial of the closure of the braid
b, denoted 〈b〉, can be calculated directly from the trace of this representation, except for the part
involving the identity matrix. The result is the equation

〈b〉 = AI(b)d2 + tr(�(b)),

where b denotes the standard braid closure of b, and the sharp brackets denote the bracket
polynomial. From this we see at once that

〈b〉 = tr((b)) + AI(b)(d2 − 2).

It follows from this calculation that the question of computing the bracket polynomial for
the closure of the three-strand braid b is mathematically equivalent to the problem of computing
the trace of the matrix (b). To what extent can our quantum computer determine the trace of
this matrix? We have seen just before this subsection that a quantum computation can determine
the absolute value of the trace by repeated trials. This shows that a major portion of the Jones
polynomial for three-strand braids can be done by quantum computation.

7.1. The invariant based on R

A second example is given by the invariant discussed in the previous section. In that case, we
have the formula

τ(b) = tr(repn(b))

taken up to multiples of the square root of 2, and the matrix repn(b) is unitary for any braid b

in an n-strand braid group for arbitrary positive integer n. This invariant can be construed as the
trace of a unitary matrix for a quantum computation. Since, as we have seen, knowledge of the
invariant often depends upon knowing the global sign of the trace of repn(b), it is not enuough
to just compute the absolute value of this trace. Nevertheless, some topological information is
available just from the absolute value.

8. Quantum entanglement and topological entanglement

The second question about unitary solutions to the Yang–Baxter equation is the matter of
understanding their capabilities in entangling quantum states. We use the criterion that

φ = a|00〉 + b|01〉 + c|10〉 + d|11〉
is entangled if and only if ad − bc �= 0. This criterion is generalized to higher dimensional pure
states in our papers [1, 2], [29]–[31].

In [1, 2, 21], we discovered families of unitary solutions to the Yang–Baxter equation that
detect topological linking if and only if the gates corresponding to these solutions can entangle
quantum states.

Is there a deeper connection between topological entanglement and quantum entanglement?
We believe that more exploration is called for before a definitive answer to this question can be
formulated. We need more bridges between quantum topology and quantum computation.
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The matrix

R =




1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2




is a unitary solution of the Yang–Baxter equation; and it is highly entangling for quantum states.
It takes the standard basis for the tensor product of two single qubit spaces to the Bell basis.
On the topological side, R generates a new and non-trivial invariant of knots and links. On the
quantum side, R is a universal gate at the same level as CNOT , as we showed in theorems 2
and 3. Thus R is a good example of a transformation that can be examined fruitfully in both the
quantum and the topological contexts.

8.1. Linking numbers and the matrix R′

The unitary R′ matrix that we have considered in this paper gives rise to a non-trivial invariant
of links. The discussion in this section summarizes our treatement of this invariant in [1]. Here
we discuss the invariant associated with the specialization of R′ with

R′ =




a 0 0 0

0 0 c 0

0 c 0 0

0 0 0 a


 .

The invariant is calculated from a state summation associated with the matrix R′ and can
be shown to have the form

ZK = 2(1 + (c2/a2)lk(K))

for two-comonent links K, where lk(K) denotes the linking number of the two components of
K. We show that for this specialization of the R′ matrix the operator R′ entangles quantum states
exactly when it can detect linking numbers in the topological context.

Here is a description of the state sum: label each component of the diagram with either 0
or 1. Take vertex weights of a or c for each local labelling of a positive crossing as shown in
figure 15. For a negative crossing (obtained by interchanging over-crossing and under-crossing
segments at a positive crossing) the corresponding labels are 1/a and 1/c (which are the
complex conjugates of a and c repsectively, when a and c are unit complex numbers). Let
each state (labelling of the diagram by zeros and ones) contribute the product of its vertex
weights. Let �(K) denote the sum over all the states of the products of the vertex weights. Then
one can verify that Z(K) = a−w(K)�(K), where w(K) is the sum of the crossing signs of the
diagram K.

For example, view figure 16. Here we show the zero–one states for the Hopf link H .
The 00 and 11 states each contribute a2, while the 01 and 10 states contribute c2. Hence
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Figure 15. Positive crossing weights.

Figure 16. Zero–one states for the Hopf link.

