
Math 215 - Assignment Number 1, Fall 2011 
Hand these problems in on Wednesday, August 31. 
 
1. Read in Eccles Chapters 1,2,3,4,5 (pp. 1-52) and be 
responsible for the exercises for Chapters 1 and 2. (The 
solutions are in the back of the book, so we are not asking 
you to hand in these exercises, but you should do them 
and compare your answers with the book. In class, please 
feel free to ask questions related to these exercises.) 
 
2. Eccles page 53. Problems 1. 2. and 3.  
 
3. Along with doing truth tables we will be looking at 
symbolic logic algebraically. For this purpose I will write 
~a = not a, 
a v b = a or b, 
a&b = a and b (using this word processors type), 
a > b = a implies b.   
When I write X = Y, I will mean that X and Y have the same 
truth table. For example ~(~ a) = a is true because, if a = T 
then ~(~ T) = ~F = T and if a = F then ~(~ F ) = ~T = F. So 
whatever value a takes it is true that ~(~ a) = a. 
Prove the following equalities. 
(a) A v ~A = T 
(b) A > B = (~ A) v B 
(c) ~(A v B) = (~A) & (~B) 
(d) ~(A & B) = (~A) v (~B) 
(e) A & ( B v C) = (A & B) v (A & C) 
(f) A v ( B & C) = (A v B) & (A v C). 
 
________________________________________________ 
________________________________________________ 
Math 215 - Assignment Number 2, Fall 2011 
Hand these problems in on Friday, September 9. 
 
1. Read in Eccles Chapters 1,2,3,4,5 (pp. 1-52) and be 
responsible for the exercises for Chapters 1,2,3 and 4.  
(The solutions are in the back of the book, so we are not 
asking you to hand in these exercises, but you should do 
them and compare your answers with the book. In class, 
please feel free to ask questions related to these exercises.) 
 



2. Show that the following is a tautology using only 
algebra:    (A>B)v(B>A). 
 
3. Use the distributive law to prove that  
(A&B)v(B&C)v(C&A) = (AvB)&(BvC)&(CvA). 
Hint: Rewrite the above in Boolean notation and do the 
problem using that notation. 
 
4. Write a careful proof showing that the square root of 5 
is irrational. (Note that you will have to examine when 
squares are divisible by 5.) 
 
5. Prove that if S = 1 + x + x2 + x3 + .. . + xn, and x is not 
equal to 1, then S = (1 - x(n+1))/(1-x).  
(Remark: If you know about mathematical induction, you 
can prove this by induction, but I would like you to prove 
it by using the algebra of expressions involving the "three 
dots". Thus you can do things like  
x + x2 + x3 + .. . + xn = x(1 + x + x2 + .. . + x(n-1)).) 
 
6. Eccles, page 53. Problems 4,5, 9,11. 
 
7. Write a careful proof showing that any game of Sprouts 
must end in a finite number of moves. 
________________________________________________ 
________________________________________________ 
Math 215 - Assignment Number 3, Fall 2011 
Hand these problems in on Monday, September 19. 
 
1. Continue reading  Eccles Chapters 1,2,3,4,5 (pp. 1-52) 
and be responsible for the exercises for Chapters 1,2,3, 4 
and 5.  Read also the notes on the web about Boolean 
Notation and Boolean algebra. Look at the article by 
Charles Sanders Peirce but you are not responsible for its 
contents. Look at the article about Sprouts to find out 
more about the game. Read the article on the website 
about Peano's Axioms. You are not responsible for the  
exercises in this article. 
http://www.math.uic.edu/~kauffman/Peano.pdf 
 
2. Prove by induction that  
13 + 23 + 33 + .. . + n3 = (1 + 2 + ... + n)2  for n = 1,2,.. . . 



(Hint: You can use the formula 1 + 2 + ... + n = n(n+1)/2.) 
 
3. Let Un be the n-th Fibonacci number as defined by 
Eccles in Definition 5.4.2. Show by induction that 
U12 + U22 + .. . + Un2 = UnUn+1 for n = 1,2,3,... . 
 
