Discrete Calculus
 by Louis H. Kauffman

0 . Notational Warning. In these notes x^{k} equals the k-th power of x , but $\mathrm{x}^{(k)}=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2) \ldots(\mathrm{x}-\mathrm{k}+1)$. Thus
$x^{(0)}=1$
$x(1)=x$
$x^{(2)}=x(x-1)$
$x^{(3)}=x(x-1)(x-2)$
and so on.

1. We are given a function $f(n)$, defined on the natural numbers, possibly including 0 in its domain.
2. Define the discrete derivative (difference operator) by the formula

$$
\Delta f(n)=f(n+1)-f(n) .
$$

For example, if $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}$ then $\Delta \mathrm{f}(\mathrm{n})=(\mathrm{n}+1)^{2}-\mathrm{n}^{2}=2 \mathrm{n}+1$.
3. Note that if $n(k)=n(n-1)(n-2) \ldots(n-k+1)$, then

$$
\Delta \mathrm{n}(\mathrm{k})=\mathrm{k} \mathrm{n}(\mathrm{k}-1) .
$$

For example,

$$
\begin{gathered}
\Delta \mathrm{n}(3)=\Delta[\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)] \\
=(\mathrm{n}+1)(\mathrm{n})(\mathrm{n}-1)-\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \\
=\mathrm{n}(\mathrm{n}-1)[(\mathrm{n}+1)-(\mathrm{n}-2)] \\
=3 \mathrm{n}(\mathrm{n}-1) \\
=3 \mathrm{n}(2) .
\end{gathered}
$$

4. Theorem. Suppose that $\Delta F(n)=\Delta G(n)$ for all $n=0,1,2, \ldots$, then $F(n)=G(n)+k$ for a constant k that is independent of n.

Proof. Let $\mathrm{k}=\mathrm{F}(0)-\mathrm{G}(0)$. Then the theorem is true for $\mathrm{n}=0$. For $\mathrm{n}=1$ we have $\mathrm{F}(1)-\mathrm{F}(0)=\mathrm{G}(1)-\mathrm{G}(0)$ since $\Delta \mathrm{F}(0)=\Delta \mathrm{G}(0)$.

Hence $F(1)-G(1)=F(0)-G(0)=k$. This proves the Theorem for $\mathrm{n}=1$. Now suppose we have proved the Theorem for $\mathrm{n}<=\mathrm{N}$. That is, we assume that for $\mathrm{n}<=\mathrm{N}, \mathrm{F}(\mathrm{n})-\mathrm{G}(\mathrm{n})=\mathrm{k}$.
Then, since $\Delta F(N)=\Delta G(N)$, we have $F(N+1)-F(N)=G(N+1)-G(N)$. Hence $\mathrm{F}(\mathrm{N}+1)-\mathrm{G}(\mathrm{N}+1)=\mathrm{F}(\mathrm{N})-\mathrm{G}(\mathrm{N})=\mathrm{k}$. This completes the proof of the Theorem by induction. //
5. Problem: Suppose $\Delta F(n)=n^{2}$. Find all such $F(n)$.

Solution. We know $\Delta n^{(3)}=3 n(n-1)=3 n^{2}-3 n$.
And we know that $\Delta \mathrm{n}(2)=2 \mathrm{n}(1)=2 \mathrm{n}$. Thus
$\Delta\left[(1 / 3) n^{(3)}+(1 / 2) n(2)\right]=n^{2}$.
Therefore $\mathrm{F}(\mathrm{n})=(1 / 3) \mathrm{n}^{(3)}+(1 / 2) \mathrm{n}^{(2)}+\mathrm{k}$ for any constant k . //
6. Problem. Find a formula for $G(n)=1^{2}+2^{2}+3^{2}+\ldots+n^{2}$.

Solution. Clearly, $\Delta G(n)=(n+1)^{2}$. Therefore $G(n)=F(n+1)$ in the previous problem. Thus

$$
G(n)=(1 / 3)(n+1)^{(3)}+(1 / 2)(n+1)^{(2)}+k
$$

and $G(1)=1$. But
RHS at $\mathrm{k}=1$
$=(1 / 3)(2)^{(3)}+(1 / 2)(2)(2)+\mathrm{k}$
$=(1 / 3)(2(1)(0))+(1 / 2)(2(1))+\mathrm{k}$
$=1+\mathrm{k}$.
Therefore $\mathrm{k}=0$, and we conclude that

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=(1 / 3)(n+1)^{(3)}+(1 / 2)(n+1)^{(2)}
$$

This completes the solution.//
7. Exercise. Use the formula at the end of 6 . to show that
$1^{2}+2^{2}+3^{2}+\ldots+n^{2}=(1 / 6) n(n+1)(2 n+1)$ for all $n=1,2,3, \ldots$.
8. Exercise. Find a formula for

$$
\mathrm{H}(\mathrm{n})=1^{4}+2^{4}+3^{4}+\ldots+\mathrm{n}^{4} .
$$

9. Remarks.

Here are the background calculations that will let you solve Exercise 8 and other problems of this type. What we are going to do is like making a table of integrals. We cannot immediately see the answer to the discrete integral of n^{k}, but we do know that the discrete integral of $n(k)$ is $n(k+1) /(k+1)$. So the strategy is to write n^{k} in terms of terms of the form $\mathrm{n}(\mathrm{r})$.
A. $\mathrm{n}=\mathrm{n}^{1}=\mathrm{n}^{(1)}$
B. $\mathrm{n}^{2}=\mathrm{n}(\mathrm{n}-1)+\mathrm{n}=\mathrm{n}^{(2)}+\mathrm{n}^{(1)}$
C. $n^{3}=n^{(3)}+3 n(2)+n^{(1)}$
D. $n^{4}=n^{(4)}+6 n^{(3)}+7 n^{(2)}+n^{(1)}$

These formulas are obtained by writing out $n(r)$ for $r=1,2,3,4$. For example, in B. we write $n(2)=n(n-1)=n^{2}-n$, so
$\mathrm{n}^{2}=\mathrm{n}^{(2)}+\mathrm{n}=\mathrm{n}^{(2)}+\mathrm{n}^{(1)}$.
Then
$n^{(3)}=n(n-1)(n-2)=n^{3}-3 n^{2}+2 n$.
The formula in C follows by rewriting this as a formula for n^{3} and substituting the results in B and in A.
Similarly for part D.