�(H) = 2(a2 + c2) and

a−w(H)�(H) = 2(1 + (c2/a2)1) = 2(1 + (c2/a2)lk(H )),

as expected.
The calculation of the invariant in this form is an analysis of quantum networks with cycles

in the underlying graph. In this form of calculation we are concerned with those states of the
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Figure 17. Borromean rings.

network that correspond to labellings by qubits that are compatible with the entire network
structure. One considers only quantum states that are compatible with the interconnectedness of
the network as a whole.

8.2. The question about invariants and entanglement

We have seen that there are examples, such as the one given above, where topological
entanglement measures, and measures of quantum entanglement are related to one another.
In that example we found the solution R′ to the Yang–Baxter equation would, as an operator on
states, entangle quantum states exactly when the invariant could measure linking numbers. We
have also discussed the invariant assoicated with the universal gate R and shown that it detects
many topological situations that are quite subtle. For example, it can measure the linkedness
of the Borromean rings and the linkedness of the Whitehead link, both of which are situations
where the linking numbers are zero. And yet, we have also given an example, in the previous
section, of a representation of the braid group on three strands, B3 (not constructed from a
solution to the Yang–Baxter equation), that produces the Jones polynomial for closures of three-
stranded braids, but is defined on a single qubit. Since this last representation acts only on
one qubit, there is no entanglement associated with it. Therefore it remains, at this writing,
unclear just what is the relationship between the quantum entangling properties of braid group
representations and their ability to measure topological entanglement. In a sequel to this paper
we will concentrate this analysis just on invariants assoicated with solutions to the Yang–Baxter
equation.

8.3. The Aravind hypothesis

Link diagrams can be used as graphical devices and holders of information. In this vein Aravind
[32] proposed that the entanglement of a link should correspond to the entanglement of a state.
Observation of a link would be modelled by deleting one component of the link. A key example
is the Borromean rings. See figures 7 and 17.

Deleting any component of the Boromean rings yields a remaining pair of unlinked rings.
The Borromean rings are entangled, but any two of them are unentangled. In this sense, the
Borromean rings are analogous to the GHZ state |GHZ〉 = (1/

√
2)(|000〉 + |111〉). Observation

in any factor of the GHZ yields an unentangled state. Aravind points out that this property is
basis dependent. We point out that there are states whose entanglement after an observation is
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a matter of probability (via quantum amplitudes). Consider for example the state

|ψ〉 = (1/2)(|000〉 + |001〉 + |101〉 + |110〉).
Observation in any coordinate yields an entangled or an unentangled state with equal probability.
For example,

|ψ〉 = (1/2)(|0〉(|00〉 + |01〉) + |1〉(|01〉 + |10〉)),
so that projecting to |0〉 in the first coordinate yields an unentangled state, while projecting to
|1〉 yields an entangled state, each with equal probability.

New ways to use link diagrams must be invented to map the properties of such states. We take
seriously the problem of classifying the topological entanglement patterns of quantum states. We
are convinced that such a classification will be of practical importance to quantum computing,
distributed quantum computing and relations with quantum information protocols.

9. Braiding and topological quantum field theory

The purpose of this section is to discuss in a very general way how braiding is related to topological
quantum field theory and to the enterprise [24] of using this sort of theory as a model for
anyonic quantum computation. The ideas in the subject of topological quantum field theory are
well expressed in the book [33] by Michael Atiyah and the paper [26] by Edward Witten. The
simplest case of this idea is C N Yang’s original interpretation of the Yang–Baxter equation [34].
Yang articulated a quantum field theory in one dimension of space and one dimension of time in
which the R-matrix (meaning here any matrix satisfying theYang–Baxter equation) was regarded
as giving the scattering ampitudes for an interaction of two particles whose (let us say) spins
corresponded to the matrix indices so that Rcd

ab is the amplitude for particles of spin a and spin b

to interact and produce particles of spin c and d. Since these interactions are between particles in
a line, one takes the convention that the particle with spin a is to the left of the particle with spin
b, and the particle with spin c is to the left of the particle with spin d. If one follows the braiding
diagram for a concatenation of such interactions, then there is an underlying permutation that is
obtained by following the braid strands from the bottom to the top of the diagram (thinking of
time as moving up the page).Yang designed theYang–Baxter equation so that the amplitudes for
a composite process depend only on the underlying permutation corresponding to the process
and not on the individual sequences of interactions. The simplest example of this is the diagram
for the Yang–Baxter equation itself as we have shown it in figure 1.

