Exam2 - Math 215 - Fall 2010

Write all your proofs with care, using full sentences and correct reasoning.

1. Prove $\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}$ for all $n=1,2,3, \cdots$.

Solution. This is a straightforward induction argument. Solution omitted.
2. (a) Prove that there is a $1-1$ correspondence between the set

$$
O=\{1,3,5,7,9,11, \cdots\}
$$

of odd natural numbers and the set N of all natural numbers.
Solution. $n \longrightarrow 2 n-1$.
(b) Let

$$
S=\{1,4,9,16,25,36,49, \cdots\}
$$

be the set of natural numbers that are squares. Show that there is a $1-1$ correspondence between S and the set N of all natural numbers.

Solution. $n \longrightarrow n^{2}$.
3. Prove that the single statement B is equivalent to:

$$
(A \vee B) \wedge(A \Rightarrow B)
$$

In your proof, do not use truth tables. Use the fact that

$$
A \Rightarrow B=(\sim A) \vee B
$$

and give a completely algebraic proof.

Solution.

$$
\begin{gathered}
(A \vee B) \wedge(A \Rightarrow B)=(A \vee B) \wedge(\sim A \vee B) \\
=(A \wedge \sim A) \vee B=F \vee B=B
\end{gathered}
$$

4. Define the composition of the function $f: X \longrightarrow Y$ and the function $g: Y \longrightarrow Z$ to be the function $g \circ f: X \longrightarrow Z$ with $g \circ f(x)=g(f(x))$ for all $x \in X$. Prove that if f is injective and g is injective, then $g \circ f$ is injective.

Solution. Suppose that $g \circ f(a)=g \circ f(b)$. Then $g(f(a))=g(f(b)$, so we have $f(a)=f(b)$ since g is injective. But $f(a)=f(b)$ implies that $a=b$ since f is injective. This proves that $g \circ f$ is injective.
5. Given sets A and B, consider the following two statements about a function $f: A \longrightarrow B$.
(i) $\forall b \in B, \exists a \in A$ such that $f(a)=b$.
(ii) $\exists a \in A$ such that $\forall b \in B, f(a)=b$.
(iii) $x, y \in A \wedge(f(x)=f(y)) \Rightarrow x=y$.

One of these statements is the definition for f to be an injective mapping from A to B. Which one is it? One of the statements would be false if B had more then one element. Which one is it? For the remaining statement, please explain what it says and give an example of a function from $A=\{1,2,3\}$ to $B=\{1,2\}$ that has this property.

Solution. (i) means surjective. (ii) is false for B with more than one element. (iii) means injective.
6. (a)Recall that we associate a subset of the natural numbers to a sequence $s=\left(s_{1}, s_{2}, \cdots\right)$ of 0 's and 1 's by the assignment

$$
\operatorname{Set}[s]=\left\{n \in N \mid s_{n}=1\right\}
$$

For example

$$
\operatorname{Set}[(1,0,1,0,1,0, \cdots)]=\{1,3,5,7, \cdots\}
$$

Make your best guess about the set associated with the sequence

$$
s=(0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1, \cdots)
$$

Solution. The prime numbers.
(b) Let $\operatorname{Seq}\{0,1\}$ denote the set of all sequences $s=\left(s_{1}, s_{2}, \cdots\right)$ of 0 's and 1's. Prove that $\operatorname{Seq}\{0,1\}$ is an uncountable set.

Solution. Let

$$
s^{1}, s^{2}, \cdots
$$

be any list of sequences. Each s^{i} is a sequence in $\operatorname{Seq}\{0,1\}$ so that

$$
s^{i}=\left(s_{1}^{i}, s_{2}^{i}, s_{3}^{i}, \cdots\right)
$$

where s_{j}^{i} is equal to 0 or to 1 . Now let

$$
\bar{\delta}=\left(1-s_{1}^{1}, 1-s_{2}^{2}, 1-s_{3}^{3}, \cdots\right) .
$$

We see that $\bar{\delta}$ is a sequence that differs from every sequence on the list. Hence $\operatorname{Seq}\{0,1\}$ is not countable.
7. Let X be any set. Let $P(X)$ denote the set of subsets of X. Let

$$
F: X \longrightarrow P(X)
$$

be any well-defined mapping from X to its power set $P(X)$. Prove that F is not surjective by exhibiting a subset of X that is not in the image of F.

Solution. Let $C=\{x \in X \mid x \notin F(x)\}$. Then it follows at once that C is not of the form $F(x)$ for any $x \in X$. For if $C=F(x)$ for some x, then $x \in C$ iff $x \notin F(x)$. But this means $x \in C$ iff $x \notin C$. This is a contradiction, and we conclude that C is not equal to $F(x)$.

Remark. There is a direct relationship between the Cantor diagonal argument and this construction. To see this, consider a mapping

$$
F: N \longrightarrow P(N)
$$

Then each $F(n)$ for $n=1,2, \cdots$ is a subset of the natural numbers, and

$$
F(1), F(2), F(3), \cdots
$$

is a list of subsets of N. Now let s^{n} denote the sequence of 0 's and 1's that encodes the subset $F(n)$. That is, we have that $s_{k}^{n}=1$ if and only if $k \in F(n)$.

Now apply the Cantor diagonal process to the list of sequences

$$
s^{1}, s^{2}, \cdots .
$$

Thus we define the Cantor anti-diagonal sequence $\bar{\delta}$ by the formula

$$
\bar{\delta}_{k}=1-s_{k}^{k} .
$$

As we know, the anti-diagonal sequence is not equal to any of the sequences s^{n}. Now, let C denote the set corresponding to $\bar{\delta}$. Note that

$$
\begin{gathered}
n \in C \Leftrightarrow \bar{\delta}_{n}=1 \\
\Leftrightarrow 1-s_{n}^{n}=1 \\
\Leftrightarrow s_{n}^{n}=0 \\
\Leftrightarrow n \notin F(n) .
\end{gathered}
$$

Thus we have shown that C, the set corresponding to the Cantor antidiagonal is given by

$$
C=\{n \in N \mid n \notin F(n)\} .
$$