4. Eccles page 53. Problems 12, 16 and 20. 
-----------------------------------------------------------------------------
------------------------------------------------------------------- 
 
Math 215 - Assignment Number 4, Fall 2011 
Hand these problems in on Wednesday, September 29. 
 
0. There are three new short articles on the website: 
ConwayArmy.pdf, Exist.pf and Desargues.pdf. 
Conway Army figures in problem 6 below. The other two 
are, for the moment, for discussion. Read them. 
 
1. Read Eccles Chapter 6. Eccles page 115.  
Problems 1. 2. and 3. 
 
2. Prove that if a square is odd then it is one more than a 
multiple of 8. For example 9 = 1 + 8, 25 = 1 + 8 x 3, 
49 = 1 + 8 x 6. Prove the general result. 
 
3. Eccles page 56. problem 19. 
Eccles page 57. problem 25. 
 
4. Write up your own inductive proof of the Euler Formula 
that says that v - e + f = 2 for a conncected plane graph 
with v nodes, e edges and f faces. (See the discussion about 
the Euler formula in these notes.) 
 
5. Use the Euler formula to determine a formula for the 
number of regions in a game of sprouts that has a 
connected graph (this can take a few moves) and starts 
with S nodes, after M moves have been made. Check your 
formula against some sample game positions. 
 
6. Read the notes posted on the website titled "Conway's 
Army". Learn to play the game indicated in the notes and 
read the proof about this game that is in the notes. Write a 



one page summary, in your own words, of the contents of 
this article including a sketch of the proof that it is 
impossible to reach the fifth level.  
 
7. Design a switching circuit with one light and three main 
switches such that each switch controls the light. Recall 
that with two switches we went over how to do this in class 
and that it corresponded to the logical condition 
(a&b)v(~a & ~b), which could then be translated into a 
switching circuit. Do the same job using 3 switches a,b,c. 
################################################ 
 
Math 215 - Assignment Number 5, Fall 2011 
Hand these problems in on Monday, October 10, 2011. 
 
1. Read Eccles Chapters 7 and 8 and 9. (Concentrate on the 
main ideas. We will work with these chapters over the next 
two weeks. The main ideas are  
(a) The use of "for all" and "there exists". In more flexible 
fonts I will use an upside-down A for "for all" and a 
backwards E for "there exists". Here I will write 
"Ax" for "for all x" and  
"Ex" for "there exists and x".  
Thus we can have propositions of the form 
Ax, P(x):  For all x, P(x) is true. 
and 
Ex, P(x) : There exists an x such that P(x) is true. 
It is very important to have these so-called quantifiers in 
our logic, particularly when we work with sets in 
mathematics. 
Note that  
~(Ax, P(x)) = Ex, ~P(x), 
and 
~(Ex, P(x)) = Ax, ~P(x). 
This is the fundamental relationship between the general 
(for all) and the particular (there exists) via negation. 
(b) The notion of a function from one set to another. 
(c) The notions of injective, surjective and bijective  
functions and their properties. 
 
2. Eccles page 57, problem 26. Draw examples for  
n < = 6. Then find a formula for the number of regions as a 
function of n, by applying the Euler formla that relates the 



number of nodes, edges and regions in a connected plane 
graph (v-e+f=2). In order to do this, you will need to find a 
formula for the number of nodes and another formula for 
the number of edges in the graph that corresponds to the 
circle with n points all connected to one another as 
described in the problem. We will definitely discuss this 
problem on Wednesday, October 5. 
 
3. Eccles page 117, problems 11, 12, 13. 
 
4. Read carefully the Notes on Logic Circuits 
http://www.math.uic.edu/~kauffman/LogicCircuits.pdf 
with their solution to the three-switch light problem from 
the last homework. Then solve problem 2 in those notes. 
Problem 2 is a problem to design (using the "crossover 
switch" from the notes) a circuit with N switches for an 
arbitrary N, such that each switch controls a single light. 
 