In taking over the Yang–Baxter equation for topological purposes, we can use the same
intepretation, but think of the diagrams with their under- and over-crossings as modelling events
in a spacetime with two dimensions of space and one dimension of time. The extra spatial
dimension is taken in displacing the woven strands perpendicular to the page, and allows us to
use both braiding operators R and R−1 as scattering matrices. Taking this picture to heart, one can
add other particle properties to the idealized theory. In particular, one can add fusion and creation
vertices where in fusion two particles interact to become a single particle and in creation one
particle changes (decays) into two particles. Matrix elements corresponding to trivalent vertices
can represent these interactions. See figure 18.

Once one introduces trivalent vertices for fusion and creation, there is the question of how
these interactions will behave with respect to the braiding operators. There will be a matrix
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Figure 18. Creation and fusion.

= R

Figure 19. Braiding.

=

Figure 20. Intertwining.

Q

Figure 21. Recoupling.

expression for the compositions of braiding and fusion or creation as indicated in figure 19.
Here we will restrict ourselves to showing the diagrammatics with the intent of giving the reader
a flavour of these structures. It is natural to assume that braiding intertwines with creation as
shown in figure 20 (similarly with fusion). This intertwining identity is clearly the sort of thing
that a topologist will love, since it indicates that the diagrams can be interpreted as embeddings
of graphs in three-dimensional space. Thus the intertwining identity is an assumption like the
Yang–Baxter equation itself, that simplifies the mathematical structure of the model.

It is to be expected that there will be an operator that expresses the recoupling of vertex
interactions as shown in figure 21 and labelled by Q. The actual formalism of such an operator
will parallel the mathematics of recoupling for angular momentum. See for example [35]. If one
just considers the abstract structure of recoupling, then one sees that for trees with four branches
(each with a single root) there is a cycle of length five as shown in figure 22. One can start with
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Q
Q

Q

Q

Q

Figure 22. Pentagon identity.

=

Q

Q

Q

R

R

R

Figure 23. Hexagon identity.

any pattern of three vertex interactions and go through a sequence of five recouplings that bring
one back to the same tree from which one started. It is a natural simplifying axiom to assume
that this composition is the identity mapping. This axiom is called the pentagon identity.

Finally, there is a hexagonal cycle of interactions between braiding, recoupling and the
intertwining identity as shown in figure 23. One says that the interactions satisfy the hexagon
identity if this composition is the identity.

A three-dimensional topological quantum field theory is an algebra of interactions that
satisfies the Yang–Baxter equation, the intertwining identity, the pentagon identity and the
hexagon identity. There is no room in this summary to detail the remarkable way that these
properties fit into the topology of knots and three-dimensional manifolds. As the reader can
see, a three-dimensional TQFT is a highly simplified theory of point particle interactions in
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Q Q
-1

-1

R

B = Q   RQ

Figure 24. A more complex braiding operator.

(2 + 1)-dimensional spacetime. It can be used to articulate invariants of knots and links and
invariants of three manifolds. The reader interested in the SU(2) case of this structure and
its implications for invariants of knots and three manifolds can consult [20], [35]–[38]. One
expects that physical situations involving 2 + 1 spacetime will be approximated by such an
idealized theory. It is thought for example that aspects of the quantum Hall effect will be related
to topological quantum field theory [39]. One can imagine a physics where the space is two-
dimensional and the braiding of particles corresponds to their exchanges as though circulating
around one another in the plane. Such particles that, unlike fermions, do not just change the
amplitude by a sign under interchange, but rather by a complex phase or even a linear combination
of states, are called anyons. It is hoped that TQFT models will describe applicable physics. One
can think about the possible applications of anyons to quantum computing. The TQFTs then
provide a class of anyonic models where the braiding is essential to the physics and to the
quantum computation. We have given a sketch of this approach here to give the reader a picture
of one of the possibilities of using braiding in quantum computing.

The key point in the application and relationship of TQFT and quantum information theory
is, in our opinion, contained in the structure illustrated in figure 24. There we show a more
complex braiding operator, based on the composition of recoupling with the elementary braiding
at a vertex. (This structure is implicit in the Hexagon identity of figure 23.) The new braiding
operator is a source of unitary representations of braid group in situations (which exist) where
the recoupling transformations are themselves unitary. This kind of pattern is implicitly utilized
in the work of Freedman and collaborators [11], [22]–[25] and in the case of classical angular
momentum formalism has been dubbed a ‘spin-network quantum simulator’ by Marzuoli and
Rasetti [40].

