
 
Here you will find the lecture by Professor SquarePunkt, 
followed by a discussion of its contents. 
L.K. 

 
############################################### 

Cantor's Demise  
by Professor Hilbert Squarepunkt 

 
We have seen how Cantor's diagonal argument can be used to 
produce new elements that are not on a listing of elements of a 
certain type. For example there is no complete list of all Left-Right  
sequences of the form A1A2A3... where An = L or R and two such 
sequences A and B are said to be equal when An = Bn for all 
n=1,2,.... We proved this by assuming that we had a list of such 
sequences A(1),A(2),... such that A(n)m denotes the m-th element of 
the sequence A(n). Then we constructed the diagonal sequence D 
defined by Dn = A(n)n. And we made the flipped diagonal sequence 
Flip(D) from this by defining Flip(D)n = L when Dn = R and  
Flip(D)n = R when Dn = L. Cantor argues that Flip(D) is necessarily a 
new sequence not equal to any Dn that is on our list. The proof is 
clear, since Flip(D) is constructed to differ from each sequence in 
the list in at least the n-th place for D(n).  
 
Now Cantor's intent was to prove that the real numbers are 
uncountable (not listable) and I have discovered a fatal flaw in his 
argument! Let me explain. I will use the binary notation for real 
numbers between 0 and 1. Thus 
.0= 0 
.1 = 1/2 
.01 = 1/4 
.001 = 1/8 
.0001 = 1/16 and generally 
.0000...01 = 1/2n where there are n-1 zeros before the 1. 
Then real numbers between zero and one are represented by  
binary analogues of decimals like .101001000100001... 
Note that .0111111... = .1000.... 
since 1/4 + 1/8 + 1/16 + ... = 1/2. 
  
We apply the Cantor argument to lists of binary numbers in the 
same way as for L and R.  In fact L and R are analogous to 0 and 1. 
For example if we had the list 
(1) .10111... 



(2) .10101010... 
(3) 0.1110110011... 
... 
Then we would make the diagonal sequence 
D = .101 ... 
and flip it to form 
Flip(D) = 0.010... 
Just as we argued before Flip(D) is not on the list, and so  
the list is incomplete. 
 
Here is a counterexample to Cantor's argument! 
Consider the following list: 
(1) .10000000.... 
(2) .00100... 
(3) .0001000... 
(4) .00001000... 
(5) .000001000... 
... 
As you can see this is a very definite list. The first element of the list 
is .10000... and subsequent members of the list consist in n-zeros, a 
1 and then zeros forever. Ok? Now the diagonal element is 
D = .1000... and  
Flip(D) = .01111... 
But .0111... = .10000 
and so Flip(D) = D = .1000... and so  
Flip(D) = the first element of our list! 
Flip(D) is not a new number outside he list. 
This is a counterexample to Cantor! 
 
Gentleman, Ladies: Cantor lies in ruin before us. His theory is a 
shambles. No longer can we speak of higher infinities. Mathematics 
must be revised from the ground up and built anew. I exhort you to  
join me in this grand project of reconstruction of the truth. 
################################################## 
 
Please comment on Professor Squarepunkt's lecture. Do you agree 
with him? What has he actually shown? Can you find a proof that 
the real numbers are uncountable in binary, or is Squarepunkt right 
and we will have to start all over again with the foundations. (The 
idea behind Squarepunkt's lecture is due to a real mathematician - 
Nathaniel Hellerstein.) 
 
------------------------------------------------------------------------------------- 



COMMENTARY 
by LK 

 
Professor Squarepunkt is right that there is a counterexample to the 
diagonal argument in binary. This does not mean that we cannot 
prove that the real numbers are uncountable. We can do this in 
various ways. Please read the discussion below. 
 
Let the set of real numbers greater than or equal to 0 and less than 
1 be denoted by U.  Lets use the notation [a1,a2,a3,...] for the binary 
representation of a real number greater than or equal to  0 less than  
1.  Thus [1,0,1,0,1,...] = .10101...  
 
Let ~ 0 = 1 and ~ 1 = 0. Then define  

Flip[a1,a2,...] = [~ a1, ~ a2, ...]. 
Thus Flip[1,0,1,1,1,0,...] = [0,1,0,0,0,1,...]. 
 
Now lets think about representing numbers. We have that  
[1,1,1,1,...] = .111... = 1.000... and so we will not allow the sequence 
[1,1,1,...] since it represents 1, and we want to think about just the 
numbers r with r >= 0 and r <1. We have called this set U. 
 
