
Assignments. Math 215. Fall 2009. 
 
1. Assignment Number One.  
Due Wednesday, September 2, 2009. 
Eccles. Read Chapters 1,2,3. 
(a) page 9.  1.4, 1.5 
(b) page 19.   2.1, 2.3, 2.4, 2.5, 2.6 
(c) Using definitions 2.2.2 and 2.2.3 on page 16, prove that a 
positive integer n is odd if and only if n = 2q + 1 for some positive 
integer q, or q = 0. 
(c) Draw a logical conclusion from the premises 
"All Dragons are uncanny." 
"All Scotchmen are canny." 
(d) Explain what is wrong with the following argument. 
"All soldiers are brave." 
"Some Englishmen are brave." 
Therefore "Some Englishmen are soldiers." 
 
2. Assignment Number Two. 
Due Wednesday, September 9, 2009. 
Eccles. Read Chapters 4, 5. 
(a) page 29.  3.1, 3.2, 3.3, 3.5, 3.6, 3.7 
(b) page 37.  4.1, 4.2, 4.3, 4.5 
(c) If P and Q are two logical expressions, let P = Q 
mean that P and Q have the same truth table. 
For example, we have that  a^b = ~((~a)v(~b)) and  
(a ----->b) = (~a)vb. 
 If an expression  P is always true, we will write P = T 
and if it is always false, we will write P = F. For example. 
(a)v(~a) = T while  (a)^(~a) = F.  
(i) Show that (a <-----> b) = ((~a)^(~b))v(a^b). 
(ii) Show that (P <-----> Q) is true exactly when  P = Q. 
 
3. Assignment Number Three. 
Due Wednesday, September 16, 2009. 
Read Chapter 6. 

(a) page 51. 5.1, 5.2, 5.4 
(b) page 53.  5, 6, 14, 16, 20. 

 
 
4. Assignment Number Four 
Due Wednesday, September 23, 2009. 

(a) Prove by induction that                                          



1^3 + 2^3 + ... + n^3 = (1 + 2 + .. . + n)^2. 
(b) Page 56, problem 19. 
(c) Page 57, problem 26: Choose a partner and work on 

this problem together. Write an account of how far 
you get with the problem. 

(d) Page 72. Problems 6.1 and 6.4. 
 
5. Assignment Number Five. 
Due Wednesday, September, 30, 2009. 
Read Chapter 7. 
(a) Prove by induction that  
1^2 + 2^2 + ... + n^2 = n(n+1)(2n+1)/6. 
(b) Page 87. problems 7.5 and 7.6. 
(c) Use Venn Diagrams to show that  
(Ac) v B = (Ac ^ Bc) v (A ^ B) v(A c ^ B). 
Here v is union, Ac is the complement of the set A, and ^ is 
intersection of sets. 
(d) Let S(n) = {1,2,3,...,n} (n is a natural number). 
Prove, by induction on n, that the power set of S(n) has 2^n 
elements. 
 
6. Assignment Number Six 
Due Wednesday, October 7,2009 
Read Chapter 8. 
p. 86-87, problems 7.2, 7.3, 7.7. 
p. 117, problem 12. 
Review for Exam on Friday, October 9,2009. 
The exam will cover Chapters 1-7. 
 
7. Assignment Number Seven 
Due Wednesday, October 14, 2009. 
Read Chapter 9. 
p. 99, problems 8.1,8.2,8.3. 
p. 115 – 116. Problems 3,4,5,6,7. 
 
8. Assignment Number Eight 
Due Wednesday, October 21, 2009. 
(a) page 113. problems 9.1,9.2,.93.9.4,9.5. 
(b) page 116. problems 8., 9, 11, 13. 
 
 
 



 
 
 
9. Assignment Number Nine 
Read Chapter 10. Read also Chapter 14. 
Due Wednesday, October 28, 2009. 
 
(a) Re-do problem 6 on page 116, using the following Boolean 
algebra notation:  
Write AB for A ^ B or equivalently for  A (Intersect) B. 
Write A + B for A v B or A (Union) B. This notation makes the 
distributive law easy to spot: 
(A + B)C = AC + BC 
and 
(AB) + C = (A +C)(B+C). 
(Remember that intersection distributes over union AND union 
distributes over intersection.) Note how this works 
(A + C)(B +C) = 
AB + AC + CB + CC = 
AB + (A + B)C + C = 
AB + C  
since (A+B)C is contained in C and CC = C since the intersection of C 
with itself is just C. This additive and multiplicative notation for  
Boolean algebra is due to George Boole who invented the idea of 
using algebraic notation to work with logic in his book "An 
Investigation of The Laws of Thought on Which are Founded the 
Mathematical Theories of Logic and Probabilities" published by  
Macmillan in 1854, and still available as a Dover paperback to this 
day. 
 