10. Discussion

It is natural to expect relationships between topology and quantum mechanics. For example,
Dirac [41] described the relationship between an observer and a fermion by using the properties
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of twisted belts embedded in three-dimensional space. These properties vividly portray the
consequences of the fact that SU(2) double covers SO(3). The rotation group SO(3) and
the unitary group SU(2) are involved since a rotation of the observer is mapped to a unitary
transformation of the wave function. The topology of the belt gives a direct way to image the
properties of this connection, with one full rotation changing the sign of the wave function, while
two full rotations do not change that sign. In the topological picuture, that relationship between
one object and another object rotated relative to the first object is depicted by a belt connecting
them. Topological properties of the belt mimic the orientation–entanglement relation.

How might such relationships between topology and quantum mechanics impinge upon
quantum computing? The Dirac string trick suggests that topology may enter in the structure
of non-locality and entanglement. On the quantum computing side, we know many uses
for entangled states (e.g. teleportation protocols); and one wants to understand the role of
entanglement in the efficiency of computing procedures. Entanglement in quantum mechanics
and entanglement (linking and knotting) in topology can be related in a number of ways that
give rise to a host of research questions.

We would like to state some general properties of this quest for relationship between
topology and quantum mechanics: it is normally assumed that one is given the background
space over which quantum mechanics appears. In fact, it is the already given nature of this space
that can make non-locality appear mysterious. In writing |φ〉 = (|01〉 + |10〉)/√2, we indicate
the entangled nature of this quantum state without giving any hint about the spatial separation
of the qubits that generate the first and second factors of the tensor product for the state. This
split between the properties of the background space and properties of the quantum states is an
artifact of the rarefied form given to the algebraic description of states, but it also points out that
it is exactly the separation properties of the topology on the background space that are implicated
in a discussion of non-locality.

Einstein, Podolsky and Rosen might have argued that if two points in space are separated by
disjoint open sets containing them, then they should behave as though physically independent.
Such a postulate of locality is really a postulate about the relationship of quantum mechanics
to the topology of the background space. The Dirac string trick can be understood in a similar
manner. In this way, we see that discussions of non-locality in quantum mechanics are in fact
discussions of the relationship between properties of the quantum states and properties of the
topology of the background space. Subtle questions related to metric and change of metric give
rise to the well-known problems of quantum gravity (since general relativity must take into
account the subtleties of the spacetime metric and the topology of spacetime).

Approaches such as Roger Penrose’s spin networks and the more recent work of John
Baez, John Barrett, Louis Crane, Lee Smolin, and others suggest that spacetime structure should
emerge from networks of quantum interactions occurring in a pregeometric or process phase of
physicality. In such a spin network model, there would be no separation between topological
properties and quantum properties. We intend to carry this discussion to the spin network or to
the spin foam level. It is our aim to deepen the discussion of topology and quantum computing
to a level where this can be done in a uniform manner.

The spin network level is already active in topological models such as the Jones polynomial,
the so-called quantum invariants of knots, links and three-manifolds, topological quantum field
theories [26, 33], and related anyonic models for quantum computing [11, 22, 23]. For example,
the bracket model [18]–[21] for the Jones polynomial can be realized by generalization of the
Penrose SU(2) spin nets to the quantum group SU(2)q.
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Since the advent of knot invariants such as the Jones polynomial, spin network studies have
involved q-deformations of classical spin networks and the corresponding topological properties.
These q-deformations are, in turn, directly related to properties of q-deformed Lie algebras
(quantum groups, Hopf algebras) containing solutions to theYang–Baxter equation. Solutions to
the Yang–Baxter equation are maps R : V ⊗ V −→ V ⊗ V on the tensor product of two vector
spaces that represent topological braiding.

A direct question important for us is the determination of unitary solutions to the Yang–
Baxter equation, and the investigation of both their topological properties and their quantum
information properties. For the latter we want to know what role such solutions (matrices) can
play in quantum computing. Specific questions are how such a matrix can be used in a quantum
computational model for a link invariant, and can the matrix in question map unentangled states
to entangled states. Some of these specific phenomena have been discussed in this paper. For
the reader interested in pursuing these ideas further, we recommend the following as additional
reading: [42]–[52].
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