5. Consider the function 

                . 
The following chart shows the values of this function for  
several values of n = 1,2, .. ., 20 and the factorizations of 
these values into prime factors. From this, find a pattern 
and guess a formula for F[n]  
(similar to 1 + 2 + ... + n = n(n+1)/2). 
Having guessed your formula, find a proof that it works for 
all n by using mathematical induction. 
 



 
################################################ 
Math 215 - Assignment Number 6, Fall 2011 
Hand these problems in on Friday, October 27, 2011. 
 
1. Read Chapters 10 -14. You should read for ideas. We will 
work with these chapters for quite some time. We have 
already begun to talk about some of the ideas in these 
chapters. In particular you will see discussion of choice 
functions and their relation to the binomial theorem, and 



you will see generalizations of counting to the notion of 
the cardinality of a set. Two sets have the same cardinality 
if they can be put into 1-1 correspondence. For finite sets 
it is quite clear that cardinality is the same as having the  
same number of members. For infinite sets things become 
very interesting. For example, let N be the natural numbers 
and E be the even numbers. So N = {1,2,3,...} and  
E = {2,4,6,8,...}. Then N and E are in 1-1 correspondence 
via the map F:N -----> E given by the formula F(n) = 2n. 
The map F is injective and surjective. So we say that N and 
E have the same cardinality. And yet E is a proper subset 
of N. So in a certain sense E is smaller than N and in the 
sense of cardinality, E has the same size as N. We will be 
seeing a lot of this sort of phenomena. In fact, we will 
eventually prove that any infinite set is in 1-1 
correspondence with some proper subset of itself, and that 
this never happens for finite sets. 
 
2. page 115. #4,5,6,7,8,9. 
 
3. page 117. #14,16,18,19. 
 
4. Recall from our class discussion that given a sequence 
{ an } of real numbers with n = 1,2,3, ... ,  we say that  
 
lim n ---> Infinity (an) = a 
 
exactly when 
 
A ε  > 0, E M in N, s.t. n > M  implies |an - a| < ε . 
 
Use this definition of limit and prove that 
 
lim n ---> Infinity ((n2 +1)/(n2 -1)) = 1. 
 
5. Refer to the discussion in 1. above and prove that the  
odd numbers O = {1,3,5,7,11,...} have the same cardinality 
as the entire set of natural numbers N. 
 
6. Examine the cartoon below (an excerpt from Logicomix. 
see our website for a reference to the book itself.) 



 



This comic strip dramatizes Bertrand Russell's discovery of 
the set R of all sets that are not members of themselves: 
 

R = {X| X is a set and X is not a member of X}. 
 

In the cartoon, Russell is asking himself,  
"Can R be a member of R?"  

Do you see the problem? 
1. If R belongs to  R then it must be that R is not a member 
of R. 
2. But if R does not belong to R, then R meets the criteria 
for being a member of R, and so R should belong to R. 
Thus it seems that we have a contradiction in the form  
R is a member of R if and only if R is not a member of R. 
This is not just a simple mistake. Russell spent ten years 
and the writing of the "Principia Mathematica" with Alfred 
North Whitehead in an attempt to solve this problem, and 
find a way to base mathematics on Logic. 
 
Your task: Think about this situation, and write your own 
commentary on it. 
################################################
################################################ 
 
Math 215 - Assignment Number 7, Fall 2011 
Hand these problems in on Monday November 7, 2011. 
 
1. Re-read carefully Chapter 14 in the light of our class 
discussions. Then read the proof of the Cantor - Schroeder-
Bernstein Theorem (Theorem 14.3.4). It is stated in the 
book, but you will find a proof on the web at 
<http://planetmath.org/?op=getobj&from=objects&id=3156> 
and also linked from our website. Take notes on this proof 
and then rewrite the proof in your own words. Write it 
carefully so that it is complete for you and readable. 
 
2. page 185. problem 19. 
 