We also have that [0,1,1,1,...] = [1,0,0,0,...] since 
.0111... = .1000... More generally, we have 
[a1,a2,...,an, 0,1,1,1,...] = [a1,a2,...,an,1,0,0,0,...]. 
Note that we consider infinite tails of 1's and there must be a first 
place where there is a 0. That is the role of the 0 in the above 
formula. 
 
Two sequences of 0's and 1's represent the same real number 
in U if and only if they are identical term by term as sequences, or if 
one can be obtained from the other by eliminating an infinite tail of 
1's as above. It would take us too far afield to verify this statement, 
but please remember that, as a real number the sequence 
[a1,a2,...] means the limit of the infinite sequence 

a1/2 + a2/4 + a3/8 + .. . + an/2n + ... 
where an= 0 or 1 are regarded as integers 0 or 1 and the limit is a 
limit of this sum of fractions. 
 
So now lets ask: When can Flip[a] = a as real numbers? 
We can assume that a is represented uniquely by a sequence that 
does not have an infinite tail of zeros.  
 



Lemma2. The only solution to Flip[a] = a in U is a = [1,0,0,0,...]. 
Proof. Since Flip[a] differs from a in every entry as a sequence, it 
follows that in order for Flip[a] to equal a in U that Flip[a] must end 
in an infinite sequence of 1's. Thus Flip[a] must have the form 
Flip[a] = [a1,a2,...,an,0,1,1,1,...] as a sequence, and so  
a = [~a1,...,~an,1,0,0,0,...] as a sequence. We have that  
Flip[a] = [a1,a2,...,an,0,1,1,1,...] = [a1,a2,...,an, 1,0,0,0,...]. 
Thus the only way that we can have Flip[a] = a is when the sequence 
a1,a2,...an is empty. Then we have a = [1,0,0,0,...] and  
Flip[a] = [ 0,1,1,1,...] = [1,0,0,0,...]. QED. 
 
Given any list L of real numbers from U we write them 
as a(1),a(2),a(3),... where each a(m) is an infinite binary string: a(n) 
= [a(n)1,a(n)2, a(n)3,...]. For a given list, define the diagonal D by 
the formula Dn = ~ a(n)n. 
This defines Cantor's diagonal for any n. 
 
From now on, assume that we are discussing lists such that every 
element on the list is represented by a sequence without  an infinite 
tail of zeros. All real numbers can be represented this way by our 
previous discussion. We shall say that a list is incomplete if it does 
not contain every real number in U. 
 
As we have seen, when we make the diagonal of a list L, it may 
happen that Flip(D) is on the list. This is Squarepunkt's example. 
But consider: How can Flip(D) be on the list? As a sequence Flip(D) 
differs from every sequence on the list. Thus Flip(D) on the list 
means that Flip(D), after elimination of a tail of ones, is on the list. 
(This is what happened in Squarepunkt's example.) But, in order for 
Flip(D) to have an infinite tail of ones, D must have an infinite tail 
of zeros.  
 
Lemma3. Let L be a list of real numbers in U such that each 
representative in L has no infinite tail of 1's. Let D be the diagonal 
of this list. If D has an infinite tail of zeros, then it is possible for 
Flip(D) to be on the list. In fact we have 
D= [a(1)1, a(2)2,..., a(n)n, 1, 0,0,0,0,0,0,...] for some n, 
where the 1 is the first occurence in D of  1 just before the infinite 
tail of zeros. We then have 
Flip(D) = [~a(1)1, ~a(2)2,..., ~a(n)n, 0, 1,1,1,1,1,1,...] 
= [~a(1)1, ~a(2)2,..., ~a(n)n, 1,0,0,0,0,0,0,...]. 
One can manufacture lists where Flip(D) is on the list. 
Proof. Omitted. // 



 
Example.  
a(1) = [1,0,0,0,0,0,0,...] 
a(2) = [0,1,0,0,0,0,0,...] 
a(3) = [0,0,1,0,0,0,0,...] 
a(4) = [0,0,0,0,1,0,0,...] 
a(5) = [0,0,0,0,0,1,0,...] 
... 
Then D=[1,1,1,0,0,0,...] and  
Flip(D) = [0,0,0,1,1,1,...] = [0,0,1,0,0,0,...] = a(3). 
 
Since we can make so many examples of infinite binary lists for 
which the diagonal process does not work, it makes sense to take a 
different approach to the problem. We already know (by a correct 
diagonal argument) that the set of all sequences of 0's and 1's is 
uncountable. U is in one-to-one correspondence with a subset of 
those sequences. As we have discussed above, the U-subset is the set 
of sequences that do not have an infinite tail of 1's. Any such 
sequence corresponds to a unique real number. Let S denote all 
possible sequences of 0's and 1's. Then we have remarked that 
U = S - T where 
T = all sequences with an infinite tail of 1's. 
 