(b) page 118. problems 17, 18, 19. 
 
(c) Two sets X and Y are said to have the same cardinality if there 
exists a bijection  F:X ---> Y. Recall that a map from one set to 
another is a bijection if it is an injection and it is onto Y. We write 
|X| = |Y| when X and Y have the same cardinality. This definition 
applies to both infinite and finite sets, but infinite sets have 
different properties in regard to their cardinality. For finite 
cardinality we take specific finite sets as models. Thus we take 
0 = { } 
1 = {0} 
2 = {0,1} 
3 = {0,1,2} 



and inductively 
n+1 = {0,1,2,...,n}. 
More precisely, we have the inductive definition  

n+1 = n U {n} 
with  

0 = { }. 
This inductive definition of numbers as specific sets lets us say that  
any finite set has cardinality n for some natural number in the set 
{0,1,2,3,4,...} = N U {0} where N is the natural numbers. 
For example {a,b,c} can be put in 1-1 correspondence with  
3 = {0,1,2}, and so we say that {a,b,c} has cardinality 3. 
Using this set-theoretic inductive definition of natural numbers (and 
zero), prove the following facts about these sets: 
(i) n + 1 is not equal to n ( as sets). 
(i) If n +1 = m + 1 as sets, then n = m as sets. 
 
(d) Recall that the power set P(X) of a set X is the collection of all 
the subsets of X. We proved in an earlier problem that the 
cardinality of P(X) is 2 raised to the number of members of X for X a 
finite set. That is, we have for X finite that  

|P(X)| = 2|X|.  
This means that P(X) has more members than X, and thus  no 
mapping  F: X -----> P(X) can be surjective. This means that given 
such a mapping, we should be able to locate a subset W of X so that  
W is not equal to F(x) for any x. Georg Cantor gave a beautiful proof 
of this fact by constructing W as follows: 

W = { y in X | y is not a member of F(y)}.  
This problem asks you to prove that Cantor's set W does indeed 
fulfill this promise.  
Prove that for any set X and a mapping F:X ---> P(X),  
W (defined above) is not equal to F(x) for any x in X.  
 
Here is an example. 
Let F: {a,b,c} -----> P({a,b,c}) be given by 
F(a) = {a,b} 
F(b) = {a,c} 
F(c) = {a}. 
Then W = {b,c} since a is member of F(a)={a,b}, but b is not a 
member of F(b) and c is not a member of F(c). You should try some 
examples of this Cantorian construction yourself. 
 



The amazing thing about Cantor's construction of the set W is that it 
works for infinite sets as well as finite sets. We shall have more to 
say about this after you have worked on the present problem. 
 
10. Assignment Number 10. 
Due Friday, November 6, 2009. 
Read Chapters 10,11,12 and the "Supplement on Finite and Infinite 
Sets" that is placed on our website. 
(a) page 132. problems 10.1, 10.3, 10.4. 
(b) Prove Theorem 6 in the  "Supplement on Finite and Infinite Sets" 
available on our website. 
(c) Consider the following version of Cantor's diagonal argument: 
Let S be the set of all inifinite sequences of letters where the 
individual letters are either L or R. Thus the following sequences are 
examples of elements of S: 
LLLLL... 
LRLRLRLR... 
LRLLRLLLRLLLLRLLLLLR... 
and many more. 
An element of S has the form 
A1 A2 A3 A4... 
where each An equals either L or R. 
S = {A1 A2 A3 A4... | An equals either L or R}. 
We prove that the cardinality of S is greater than the cardinality of 
N = {1,2,3,4,...} as follows. 
Suppose that F:N -----> S is any mapping. We will construct a 
sequence in S that is not of the form F(n) for any n in N. 
This sequence C s defined as follows: 
Thus Cn denotes the n-th element in the sequence C. 
Define  

Cn = L when F(n)n = R  
and  

Cn = R when F(n)n = L. 
 

You can see by construction that C cannot be equal to F(n) for any 
n. And so the mapping F is not surjective. 
Write out the rest of the argument, proving that the cardinality of S 
is greater than the cardinality of N. 
 
 
 
 



 
 
11. Assignment Number 11 
Due Wednesday, November 11, 2009. 
Page 143. Problem 11.2 
Page 181. Problems 14.1, 14.2, 14.3. 
 