3. Two sets X and Y are said to have the same cardinality if there 
exists a bijection  F:X ---> Y. Recall that a map from one set to 
another is a bijection if it is an injection and it is onto Y. We write 
|X| = |Y| when X and Y have the same cardinality. This definition 
applies to both infinite and finite sets, but infinite sets have 



different properties in regard to their cardinality. For finite 
cardinality we take specific finite sets as models. Thus we take 
0 = { } 
1 = {0} 
2 = {0,1} 
3 = {0,1,2} 
and inductively 
n+1 = {0,1,2,...,n}. 
More precisely, we have the inductive definition  

n+1 = n U {n} 
with  

0 = { }. 
This inductive definition of numbers as specific sets lets us say that  
any finite set has cardinality n for some natural number in the set 
{0,1,2,3,4,...} = N U {0} where N is the natural numbers. 
For example {a,b,c} can be put in 1-1 correspondence with  
3 = {0,1,2}, and so we say that {a,b,c} has cardinality 3. 
Using this set-theoretic inductive definition of natural numbers (and 
zero), prove the following facts about these sets: 
(i) n + 1 is not equal to n ( as sets). 
(i) If n +1 = m + 1 as sets, then n = m as sets. 
 
4. Professor Squarepunkt has been lecturing his class about Cantor's 
diagonal argument. His lecture is transcribed below. Read the 
lecture and comment on the problem that it raises. 
################################################## 

Cantor's Demise  
by Professor Hilbert Squarepunkt 

 
We have seen how Cantor's diagonal argument can be used to 
produce new elements that are not on a listing of elements of a 
certain type. For example there is no complete list of all Left-Right  
sequences of the form A1A2A3... where An = L or R and two such 
sequences A and B are said to be equal when An = Bn for all 
n=1,2,.... We proved this by assuming that we had a list of such 
sequences A(1),A(2),... such that A(n)m denotes the m-th element of 
the sequence A(n). Then we constructed the diagonal sequence D 
defined by Dn = A(n)n. And we made the flipped diagonal sequence 
Flip(D) from this by defining Flip(D)n = L when Dn = R and  
Flip(D)n = R when Dn = L. Cantor argues that Flip(D) is necessarily a 
new sequence not equal to any Dn that is on our list. The proof is 
clear, since Flip(D) is constructed to differ from each sequence in 
the list in at least the n-th place for D(n).  



 
Now Cantor's real intent was to prove that the real numbers are 
uncountable (not listable) and I have discovered a fatal flaw in his 
argument! Let me explain. I will use the binary notation for real 
numbers between 0 and 1. Thus 
.0= 0 
.1 = 1/2 
.01 = 1/4 
.001 = 1/8 
.0001 = 1/16 and generally 
.0000...01 = 1/2n where there are n-1 zeros before the 1. 
Then real numbers between zero and one are represented by  
binary analogues of decimals like .101001000100001... 
Note that .0111111... = .1000.... 
since 1/4 + 1/8 + 1/16 + ... = 1/2. 
  
We apply the Cantor argument to lists of binary numbers in the 
same way as for L and R.  In fact L and R are analogous to 0 and 1. 
For example if we had the list 
(1) .10111... 
(2) .10101010... 
(3) 0.1110110011... 
... 
Then we would make the diagonal sequence 
D = .101 ... 
and flip it to form 
Flip(D) = 0.010... 
Just as we argued before Flip(D) is not on the list, and so  
the list is incomplete. 
 
Here is a counterexample to Cantor's argument! 
Consider the following list: 
(1) .10000000.... 
(2) .00100... 
(3) .0001000... 
(4) .00001000... 
(5) .000001000... 
... 
As you can see this is a very definite list. The first element of the list 
is .10000... and subsequent members of the list consist in n-zeros, a 
1 and then zeros forever. Ok? Now the diagonal element is 
D = .1000... and  
Flip(D) = .01111... 



But .0111... = .10000 
and so Flip(D) = D = .1000... and so  
Flip(D) = the first element of our list! 
Flip(D) is not a new number outside the list. 
This is a counterexample to Cantor! 
 
Gentleman, Ladies: Cantor lies in ruin before us. His theory is a 
shambles. No longer can we speak of higher infinities. Mathematics 
must be revised from the ground up and built anew. I exhort you to  
join me in this grand project of reconstruction of the truth. 
################################################## 
 
Please comment on Professor Squarepunkt's lecture. Do you agree 
with him? What has he actually shown? Can you find a proof that 
the real numbers are uncountable in base-2, or is Squarepunkt right 
and we will have to start all over again with the foundations. (The 
idea behind Squarepunkt's lecture is due to a real mathematician - 
Nathaniel Hellerstein.) 
 
