Exam 2 - Math 215 - Fall 2009 - With Solutions

Do problems 1, 2, 3, 4 and choose one more problem from problems 5, 6, 7, 8 . Write all your proofs with care, using full sentences and correct reasoning.

1. Prove $\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}$ for all $n=1,2,3, \cdots$. Answer. Omitted.
2. Prove that the following two statements are equivalent:

$$
(A \Rightarrow C) \wedge(B \Rightarrow C)
$$

and

$$
(A \vee B) \Rightarrow C
$$

In your proof, do not use truth tables. Use the facts that

$$
X \Rightarrow Y=(\sim X) \vee Y
$$

and

$$
\sim(X \wedge Y)=(\sim X) \vee(\sim Y)
$$

and

$$
X \vee(Y \wedge Z)=(X \vee Y) \wedge(X \vee Z)
$$

and give a completely algebraic proof.
Answer. Omitted.
3. Define the composition of the function $f: X \longrightarrow Y$ and the function $g: Y \longrightarrow Z$ to be the function $g \circ f: X \longrightarrow Z$ with $g \circ f(x)=g(f(x))$ for all $x \in X$. Prove that if f is surjective and g is surjective, then $g \circ f$ is surjective.
Answer. Let $z \in Z$. Then $z=g(y)$ for some $y \in Y$, since g is surjective. And $y=f(x)$ for some $x \in X$ since f is surjective. Therefore $g(f(x))=g(y)=z$, showing that $g \circ f$ is surjective.
4. Given sets A and B, consider the following two statements about a function $f: A \longrightarrow B$.
(i) $\exists b \in B$ such that $\forall a \in A, f(a)=b$.
(ii) $\forall b \in B, \exists a \in A$ such that $f(a)=b$.

One of these statements is the definition for f to be a surjective mapping from A to B. Which one is it? For the other statement, please explain what it says and give an example of a function from $A=\{1,2,3\}$ to $B=\{1,2\}$ that has this property.
Answer. Statement (ii) is the definition of surjective. For an example of (i), let $f(1)=f(2)=f(3)=1$.
5. (a) Let X be any set. Let $P(X)$ denote the set of subsets of X. Let $F: X \longrightarrow P(X)$ be any well-defined mapping from X to its power set $P(X)$. Show that F is not surjective. Hint: Consider the set

$$
C=\{x \in X \mid x \notin F(x)\} .
$$

Note that your proof must apply to any set X.
Answer. If $C=F(a)$ for some $a \in X$, then $a \in C$ iff $a \notin F(a)$. But since $C=F(a)$, we conclude that $a \in C$ iff $a \notin C$. This is a contradiction. Therefore C is not equal to $F(a)$ for any a. This shows that F is not surjective.
(b) Make the special assumption that if X is any set, then it is not the case that X is a member of X. On the basis of this special assumption prove that there does not exist a set \mathcal{U} such that for all sets $Y, Y \in \mathcal{U}$.
Answer. If the \mathcal{U} was a set, then we would have that \mathcal{U} is a member of itself. Since, by assumption, no set is a member of itself, this is a contradiction. We conclude that \mathcal{U} cannot be a set.
(c) Give an example of infinitely many infinite sets $X_{1}, X_{2}, X_{3}, \cdots$ such that $\left|X_{1}\right| \prec\left|X_{2}\right| \prec\left|X_{3}\right| \prec \cdots$. Here $|A| \prec|B|$ means that the cardinality of A is less than the cardinality of B. Note that each of the sets X_{i} must have infinite cardinality. Explain how you know that your answer is correct.
Answer. Let N denote the natural numbers. Then

$$
|N| \prec|P(N)| \prec|P(P(N))| \prec \cdots .
$$

This follows at once from the fact that $|X| \prec|P(X)|$ for any set X, and this is implied by part (a) of this problem.

Answers to the remaining questions are omitted.

6. Let C_{r}^{n} denote the binomial choice coefficient. Thus C_{r}^{n} is equal to the number of r-element subsets of a set with n-elements. This is sometimes phrased as the number of ways to choose r things from n things.
(a) State the binomial theorem for $(x+y)^{n}$ in terms of the coefficients C_{r}^{n}.
(b) Use the identity $(1+x)^{n+m}=(1+x)^{n}(1+x)^{m}$ to find and prove a formula for C_{r}^{n+m} in terms of C_{i}^{n} and $C_{j}^{m}(0 \leq i \leq n, 0 \leq j \leq m)$. Your formula will be the consequence of applying the binomial theorem to both sides of the above identity.
7. Prove that $(A \wedge B) \vee(A \wedge C) \wedge(B \wedge C)=(A \vee B) \wedge(A \vee C) \wedge(B \vee C)$ in elementary logic. Please make your proof by first translating the statement to be proved into Boolean algebra notation where $X+Y=X \vee Y$ and $X Y=X \wedge Y$ and $\bar{X}=\sim X$.
8. Prove that, for a positive integer n, a $2^{n} \times 2^{n}$ square grid with any one square removed can be covered using L-shaped non-overlapping tiles. Each tile consists in three adjacent grid squares in an L-shaped pattern.
