Exam 2 - Math 215 - Fall 2009 – With Solutions

Do problems 1, 2, 3, 4 and choose *one* more problem from problems 5, 6, 7, 8. Write all your proofs with care, using full sentences and correct reasoning.

1. Prove $\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$ for all $n = 1, 2, 3, \dots$. **Answer.** Omitted.

2. Prove that the following two statements are equivalent:

$$(A \Rightarrow C) \land (B \Rightarrow C)$$

and

$$(A \lor B) \Rightarrow C.$$

In your proof, do *not* use truth tables. Use the facts that

$$X \Rightarrow Y = (\sim X) \lor Y$$

and

$$\sim (X \wedge Y) = (\sim X) \lor (\sim Y),$$

and

$$X \lor (Y \land Z) = (X \lor Y) \land (X \lor Z).$$

and give a completely algebraic proof. **Answer.** Omitted.

3. Define the composition of the function $f : X \longrightarrow Y$ and the function $g : Y \longrightarrow Z$ to be the function $g \circ f : X \longrightarrow Z$ with $g \circ f(x) = g(f(x))$ for all $x \in X$. Prove that if f is surjective and g is surjective, then $g \circ f$ is surjective.

Answer. Let $z \in Z$. Then z = g(y) for some $y \in Y$, since g is surjective. And y = f(x) for some $x \in X$ since f is surjective. Therefore g(f(x)) = g(y) = z, showing that $g \circ f$ is surjective.

4. Given sets A and B, consider the following two statements about a function $f: A \longrightarrow B$.

(i) $\exists b \in B$ such that $\forall a \in A, f(a) = b$.

(ii) $\forall b \in B, \exists a \in A \text{ such that } f(a) = b.$

One of these statements is the definition for f to be a surjective mapping from A to B. Which one is it? For the other statement, please explain what it says and give an example of a function from $A = \{1, 2, 3\}$ to $B = \{1, 2\}$ that has this property.

Answer. Statement (ii) is the definition of surjective. For an example of (i), let f(1) = f(2) = f(3) = 1.

5. (a) Let X be any set. Let P(X) denote the set of subsets of X. Let $F : X \longrightarrow P(X)$ be any well-defined mapping from X to its power set P(X). Show that F is not surjective. Hint: Consider the set

$$C = \{ x \in X | x \notin F(x) \}.$$

Note that your proof must apply to any set X.

Answer. If C = F(a) for some $a \in X$, then $a \in C$ iff $a \notin F(a)$. But since C = F(a), we conclude that $a \in C$ iff $a \notin C$. This is a contradiction. Therefore C is not equal to F(a) for any a. This shows that F is not surjective. (b) Make the special assumption that if X is any set, then it is not the case that X is a member of X. On the basis of this special assumption prove that there does not exist a set \mathcal{U} such that for all sets $Y, Y \in \mathcal{U}$.

Answer. If the \mathcal{U} was a set, then we would have that \mathcal{U} is a member of itself. Since, by assumption, no set is a member of itself, this is a contradiction. We conclude that \mathcal{U} cannot be a set.

(c) Give an example of infinitely many infinite sets X_1, X_2, X_3, \cdots such that $|X_1| \prec |X_2| \prec |X_3| \prec \cdots$. Here $|A| \prec |B|$ means that the cardinality of A is less than the cardinality of B. Note that each of the sets X_i must have infinite cardinality. Explain how you know that your answer is correct. **Answer.** Let N denote the natural numbers. Then

$$|N| \prec |P(N)| \prec |P(P(N))| \prec \cdots$$

This follows at once from the fact that $|X| \prec |P(X)|$ for any set X, and this is implied by part (a) of this problem.

Answers to the remaining questions are omitted.

6. Let C_r^n denote the binomial choice coefficient. Thus C_r^n is equal to the number of *r*-element subsets of a set with *n*-elements. This is sometimes phrased as the number of ways to choose *r* things from *n* things.

(a) State the binomial theorem for $(x + y)^n$ in terms of the coefficients C_r^n . (b) Use the identity $(1 + x)^{n+m} = (1 + x)^n (1 + x)^m$ to find and prove a formula for C_r^{n+m} in terms of C_i^n and C_j^m $(0 \le i \le n, 0 \le j \le m)$. Your formula will be the consequence of applying the binomial theorem to both sides of the above identity.

7. Prove that $(A \wedge B) \lor (A \wedge C) \land (B \wedge C) = (A \lor B) \land (A \lor C) \land (B \lor C)$ in elementary logic. Please make your proof by first translating the statement to be proved into Boolean algebra notation where $X + Y = X \lor Y$ and $XY = X \land Y$ and $\overline{X} = \sim X$.

8. Prove that, for a positive integer n, a $2^n \times 2^n$ square grid with any one square removed can be covered using L-shaped non-overlapping tiles. Each tile consists in three adjacent grid squares in an L-shaped pattern.