5. Read the definition of the game of Brussels Sprouts in  
<http://homepages.math.uic.edu/~kauffman/Conway.pdf>. Use the 
Euler formula to find a formula for the number of moves in a game 
of Brussels sprouts in terms of the number of initial nodes. 
 
6. Read the illustrated story about the Infinite Hotel at 
http://homepages.math.uic.edu/~kauffman/InfiniteHotel.pdf 
(There is a direct link to it on our website.) 
In that story you will read about a hotel with infinitely many rooms 
where the manager advertises that there is "always room for more  
guests". The guests get tired of being pushed around (from room to 
room) by the manager and decide to give him some trouble. 
In the story you will find a document that reads as follows. 
 



 
This document has the guests assembling in meetings. 
There are infinitely many guests and some of these 
meetings will have infinitely many members. That is what 
is meant by "all sizes" in number 7 above. Read this story 
very carefully and see if you can decide whether the 
manager made a correct decision at the end of the story. 



Please write a short paragraph about your reasoning about 
this matter. (As far as I know, the Professor in this story 
never met Professor Squarepunkt. You can speculate 
whether these two Professors would get along with one 
another!) 
 
################################################
################################################ 
################################################ 
Discussion Section (Not Homework!) 
 
This next part is for class discussion. It introduces you to 
some aspects of graph theory via a game played by 
drawing graphs on a sheet of paper. The game is called 
"sprouts" and it is an invention of John Horton Conway.  
The purpose of this problem is to give you some practice 
exploring a mathematical domain and seeing both results 
and proofs emerging naturally from questions and 
explorations.  
 
Sprouts is a game played by two players, using a sheet of paper 
and a pen or a pencil. The game begins with a choice by the players 
of a collection of "spots" or "nodes" on the paper. We illustrate here 
with three spots. 
 

 
 
A move in Sprouts is accomplished by connecting two spots with an 
edge and placing a new spot in the middle of the edge. Below you 
see the result of the first player connecting two spots and placing 
the new spot. 
 



1  
 
We have labeled the new spot with the number 1 just so we can 
remember who did the move. Now the second player makes a move. 
 

1

2

 
Notice that you can tell that the second new spot is due to the 
second player since it is labeled by 2. The real point, if we continue 
labeling in this way, is that second player will always label with even 
numbers and first player will always label with odd numbers. Lets 
call the players First and Second. 
 
An Important Rule: 
When a spot has three edges attached to it (locally) then 
it is COMPLETE. If a spot is complete, you can no longer  
connect any further edges to that spot. Thus the spot labeled 1 in 
the above figure is now complete. 
 
The goal in this game:  The first person to make a move so that 
his opponent can not make a reply is the winner. 
 
Lets follow this game for a bit and see who wins. 



1
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In this last position we have drawn an "edge with angles" between 3 
and 4 and placed spot 5 on the middle of the angular edge. If you 
were drawing with a pen or a pencil you would just draw a curved 
edge connecting 3 and 4, but I have been using a simple drawing 
program that only makes straight segments. The restrictions on the 
edges is that the new edges touch the original graph only at 
the end-spots. You are not allowed to have one edge cross 
through another one.  
 



1
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The game is over. Even though spot s 2 and 7 are incomplete, all 
the other spots are complete, and there are no moves left. The game 
is won by the player who put in spot 7. This was the First Player 
since 7 is odd. Notice that the last diagram contains a complete 
record of the game. 
 
Problem 4.1. Find an opponent and play a number of games of 2-
spot and 3-spot sprouts. Find out the best strategy that you can for 
2-spot sprouts. 
 
Problem 4.2. Prove that every game of sprouts starting with any 
finite number of spots (say with N spots) must eventually end, no 
matter how the players play. (Of course they must obey the rules.) 
If the game starts with N spots, give an upper bound on the number 
of moves in any game. 
  