12. Assignment Number 12. 
Due Wednesday, November 18, 2009. 
Read the supplements on the website by John Conway and Raymond 
Smullyan. Read Chapter 12. 
(a) Page 143. Problem 11.3 
(b) Page 155. Problems 12.1, 12.2, 12.5 
(c) A partition of a natural number n is a set of natural numbers 
whose sum is n. For example {1,1,3} is a partition of 5. Let p(n) 
denote the number of partitions of n for n a natural number. 
Let po(n) denote the number of partitions of n such that all the 
parts of the partition are odd numbers. Let pd(n) denote the 
number of partitions of n into distinct parts. For example, {1,1,3} is 
an odd partition of 5 and {2, 3} is a partition of 5 into distinct parts. 
Note that {1,1,3} is not a partition of 5 into distinct parts.  
(i) Make a table of all partitions of n = 1, 2, 3, 4, 5, and 6. 
Verify for these n that po(n) = pd(n). 
(ii) Find a proof of the Theorem po(n) = pd(n) for any natural 
number n by finding a bijection between the set of odd partitions of 
n and the set of distinct part partitions of n. (Hint: When an odd 
partition has repeated parts, collect some of these parts by adding 
them together.) 
 
13. Assignment Number 13. 
Due Wednesday, November 25, 2009. 
Read Chapter 13. 
(a) p. 182. problem 4. (Hint: Generalize the formula that counts the 
number of elements in the union of two sets.) 
(b) p. 185. problem s 17 and 19. 
(c) Professor Squarepunkt has been lecturing his class about 
Cantor's diagonal argument. His lecture is transcribed below. Read 
the lecture and comment on the problem that it raises. 
################################################## 

Cantor's Demise  
by Professor Hilbert Squarepunkt 

 



We have seen how Cantor's diagonal argument can be used to 
produce new elements that are not on a listing of elements of a 
certain type. For example there is no complete list of all Left-Right  
sequences of the form A1A2A3... where An = L or R and two such 
sequences A and B are said to be equal when An = Bn for all 
n=1,2,.... We proved this by assuming that we had a list of such 
sequences A(1),A(2),... such that A(n)m denotes the m-th element of 
the sequence A(n). Then we constructed the diagonal sequence D 
defined by Dn = A(n)n. And we made the flipped diagonal sequence 
Flip(D) from this by defining Flip(D)n = L when Dn = R and  
Flip(D)n = R when Dn = L. Cantor argues that Flip(D) is necessarily a 
new sequence not equal to any Dn that is on our list. The proof is 
clear, since Flip(D) is constructed to differ from each sequence in 
the list in at least the n-th place for D(n).  
 
Now Cantor's real intent was to prove that the real numbers are 
uncountable (not listable) and I have discovered a fatal flaw in his 
argument! Let me explain. I will use the binary notation for real 
numbers between 0 and 1. Thus 
.0= 0 
.1 = 1/2 
.01 = 1/4 
.001 = 1/8 
.0001 = 1/16 and generally 
.0000...01 = 1/2n where there are n-1 zeros before the 1. 
Then real numbers between zero and one are represented by  
binary analogues of decimals like .101001000100001... 
Note that .0111111... = .1000.... 
since 1/4 + 1/8 + 1/16 + ... = 1/2. 
  
We apply the Cantor argument to lists of binary numbers in the 
same way as for L and R.  In fact L and R are analogous to 0 and 1. 
For example if we had the list 
(1) .10111... 
(2) .10101010... 
(3) 0.1110110011... 
... 
Then we would make the diagonal sequence 
D = .101 ... 
and flip it to form 
Flip(D) = 0.010... 
Just as we argued before Flip(D) is not on the list, and so  
the list is incomplete. 



 
Here is a counterexample to Cantor's argument! 
Consider the following list: 
(1) .10000000.... 
(2) .00100... 
(3) .0001000... 
(4) .00001000... 
(5) .000001000... 
... 
As you can see this is a very definite list. The first element of the list 
is .10000... and subsequent members of the list consist in n-zeros, a 
1 and then zeros forever. Ok? Now the diagonal element is 
D = .1000... and  
Flip(D) = .01111... 
But .0111... = .10000 
and so Flip(D) = D = .1000... and so  
Flip(D) = the first element of our list! 
Flip(D) is not a new number outside the list. 
This is a counterexample to Cantor! 
 
Gentleman, Ladies: Cantor lies in ruin before us. His theory is a 
shambles. No longer can we speak of higher infinities. Mathematics 
must be revised from the ground up and built anew. I exhort you to  
join me in this grand project of reconstruction of the truth. 
################################################## 
 
Please comment on Professor Squarepunkt's lecture. Do you agree 
with him? What has he actually shown? Can you find a proof that 
the real numbers are uncountable in base-2, or is Squarepunkt right 
and we will have to start all over again with the foundations. (The 
idea behind Squarepunkt's lecture is due to a real mathematician - 
Nathaniel Hellerstein.) 
 
 
14. Assignment Number 14.  
Due Friday, December 4, 2009. 
Read Chapters 15, 16, 17, 23. 
page 198. Problems 15.5,15.6 
page 206. Problem 16.1. 
page 215. Problems 17.1, 17.2 
page 287. Problems 23.1, 23.2, 23.3, 23.7. 
 
 