Lemma. T is countable. 
Proof. You can list the elements of T by first listing all seqences 
where the tail begins immediately, then list all sequences where the 
tail begins at the second place, then where the tail begins at the 
third place and so on. Each of these is a finite list. Thus T is 
countable. QED. 
 
Lemma. U is uncountable. 
Proof. S is uncountable. And removing a countable set from an 
uncountable set leaves an uncountable set as a remainder. To see 
this, suppose that a set A is the disjoint union of sets B and C with 
both B and C countable. Then certainly A is countable. So if we know 
that A is uncountable and that A  is the disjoint union of B and C 
with C countable, then it follows that B is uncountable. In this way 
our knowledge that S is uncountable implies that U is also 
uncountable.  
QED. 
 
Discussion 



One can think about the Cantor diagonal argument for all the 0,1 
sequences and then use the special properties of the real number 
sequences to single them out in one-to-one correspondence with a 
subset of all 0-1 sequences. We showed that the complement of this 
subset is countable and hence that U is uncountable. With that we 
see that Professor Squarepunkt has given us a very interesting class 
of examples, but he has not created a contradiction with Cantor's 
results. 
 
On the other hand, look at Cantor's basic result:  
 
Cantor's Theorem. For any set X, the cardinality of the power set 
P(X) is greater than the cardinality of X. 
Proof. Let F:X ----> P(X). We prove that F is not surjective by 
exhibiting the set C = {x | x is in X and x is not in F(x)}. For if x is in 
F(x) then x is not in C, and if x is not in F(x) then x is in C. So no 
F(x) can be equal to C. 
QED. 
 
The result is so influential and the proof so short that the situation 
is really quite startling. Cantor's proof is the door to ever-larger 
sizes of infinity. Before Cantor, one would not have suspected this 
infinite structure to infinity. Probably many mathematicians would 
have assented to a notion of infinity, but not to infinitely many 
different sizes of infinity!  
 
The Halting Problem 
New perspectives arise as one begins to examine the form of 
Cantor's argument in different contexts.   
 
For example, consider making lists of algorithms. You can think of 
an algorithm as a computer program written in some fixed language. 
I am concerned with algorithms A such that if you give A a natural 
number, then A will run for a while and eventually stop and output 
A(n) = 0 or 1. For different n, A(n) may have different values.  The 
key property that we assume for A is that given an input n, A will 
STOP after a finite amount of time and give the value of A(n). It may 
take longer for some numbers n and less time for others, but it 
always does stop. We call A a halting algorithm. Can we make a list 
of all such algorithms? 
 
Certainly we can make a list of all programs that look like halting 
algorithms. This is just a matter of writing down small programs 



first and larger ones later. But to check whether an algorithm can 
halt may be hard. You need to know how it behaves for an infinite 
number of inputs from N = {1,2,3,...}. So it would be good to  
theorize about the countability of such algorithms. 
 
Lets suppose that we have a countable list of algorithms 
A[1],A[2],A[3],... 
The output of A[m] for input n will be denoted by A[m](n). 
 
Then since the output is 0 or 1 we can use ~ 0 = 1 and ~ 1 = 0 as 
before. Now define a new algorithm B by the following formula 
B(n) = ~ A[n](n). 
 
We have applied the Cantor diagonal process to the list of 
algorithms. And the new algorithm B is certainly not on the list, 
since its behaviour is different from all the algorithms on the list. 
If the computer language for the algorithms is rich enough to 
express B, then we must conclude that there is no way to make a list 
of all the halting algorithms. 
 
This means that in the context of a sufficiently rich language for 
algorithms the problem of determining whether a given 
program/algorithm halts is undecideable. There can be no single 
algorithm that takes programs as its input and decides if these 
programs halt. If there were such a decision procedure for halting, 
then we could list all the halting algorithms. Just list all 
grammatically correct alogorithm/programs and test each one to see 
if it halts with the magic halting test. Well the Cantor diagonal 
argument shows us that the magic test for halting does not exist. 
The halting problem is undecideable. 
 
We have shown that the set of halting algorithms is uncountable 
since they cannot be listed. But does this mean that there are MORE 
of them than the natural numbers? I would say not, since after all, 
whatever these algorithms are they are a subcollection of all 
programs and the set of all programs in a given language is 
countable. Thus we see that the phenomenon of uncountablity can 
be modeled inside a countable context. This DOES mean that we 
should take all our talk about the SIZES of infinities with a grain of 
salt. The mathematical results are correct. How we think about them 
is open for discussion. 
 
 