  
 
Problem 4.3. Prove that for every natural numbrer n (n = 1, 2, 3, 
4, ...) there is a sprouts game, starting with  
n sprouts, that ends in exaactly 3n -1 moves. You can use 
mathematical induction in your proof. 
  
 
Problem 4.4. In 4-sprouts we use the same rules as in ordinary 
sprouts, but we allow 4 lines to touch a spot 
as in the diagram below. 

 
A move has the same form as in regular spots, but notice that the 
new spot, having two lines going into it, has two freedoms in the 
game of 4-spots. Show that some games of 4-spots can go on forever. 
Give specific examples. Think about the question of how to  
modify the rules of 4-spots so that it will become a game that always 
ends in a finite number of moves. 
 
#################################################### 
 
Graph Theory and Euler's Formula. 
 A graph is a collection of nodes or vertices, usually depicted as dark 
spots or points, and a collection of edges that can connect two nodes 
or connect a node with itself. For example, the graph below has five 
nodes and six edges. It is a connected graph in the sense that there 
is a pathway along the edges between any two nodes. 

1
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A connected graph G. 
 

Graphs are fundamental mathematical structures and they have lots 
of  applications. We are all familiar with the graphical notation for 
electrical circuits. Subway system maps are graphs with special 
decorations. In general, when we want to desribe engineering 
systems, economic systems, and other systems of relationship, we 
can start with a collection of definite entities (the nodes) and the 
information about how they are connected with one another (the 
edges).  
 
As you can see, the game of sprouts is a game that is played by 
constructing a graph. The graph constructed in sprouts is special in 
that it cannot have more than three edges touching any node, and 
the sprouts graph is drawn in the plane in such a way that no two 
edges of it touch except at the nodes of th graph. We say that a 
graph that can be drawn in the plane in this way is a plane graph. 
The graph in the figure above is also a plane graph. 
 
Not every graph is planar! That is if you specify a set of nodes and a 
set of connections to be made among these nodes, it may not be 
possible to accomplish these connections in the plane without  
having some edges cross over one another. Here is a problem that 
will show you how that can happen. 
 
Problem 5. (The Gas-Electricity-Water Problem) 
Three companies, the gas company, the electricity compay and the 
water company  want to make connections from the gas main (G), 
the electrical source (E) and the water main (W) to three houses 
(H1, H2 and H3). They wish to lay their lines so that no two lines 
meet except at the sources (G,E and W) and at the houses  
(H1, H2 and H3). Can you find a solution to this design problem? 
If not, then why not?  



G E W

H1 H2 H3

???

 
In the  illustration above the city planners have drawn a graph to 
help them design the connections but they have run into a difficulty 
with making a water line from W to H1. Everything went fine with 
the design up to that point, but then there does not seem to be any 
way to conncet from W to H1 without crossing previously created 
lines.  It will cost the city a great deal to dig tunnels to make lines 
cross over one another. So these designers really need to know 
whether the job can be done with no crossovers, and if it cannot be 
done that way, then they want to know the least number of 
crossovers that are needed to do the job. 
############################################# 
 
We will now discuss a formula about plane graphs that was 
discoverd around 1750 by the Swiss mathematician Leonhard Euler. 
<http://en.wikipedia.org/wiki/Leonhard_Euler> 
Euler was one of the greatest mathematicians of all time, and his 
formula about plane graphs is the beginning of the subjects of graph 
theory and topology (topology is the study of mathematical spaces 
and includes and generalizes classical geometry). Here is Euler's 
result: 
 
Theorem. Let G be a connected finite plane graph with V nodes, E 
edges and F faces (a face is a region in the plane that is delineated 
by the graph in the plane). Then V - E + F = 2. 
 
 Here is an example of Euler's formula for a specific graph in the 
plane. 
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Here we have V = 5, E = 6 and F = 3. The regions we count are the 
interiors of the two triangles and the outer region consisting in the 
rest of the plane. Note that V - E + F = 5 - 6 + 3 = 2 as promised by  
Euler's Theorem. 
 
Problem 6. Construct a proof of Euler's formula by induction on 
the total number of edges and vertices in the graph G. You should 
consider how the graph can be built up from simpler graphs by 
adding edges to them. In fact, any connected graph can be built 
from a single vertex graph by adding new edges in two ways that I 
will now explain, but first we introduce an abbreviation: The 
diagram below stands for some vertex in a larger graph. 

 
You can tell when I am using this abbreviation because the edges 
that go out of this vertex are not meeting any other vertices in the  
picuture. The picture is a shorthand for a possibly larger and more 
complete picture.  In the abbreviation we show three edges touching 
the vertex. In a real situation some edges touch the vertex, but the 
number is not necessarily equal to three. Ok? 
 
Now lets use this and illustrate two ways to make a larger graph. 
 



I.

II.

 
 
In method number I we add a new edge and a new vertex by 
attaching the new edge to an already existing vertex. In method 
number II we connect two vertices with a new edge. 
 
Remark. We regard the move 
 

 
 
as a special case of II. 
 
I claim that any connected graph can be built up by performing  
a sequence of operations of these two types. Here is an example. 

 



You can use this claim in your proof, and if you want, you can also 
make a proof of the claim. We will discuss why the claim is true in 
class. 
 
Now, to prove the Euler Theorem, you can proceed by induction,  
showing that V - E + F does not change its value when you perform a 
move of type I or type II. You will find that it is very easy to see this 
for type I, and that in order to see it for type II you need  
to start with a connected graph. If the graph is connected, then a 
move of type II will create a new region in the graph. Look at the 
example above and see how this works. You can use this fact also in 
your proof (that a move of type II will create a new region). You 
should then be able to construct an inductive proof of the Euler 
formula. 
 
Here is an example: 
We create a triangle graph by adding an edge to a tree. 
 

add edge

V = 3

E  = 2

F  = 1

V =3

E = 3

F = 2  
Note that adding the edge creates a new region, and V-E + F does  
not change from before to after the addition of the new edge. 
 
(c) Discuss your proof of the Euler formula with another student in 
the class. Do you both feel that the proof is complete? What might 
be missing? In this problem, it worth having the discussion.   
 
Supplement. 
There is a fact about curves in the plane that you can use in 
thinking about regions that are created when graphs are drawn in 
the plane. 
This fact is called the  
 



Jordan Curve Theorem: A closed curve in the plane without any 
self-intersections divides the plane into exactly two regions. 
 
Here is an example: 
 

Inside

Outside

 
 
You are not required to prove this result, but you can use it and it is 
interesting to see how complex examples can look! 
 

 
 
Is the black dot inside or outside this curve? 
Of course you can solve this like solving a maze, but look! 
 



 
 
An arrow from the dot intesects the curve in an ODD number of 
points. I claim that this tells you that the point must be INSIDE. 
If the intersection number were EVEN, then the point would be 
outside. Can you explain why this works? (I say explain, and of 
course I am hoping that your explanation will turn into a 
mathematical proof. But lets explore.) 
 
We will discuss in class why and how the Jordan Curve Theorem is 
relevant to proving Euler's Formula. 
 
Remark. Another approach to the Euler formula uses the concept 
of a tree: A graph is said to be a tree if it does not contain any cycles 
(a cycle is a sequence of distinct edges such that the each edge 
shares its endpoints with the edges before and after it in the 
sequence. For example in the graph above, bce is a cycle and abcd is 
a cycle. When a plane graph has no cycles then the only region it 
can delineate is the rest of the plane other than itself, and so a tree 
has F = 1.  
Show that for a connected tree, V - E = 1.  
From this is follows that for connected plane trees V - E + F  = 2, 
and so we know the Euler formula already for trees. 
 



V = 9

E = 8

V - E = 1

 
 
The picture above illustrates this result for trees. You can 
prove that V - E = 1 for a connected tree by induction on 
the number of edges in the tree. 
 
You can then prove the Euler formula for an arbitrary connected 
plane graph by just making that graph by adding edges by our type 
II move to a tree. Think about this and try some examples. 


